Next Article in Journal
A Wafer-Level Fabricated Heating–Vacuum Micro-Platform with Resonant MEMS Monolithically Integrated
Previous Article in Journal
Reliability Analysis of Complex PCB Assemblies Under Temperature Cycling and Random Vibration
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Etching: The Art of Semiconductor Micromachining

by
Lucia Romano
1,2
1
Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
2
Center for Photon Science, Paul Scherrer Institute, 5232 Villigen, Switzerland
Micromachines 2025, 16(2), 213; https://doi.org/10.3390/mi16020213
Submission received: 7 February 2025 / Accepted: 12 February 2025 / Published: 13 February 2025
Etching makes a pattern design a real 3D object. In semiconductor device fabrication, etching refers to any technology that selectively removes layers of material from a wafer’s surface, forming structures with specific depths and shapes. Etching is the process step that takes the design information from masks and transfers it into regions on the semiconductor where doping, isolation, gates, and metals are located. Depending on the complexity of the chip, a manufacturing work flow comprises several etching steps in dedicated tools distinguished by chemistries and processing capabilities. Etching plays a crucial role in various stages of semiconductor manufacturing, enabling to define features such as transistors, trenches for interconnects (e.g., IC) and wire bonding (e.g., packaging), microscale components with high precision and repeatability (e.g., MEMS).
Etching removes material through two basic mechanisms:
-
Physically: ions with enough kinetic energy to sputter (or ion mill) atoms from the material;
-
Chemically: etchant species form chemical reactions to promote the removal of atoms at the surface of the material.
Historically, wet chemical methods [1,2,3,4] were used to etch silicon until the advent of very-large-scale integration (VLSI) and ultra-large-scale integration (ULSI) technologies. VLSI and ULSI designs demand much more precise pattern transfer fidelity. In addition, aspect ratios (depth-to-width ratios) in advanced devices increased the ability to anisotropically etch material using directional etching technologies. Technically, dry-etching refers to the process of removing materials from the wafer surface using gaseous chemical etchants, which react with materials on the wafer to form volatile reaction products that are then evacuated from the reaction chamber. The etchants are usually generated directly or indirectly from the plasma of the etching gases. First proposed in the 1970s [5,6], reactive ion etching (RIE) uses etching gas species (e.g., SF6, CHF3, etc.) that are injected into a vacuum chamber and ionized (by radio frequency, microwave, etc.). The generated plasma contains ions and reactive radicals that are accelerated toward the substrate; this directional bombardment then favors anisotropic etching, transferring the pattern defined by lithography into the substrate. In plasma etching, multiple dynamic physical and chemical processes take place simultaneously and interact with each other, e.g., fluid dynamics of gaseous species, plasma generation and discharge, kinetic transport of ions and neutrals, chemical kinetics of etching reactions, adsorption and desorption of atoms and molecules on gas–solid interfaces, etc.
With the ongoing drive in the semiconductor industry towards miniaturization and more compact chips, the need for advanced etching techniques is more crucial than ever [7]. Etching equipment is a high-tech product created by integrating the most advanced technologies such as plasma generation, new materials, ultra-high vacuum, precision machining, automation, software control, etc. Plasma etching machines are among the most sophisticated tools right after lithographic tools [8].
Behind the huge investments in IC’s manufacturing, many other applications benefit silicon-etching methods, such as MEMS [9,10,11,12,13,14], microfluidics [15], micro-lenses [16], meta-surfaces [17], bio-interfaces [18], and X-ray optics [19,20,21,22]. The high demand for Si 3D microstructures with a high aspect ratio has driven both conventional (i.e., etching) and non-traditional [23] machining techniques to their maximum potential.
We refer to the most recent reviews about classical wet-etch [4] and dry-etch [24,25] methods for a comprehensive overview. Despite the fact that many other materials need to be etched for micromachining purposes—III-V compounds, many oxides, diamond, SiC, lithium niobate [26], tungsten [27], and aluminum [28]—the processing is less advanced than silicon-based manufacturing. New materials call for investigations into novel etch chemistry, quite often with the stringent necessity of integration on a silicon platform, as motivated by new advances in nanophotonics [29], quantum computing [30], and bio-chips [31,32]. As silicon is one of the most studied materials, its etching also represents the most used process of micromachining, spanning from high-aspect-ratio silicon nanostructures with non-Bosch processes and non-conventional wet-etching to several applications. The Bosch process is a high-aspect-ratio etching technology that repeats the cycle of isotropic etching followed by protection film deposition. The SF6 plasma cycle etches silicon, and the C4F8 plasma cycle creates a protection layer. An aspect ratio over 50, although it has been demonstrated, remains very challenging for the Bosch process. In pseudo-Bosch and non-Bosch processes, for example, DREM [33], the etching can achieve almost infinite selectivity, mainly due to the depletion of the C4F8 inhibitor, which is completely replaced in cryo-etching by oxygen [34], extending the micromachining capability of dry-etch to nanostructures [35]. The bottleneck of plasma etching is finally the isotropic nature of silicon’s reaction with fluorine species and the diffusion of the etchant species from the top of the pattern to the bottom of the structure with an increasing aspect ratio. Wet-etching [36], on the other hand, has the advantage of electrochemistry to directionally drive the reaction to create ordered macropore arrays [37,38] or elongated high-aspect-ratio silicon nanostructures [19,39,40]. In particular, metal-assisted chemical etching (MacEtch) [41,42,43,44] has recently been proposed as a new technology for structuring silicon at multiple scales [45] with many potential advantages with respect to plasma-based processing [46,47], such as incredible aspect ratio capabilities [48,49], low roughness [50], free of ion induced damage [51], suitable for III-V compounds [52], and a potentially dry [53] and CMOS-compatible [54,55] process. MacEtch has been successfully demonstrated in combination with electron beam [56,57], UV [19,44,58,59], flow-enabled self-assembly [60], tip-based [61], electrochemical nanoimprint [62], and chemisorption-assisted transfer printing [63], as well as displacement Talbot [64] lithography.
Depending on which specific etching technology, material process, and application demand are used, in general, there are still numerous challenges in the way of achieving highly precise and controlled etching. It is necessary to ensure that the whole etching process is both anisotropic and selective, compatible with the selected materials and application platform, and integrable with the whole process chain and environment. At the same time, it needs to be reproducible, cost-effective, and environmentally friendly for the benefit of our society and scientific progress.

Funding

The author would like to acknowledge the support she received by PHRT-TT Project Nr. 2022-572 INTIMACY; Swiss national science foundation SNF R Equip 189662 (SiDRY), SNF R Equip 177036 (DLT), SwissLOS lottery Kanton Aargau.

Conflicts of Interest

The author declares no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
VLSIvery-large-scale integration
ULSIultra-large-scale integration
ICsIntegrated Circuits
RIEreactive ion etching
DREMDeposit Remove Etch Multistep
MEMSsMicro-ElectroMechanical Systems
CMOSComplementary Metal-Oxide Semiconductor

References

  1. Sato, K.; Shikida, M.; Matsushima, Y.; Yamashiro, T.; Asaumi, K.; Iriye, Y.; Yamamoto, M. Characterization of orientation-dependent etching properties of single-crystal silicon: Effects of KOH concentration. Sens. Actuators A Phys. 1998, 64, 87–93. [Google Scholar] [CrossRef]
  2. Seidel, H.; Csepregi, L.; Heuberger, A.; Baumgärtel, H. Anisotropic Etching of Crystalline Silicon in Alkaline Solutions: I. Orientation Dependence and Behavior of Passivation Layers. J. Electrochem. Soc. 1990, 137, 3612. [Google Scholar] [CrossRef]
  3. Cho, W.-J.; Chin, W.-K.; Kuo, C.-T. Effects of alcoholic moderators on anisotropic etching of silicon in aqueous potassium hydroxide solutions. Sens. Actuators A Phys. 2004, 116, 357–368. [Google Scholar] [CrossRef]
  4. Pal, P.; Swarnalatha, V.; Rao, A.V.N.; Pandey, A.K.; Tanaka, H.; Sato, K. High speed silicon wet anisotropic etching for applications in bulk micromachining: A review. Micro Nano Syst. Lett. 2021, 9, 4. [Google Scholar] [CrossRef]
  5. Coburn, J.W.; Winters, H.F. Ion- and electron-assisted gas-surface chemistry—An important effect in plasma etching. J. Appl. Phys. 1979, 50, 3189–3196. [Google Scholar] [CrossRef]
  6. Coburn, J.W.; Winters, H.F. Plasma etching—A discussion of mechanisms. J. Vac. Sci. Technol. 1979, 16, 391–403. [Google Scholar] [CrossRef]
  7. Mahtab, S.S.; Anonto, R.A.; Talukder, T.; Raihan, A.; Islam, I. Etching Technologies in Semiconductor Manufacturing: A Short Review. In Innovations in Electronic Materials: Advancing Technology for a Sustainable Future; Springer: Cham, Switzerland, 2025; pp. 319–324. [Google Scholar]
  8. Plummer, J.D.; Griffin, P.B. Integrated Circuit Fabrication: Science and Technology; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
  9. Shuaibu, A.H.; Rabih, A.A.S.; Blaquière, Y.; Nabki, F. Laterally Actuated Si-to-Si DC MEMS Switch for Power Switching Applications. Micromachines 2024, 15, 1295. [Google Scholar] [CrossRef] [PubMed]
  10. Vercauteren, R.; Scheen, G.; Raskin, J.-P.; Francis, L.A. Porous silicon membranes and their applications: Recent advances. Sens. Actuators A Phys. 2021, 318, 112486. [Google Scholar] [CrossRef]
  11. Algamili, A.S.; Khir, M.H.M.; Dennis, J.O.; Ahmed, A.Y.; Alabsi, S.S.; Ba Hashwan, S.S.; Junaid, M.M. A Review of Actuation and Sensing Mechanisms in MEMS-Based Sensor Devices. Nanoscale Res. Lett. 2021, 16, 16. [Google Scholar] [CrossRef] [PubMed]
  12. Hajare, R.; Reddy, V.; Srikanth, R. MEMS based sensors—A comprehensive review of commonly used fabrication techniques. Mater. Today Proc. 2022, 49, 720–730. [Google Scholar] [CrossRef]
  13. Mishra, M.K.; Dubey, V.; Mishra, P.M.; Khan, I. MEMS Technology: A Review. J. Eng. Res. Rep. 2019, 4, 1–24. [Google Scholar] [CrossRef]
  14. Fischer, A.C.; Forsberg, F.; Lapisa, M.; Bleiker, S.J.; Stemme, G.; Roxhed, N.; Niklaus, F. Integrating MEMS and ICs. Microsyst. Nanoeng. 2015, 1, 15005. [Google Scholar] [CrossRef]
  15. Yu, Q.; Veltkamp, H.-W.; Wiegerink, R.J.; Lötters, J.C. Fabrication of Buried Microchannels with Almost Circular Cross-Section Using HNA Wet Etching. Micromachines 2024, 15, 1230. [Google Scholar] [CrossRef] [PubMed]
  16. Wu, Y.; Dong, X.; Wang, X.; Xiao, J.; Sun, Q.; Shen, L.; Lan, J.; Shen, Z.; Xu, J.; Du, Y. Fabrication of Large-Area Silicon Spherical Microlens Arrays by Thermal Reflow and ICP Etching. Micromachines 2024, 15, 460. [Google Scholar] [CrossRef]
  17. Baracu, A.M.; Dirdal, C.A.; Avram, A.M.; Dinescu, A.; Muller, R.; Jensen, G.U.; Thrane, P.C.V.; Angelskår, H. Metasurface Fabrication by Cryogenic and Bosch Deep Reactive Ion Etching. Micromachines 2021, 12, 501. [Google Scholar] [CrossRef] [PubMed]
  18. Elnathan, R.; Barbato, M.G.; Guo, X.; Mariano, A.; Wang, Z.; Santoro, F.; Shi, P.; Voelcker, N.H.; Xie, X.; Young, J.L.; et al. Biointerface design for vertical nanoprobes. Nat. Rev. Mater. 2022, 7, 953–973. [Google Scholar] [CrossRef]
  19. Romano, L.; Stampanoni, M. Microfabrication of X-ray Optics by Metal Assisted Chemical Etching: A Review. Micromachines 2020, 11, 589. [Google Scholar] [CrossRef] [PubMed]
  20. Shi, Z.; Jefimovs, K.; Romano, L.; Stampanoni, M. Towards the Fabrication of High-Aspect-Ratio Silicon Gratings by Deep Reactive Ion Etching. Micromachines 2020, 11, 864. [Google Scholar] [CrossRef] [PubMed]
  21. Finnegan, P.S.; Hollowell, A.E.; Arrington, C.L.; Dagel, A.L. High aspect ratio anisotropic silicon etching for x-ray phase contrast imaging grating fabrication. Mater. Sci. Semicond. Process. 2019, 92, 80–85. [Google Scholar] [CrossRef]
  22. Li, K.; Ali, S.; Wojcik, M.; De Andrade, V.; Huang, X.; Yan, H.; Chu, Y.S.; Nazaretski, E.; Pattammattel, A.; Jacobsen, C. Tunable hard x-ray nanofocusing with Fresnel zone plates fabricated using deep etching. Optica 2020, 7, 410–416. [Google Scholar] [CrossRef]
  23. Daud, N.D.; Hasan, M.N.; Saleh, T.; Leow, P.L.; Mohamed Ali, M.S. Non-traditional machining techniques for silicon wafers. Int. J. Adv. Manuf. Technol. 2022, 121, 29–57. [Google Scholar] [CrossRef]
  24. Li, C.; Yang, Y.; Qu, R.; Cao, X.; Liu, G.; Jin, X.; Liu, Y.; Liu, S.; Jiang, W.; Zhang, X. Recent advances in plasma etching for micro and nano fabrication of silicon-based materials: A review. J. Mater. Chem. C 2024, 12, 18211–18237. [Google Scholar] [CrossRef]
  25. Xu, J.; Refino, A.D.; Delvallée, A.; Seibert, S.; Schwalb, C.; Hansen, P.E.; Foldyna, M.; Siaudinyte, L.; Hamdana, G.; Wasisto, H.S.; et al. Deep-reactive ion etching of silicon nanowire arrays at cryogenic temperatures. Appl. Phys. Rev. 2024, 11, 021411. [Google Scholar] [CrossRef]
  26. Wu, R.; Gao, L.; Liang, Y.; Zheng, Y.; Zhou, J.; Qi, H.; Yin, D.; Wang, M.; Fang, Z.; Cheng, Y. High-Production-Rate Fabrication of Low-Loss Lithium Niobate Electro-Optic Modulators Using Photolithography Assisted Chemo-Mechanical Etching (PLACE). Micromachines 2022, 13, 378. [Google Scholar] [CrossRef] [PubMed]
  27. Wang, Z.; Xia, Y.; Song, L.; Chen, J.; Wang, W. Fabrication of Bulk Tungsten Microstructure Arrays for Hydrophobic Metallic Surfaces Using Inductively Coupled Plasma Deep Etching. Micromachines 2024, 15, 807. [Google Scholar] [CrossRef] [PubMed]
  28. Lee, H.-R.; Jung, E.-S.; Yoo, J.-U.; Choi, T.-M.; Pyo, S.-G. Etching Chemistry Process Optimization of Ethylene Diluted with Helium (C2H4/He) in Interconnect Integration. Micromachines 2024, 15, 1439. [Google Scholar] [CrossRef] [PubMed]
  29. Yan, J.; Liu, X.; Ma, C.; Huang, Y.; Yang, G. All-dielectric materials and related nanophotonic applications. Mater. Sci. Eng. R Rep. 2020, 141, 100563. [Google Scholar] [CrossRef]
  30. Brown, K.R.; Chiaverini, J.; Sage, J.M.; Häffner, H. Materials challenges for trapped-ion quantum computers. Nat. Rev. Mater. 2021, 6, 892–905. [Google Scholar] [CrossRef]
  31. Ricouvier, J.; Mostov, P.; Shabtai, O.; Vonshak, O.; Tayar, A.; Karzbrun, E.; Khakimzhan, A.; Noireaux, V.; Daube, S.S.; Bar-Ziv, R. Large-scale-integration and collective oscillations of 2D artificial cells. Nat. Commun. 2024, 15, 10202. [Google Scholar] [CrossRef]
  32. Azizipour, N.; Avazpour, R.; Rosenzweig, D.H.; Sawan, M.; Ajji, A. Evolution of Biochip Technology: A Review from Lab-on-a-Chip to Organ-on-a-Chip. Micromachines 2020, 11, 599. [Google Scholar] [CrossRef] [PubMed]
  33. Chang, B.; Leussink, P.; Jensen, F.; Hübner, J.; Jansen, H. DREM: Infinite etch selectivity and optimized scallop size distribution with conventional photoresists in an adapted multiplexed Bosch DRIE process. Microelectron. Eng. 2018, 191, 77–83. [Google Scholar] [CrossRef]
  34. Thi Hoang Nguyen, V.; Silvestre, C.; Shi, P.; Cork, R.; Jensen, F.; Hubner, J.; Ma, K.; Leussink, P.; de Boer, M.; Jansen, H. The CORE Sequence: A Nanoscale Fluorocarbon-Free Silicon Plasma Etch Process Based on SF6/O2 Cycles with Excellent 3D Profile Control at Room Temperature. ECS J. Solid State Sci. Technol. 2020, 9, 024002. [Google Scholar] [CrossRef]
  35. Kota, S.V.; Thilsted, A.; Trimarco, D.; Pan, J.Y.; Hansen, O.; Hübner, J.; Taboryski, R.; Jansen, H. Nano-Perforated Silicon Membrane with Monolithically Integrated Buried Cavity. Micromachines 2025, 16, 104. [Google Scholar] [CrossRef] [PubMed]
  36. Chen, X.; Jiang, S.; Li, Y.; Jiang, Y.; Wang, W.; Bayanheshig. Fabrication of ultra-high aspect ratio silicon grating using an alignment method based on a scanning beam interference lithography system. Opt. Express 2022, 30, 40842–40853. [Google Scholar] [CrossRef]
  37. Zhang, J.; Zhang, F.; Ma, M.; Liu, Z. Fabrication of Ordered Macropore Arrays in n-Type Silicon Wafer by Anodic Etching Using Double-Tank Electrochemical Cell. Micromachines 2024, 15, 569. [Google Scholar] [CrossRef]
  38. Schutzeichel, C.; Kiriy, N.; Kiriy, A.; Voit, B. Self-Replication of Deeply Buried Doped Silicon Structures, which Remotely Control the Etching Process: A New Method for Forming a Silicon Pattern from the Bottom Up. Adv. Funct. Mater. 2021, 31, 2100105. [Google Scholar] [CrossRef]
  39. Nur’aini, A.; Oh, I. Deep Etching of Silicon Based on Metal-Assisted Chemical Etching. ACS Omega 2022, 7, 16665–16669. [Google Scholar] [CrossRef]
  40. Ohlin, H.; Frisk, T.; Sychugov, I.; Vogt, U. Comparing metal assisted chemical etching of N and P-type silicon nanostructures. Micro Nano Eng. 2023, 19, 100178. [Google Scholar] [CrossRef]
  41. Romano, L. Editorial for the Special Issue on Micro- and Nano-Fabrication by Metal Assisted Chemical Etching. Micromachines 2020, 11, 988. [Google Scholar] [CrossRef] [PubMed]
  42. Gries, S.; Brinker, M.; Zeller-Plumhoff, B.; Rings, D.; Krekeler, T.; Longo, E.; Greving, I.; Huber, P. Wafer-Scale Fabrication of Hierarchically Porous Silicon and Silica by Active Nanoparticle-Assisted Chemical Etching and Pseudomorphic Thermal Oxidation. Small 2023, 19, 2206842. [Google Scholar] [CrossRef] [PubMed]
  43. Surdo, S.; Barillaro, G. Voltage- and Metal-assisted Chemical Etching of Micro and Nano Structures in Silicon: A Comprehensive Review. Small 2024, 20, 2400499. [Google Scholar] [CrossRef]
  44. Romano, L.; Vila-Comamala, J.; Jefimovs, K.; Stampanoni, M. High-Aspect-Ratio Grating Microfabrication by Platinum-Assisted Chemical Etching and Gold Electroplating. Adv. Eng. Mater. 2020, 22, 2000258. [Google Scholar] [CrossRef]
  45. Srivastava, R.P.; Khang, D.Y. Structuring of Si into Multiple Scales by Metal-Assisted Chemical Etching. Adv. Mater. 2021, 33, e2005932. [Google Scholar] [CrossRef] [PubMed]
  46. Hwang, S.; Lee, W.; Carr, W.N.; Yoon, Y.K. Metal-Assisted Chemical Etching Toward Scallop-Free-Sidewall Through-Silicon Vias: A Review. IEEE Trans. Compon. Packag. Manuf. Technol. 2023, 13, 1848–1860. [Google Scholar] [CrossRef]
  47. Hrdy, M.; Mallavarapu, A.; Castañeda, M.; Ajay, P.; Sreenivasan, S.V. Scalable Au Metal-Assisted Chemical Etch Nanopatterning Using Enhanced Metal Break Techniques. J. Micro Nano-Manuf. 2024, 11, 011005. [Google Scholar] [CrossRef]
  48. Romano, L.; Kagias, M.; Vila-Comamala, J.; Jefimovs, K.; Tseng, L.T.; Guzenko, V.A.; Stampanoni, M. Metal assisted chemical etching of silicon in the gas phase: A nanofabrication platform for X-ray optics. Nanoscale Horiz 2020, 5, 869–879. [Google Scholar] [CrossRef] [PubMed]
  49. Michalska, M.; Rossi, A.; Kokot, G.; Macdonald, C.M.; Cipiccia, S.; Munro, P.R.T.; Olivo, A.; Papakonstantinou, I. Fabrication of High-Aspect Ratio Nanogratings for Phase-Based X-Ray Imaging. Adv. Funct. Mater. 2023, 33, 2212660. [Google Scholar] [CrossRef]
  50. Sharstniou, A.; Niauzorau, S.; Hardison, A.L.; Puckett, M.; Krueger, N.; Ryckman, J.D.; Azeredo, B. Roughness Suppression in Electrochemical Nanoimprinting of Si for Applications in Silicon Photonics. Adv. Mater. 2022, 34, 2206608. [Google Scholar] [CrossRef]
  51. Li, X. There Is Plenty of Room All-Around. IEEE Nanotechnol. Mag. 2023, 17, 26–30. [Google Scholar] [CrossRef]
  52. Znati, S.; Wharwood, J.; Tezanos, K.G.; Li, X.; Mohseni, P.K. Metal-assisted chemical etching beyond Si: Applications to III–V compounds and wide-bandgap semiconductors. Nanoscale 2024, 16, 10901–10946. [Google Scholar] [CrossRef]
  53. Janavicius, L.L.; Michaels, J.A.; Chan, C.; Sievers, D.J.; Li, X. Programmable vapor-phase metal-assisted chemical etching for versatile high-aspect ratio silicon nanomanufacturing. Appl. Phys. Rev. 2023, 10, 011409. [Google Scholar] [CrossRef]
  54. Mallavarapu, A.; Ajay, P.; Barrera, C.; Sreenivasan, S.V. Ruthenium-Assisted Chemical Etching of Silicon: Enabling CMOS-Compatible 3D Semiconductor Device Nanofabrication. ACS Appl. Mater. Interfaces 2021, 13, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
  55. Hrdy, M.; Mallavarapu, A.; Galindo, R.L.; Sreenivasan, S.V. Ruthenium catalyst processing and oxidation for scalable complementary metal-oxide-semiconductor-compatible metal-assisted chemical etch. J. Micro/Nanopatterning Mater. Metrol. 2024, 23, 043601. [Google Scholar] [CrossRef]
  56. Chang, C.; Sakdinawat, A. Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics. Nat. Commun. 2014, 5, 4243. [Google Scholar] [CrossRef]
  57. Lebugle, M.; Dworkowski, F.; Pauluhn, A.; Guzenko, V.A.; Romano, L.; Meier, N.; Marschall, F.; Sanchez, D.F.; Grolimund, D.; Wang, M.; et al. High-intensity x-ray microbeam for macromolecular crystallography using silicon kinoform diffractive lenses. Appl. Opt. 2018, 57, 9032–9039. [Google Scholar] [CrossRef] [PubMed]
  58. Romano, L.; Kagias, M.; Jefimovs, K.; Stampanoni, M. Self-assembly nanostructured gold for high aspect ratio silicon microstructures by metal assisted chemical etching. Rsc Adv. 2016, 6, 16025–16029. [Google Scholar] [CrossRef]
  59. Romano, L.; Vila-Comamala, J.; Jefimovs, K.; Stampanoni, M. Effect of isopropanol on gold assisted chemical etching of silicon microstructures. Microelectron. Eng. 2017, 177, 59–65. [Google Scholar] [CrossRef]
  60. Li, L.; Li, B.; Zhang, C.; Tuan, C.-C.; Lin, Z.; Wong, C.-P. A facile and low-cost route to high-aspect-ratio microstructures on silicon via a judicious combination of flow-enabled self-assembly and metal-assisted chemical etching. J. Mater. Chem. C 2016, 4, 8953–8961. [Google Scholar] [CrossRef]
  61. Jo, J.-S.; Choi, J.; Lee, S.-H.; Song, C.; Noh, H.; Jang, J.-W. Mass Fabrication of 3D Silicon Nano-/Microstructures by Fab-Free Process Using Tip-Based Lithography. Small 2021, 17, 2005036. [Google Scholar] [CrossRef] [PubMed]
  62. Sharstniou, A.; Niauzorau, S.; Ferreira, P.M.; Azeredo, B.P. Electrochemical nanoimprinting of silicon. Proc. Natl. Acad. Sci. USA 2019, 116, 10264–10269. [Google Scholar] [CrossRef] [PubMed]
  63. Zhao, Z.-J.; Shin, S.-H.; Lee, S.Y.; Son, B.; Liao, Y.; Hwang, S.; Jeon, S.; Kang, H.; Kim, M.; Jeong, J.-H. Direct Chemisorption-Assisted Nanotransfer Printing with Wafer-Scale Uniformity and Controllability. ACS Nano 2022, 16, 378–385. [Google Scholar] [CrossRef] [PubMed]
  64. Shi, Z.; Jefimovs, K.; Stampanoni, M.; Romano, L. High aspect ratio arrays of Si nano-pillars using displacement Talbot lithography and gas-MacEtch. Mater. Sci. Semicond. Process. 2023, 157, 107311. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Romano, L. Etching: The Art of Semiconductor Micromachining. Micromachines 2025, 16, 213. https://doi.org/10.3390/mi16020213

AMA Style

Romano L. Etching: The Art of Semiconductor Micromachining. Micromachines. 2025; 16(2):213. https://doi.org/10.3390/mi16020213

Chicago/Turabian Style

Romano, Lucia. 2025. "Etching: The Art of Semiconductor Micromachining" Micromachines 16, no. 2: 213. https://doi.org/10.3390/mi16020213

APA Style

Romano, L. (2025). Etching: The Art of Semiconductor Micromachining. Micromachines, 16(2), 213. https://doi.org/10.3390/mi16020213

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop