Microfluidic Paper-Based Devices
Funding
Conflicts of Interest
References
- Martinez, A.W.; Phillips, S.T.; Butte, M.J.; Whitesides, G.M. Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays. Angew. Chem. Int. Ed. 2007, 46, 1318–1320. [Google Scholar] [CrossRef]
- Reynolds, J.; Loeffler, R.S.; Leigh, P.J.; Lopez, H.A.; Yoon, J.-Y. Recent Uses of Paper Microfluidics in Isothermal Nucleic Acid Amplification Tests. Biosensors 2023, 13, 885. [Google Scholar] [CrossRef]
- Mitrogiannopoulou, A.-M.; Tselepi, V.; Ellinas, K. Polymeric and Paper-Based Lab-on-a-Chip Devices in Food Safety: A Review. Micromachines 2023, 14, 986. [Google Scholar] [CrossRef]
- Shahid, Z.; Veenuttranon, K.; Lu, X.; Chen, J. Recent Advances in the Fabrication and Application of Electrochemical Paper-Based Analytical Devices. Biosensors 2024, 14, 561. [Google Scholar] [CrossRef]
- Nuchtavorn, N.; Rypar, T.; Nejdl, L.; Vaculovicova, M.; Macka, M. Distance-Based Detection in Analytical Flow Devices: From Gas Detection Tubes to Microfluidic Chips and Microfluidic Paper-Based Analytical Devices. Trends Anal. Chem. 2022, 150, 116581. [Google Scholar] [CrossRef]
- Reboud, J.; Xu, G.; Garrett, A.; Adriko, M.; Yang, Z.; Tukahebwa, E.M.; Cooper, J.M. Paper-Based Microfluidics for DNA Diagnostics of Malaria in Low Resource Underserved Rural Communities. Proc. Natl. Acad. Sci. USA 2019, 116, 4834–4842. [Google Scholar] [CrossRef]
- Asci Erkocyigit, B.; Ozufuklar, O.; Yardim, A.; Guler Celik, E.; Timur, S. Biomarker Detection in Early Diagnosis of Cancer: Recent Achievements in Point-of-Care Devices Based on Paper Microfluidics. Biosensors 2023, 13, 387. [Google Scholar] [CrossRef]
- Lu, S.Y.; Tseng, C.C.; Yu, C.X.; Huang, K.H.; Chen, T.L.; Fu, L.M.; Wu, P.H. Rapid Microfluidic Fluorescence Detection Platform for Determination of Whole Blood Sodium. Sens. Actuators B Chem. 2024, 400, 134839. [Google Scholar] [CrossRef]
- Burgos-Flórez, F.; Rodríguez, A.; Cervera, E.; De Ávila, M.; Sanjuán, M.; Villalba, P.J. Microfluidic Paper-Based Blood Plasma Separation Device as a Potential Tool for Timely Detection of Protein Biomarkers. Micromachines 2022, 13, 706. [Google Scholar] [CrossRef]
- Yadav, S.K.; Verma, D.; Yadav, U.; Kalkal, A.; Priyadarshini, N.; Kumar, A.; Mahato, K. Point-of-Care Devices for Viral Detection: COVID-19 Pandemic and Beyond. Micromachines 2023, 14, 1744. [Google Scholar] [CrossRef]
- Chen, H.; Liu, C.C.; Lu, S.Y.; Chen, S.; Sheu, F.; Fu, L.M. Rapid Microfluidic Analysis Detection System for Sodium Dehydroacetate in Foods. Chem. Eng. J. 2022, 427, 131530. [Google Scholar] [CrossRef]
- Ko, C.H.; Liu, C.C.; Huang, K.H.; Fu, L.M. Finger Pump Microfluidic Detection System for Mmethylparaben Detection in Foods. Food Chem. 2023, 407, 135118. [Google Scholar] [CrossRef] [PubMed]
- Ireta-Muñoz, L.A.; Cueva-Pérez, I.; Elvira-Ortiz, D.A.; Moreno-Suárez, L.E.; Pérez-Cruz, Á. Study of Mechanical Response of Paper-Based Microfluidic System as a Potential Milk Tester. Micromachines 2023, 14, 1380. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, Y.; Zhang, T.; Zheng, Z.; Jing, H.; Liu, C. Improving Ppesticide Residue Detection: Immobilized Enzyme Microreactor Embedded in Microfluidic Paper-Based Analytical Devices. Food Chem. 2024, 439, 138179. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.; Ahamed, A.; Cheong, Y.H.; Zhao, K.; Ding, R.; Lisak, G. Non-Equilibrium Potentiometric Sensors Integrated with Mmetal Modified Paper-Based Microfluidic Solution Sampling Substrates for Determination of Heavy Metals in Complex Environmental Samples. Anal. Chim. Acta 2022, 1197, 339495. [Google Scholar] [CrossRef]
- Yuan, M.; Li, C.; Zheng, Y.; Cao, H.; Ye, T.; Wu, X.; Hao, L.; Yin, F.; Yu, J.; Xu, F. A Portable Multi-Channel Fluorescent Paper-Based Microfluidic Chip Based on Smartphone Imaging for Simultaneous Detection of Four Heavy Metals. Talanta 2024, 266, 125112. [Google Scholar] [CrossRef]
- Al-Jaf, S.H.; Ameen, S.S.M.; Omer, K.M. A Novel Ratiometric Design of Microfluidic Paper-Based Analytical Device for the Simultaneous Detection of Cu2+ and Fe3+ in Drinking Water using a Fluorescent MOF@tetracycline Nanocomposite. Lab Chip 2024, 24, 2306–2316. [Google Scholar] [CrossRef]
- Behbahan, A.K.; Yahyai, I.A.; Al Lawati, H.A.J.; Hassenzadeh, J.; Suliman, F.O. Implementation of the Metal Organic Frameworks on Paper-Based Devices: A Review on Current Applications and Future Sights. Microchem. J. 2024, 207, 112011. [Google Scholar] [CrossRef]
- Yang, M.; Sun, N.; Lai, X.; Li, Y.; Zhao, X.; Wu, J.; Zhou, W. Screen-Printed Wearable Sweat Sensor for Cost-Effective Assessment of Human Hydration Status through Potassium and Sodium Ion Detection. Micromachines 2023, 14, 1497. [Google Scholar] [CrossRef]
- Fiore, L.; Mazzaracchio, V.; Serani, A.; Fabiani, G.; Fabiani, L.; Volpe, G.; Moscone, D.; Bianco, G.M.; Occhiuzzi, C.; Marrocco, G.; et al. Microfluidic Paper-Based Wearable Electrochemical Biosensor for Reliable Cortisol Detection in Sweat. Sens. Actuators B Chem. 2024, 379, 133258. [Google Scholar] [CrossRef]
- Deng, M.; Li, X.; Song, K.; Yang, H.; Wei, W.; Duan, X.; Ouyang, X.; Cheng, H.; Wang, X. Skin-Interfaced Bifluidic Paper-Based Device for Quantitative Sweat Analysis. Adv. Sci. 2024, 11, 2306023. [Google Scholar] [CrossRef] [PubMed]
- Musile, G.; Grazioli, C.; Fornasaro, S.; Dossi, N.; De Palo, E.F.; Tagliaro, F.; Bortolotti, F. Application of Paper-Based Microfluidic Analytical Devices (µPAD) in Forensic and Clinical Toxicology: A Review. Biosensors 2023, 13, 743. [Google Scholar] [CrossRef] [PubMed]
- Rosendo, L.M.; Antunes, M.; Simão, A.Y.; Brinca, A.T.; Catarro, G.; Pelixo, R.; Martinho, J.; Pires, B.; Soares, S.; Cascalheira, J.F.; et al. Sensors in the Detection of Abused Substances in Forensic Contexts: A Comprehensive Review. Micromachines 2023, 14, 2249. [Google Scholar] [CrossRef] [PubMed]
- Zaki, M.F.; Wu, Y.H.; Chen, P.C.; Chen, P.S. Determination of Psychoactive Substances in One Microliter Plasma Using a Novel 3D Printing Microfluidic Paper-Based Column Coupled to Liquid Chromatography-Mass Spectrometry. Sens. Actuators B Chem. 2023, 393, 134243. [Google Scholar] [CrossRef]
- Suleman, S.; Anzar, N.; Patil, S.; Shadan; Parvez, S.; Khanuja, M.; Pilloton, R.; Narang, J. Aptasensor Integrated with Two-Dimensional Nanomaterial for Selective and Sensitive Electrochemical Detection of Ketamine Drug. Micromachines 2024, 15, 312. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, L.-M. Microfluidic Paper-Based Devices. Micromachines 2025, 16, 307. https://doi.org/10.3390/mi16030307
Fu L-M. Microfluidic Paper-Based Devices. Micromachines. 2025; 16(3):307. https://doi.org/10.3390/mi16030307
Chicago/Turabian StyleFu, Lung-Ming. 2025. "Microfluidic Paper-Based Devices" Micromachines 16, no. 3: 307. https://doi.org/10.3390/mi16030307
APA StyleFu, L.-M. (2025). Microfluidic Paper-Based Devices. Micromachines, 16(3), 307. https://doi.org/10.3390/mi16030307