Lasso Model-Based Optimization of CNC/CNF/rGO Nanocomposites
Abstract
:1. Introduction
- -
- Citric acid: A mild organic acid with strong hydrogen-bonding capabilities, citric acid facilitates uniform dispersion of CNC and CNF within the matrix. However, its moderate reduction efficiency often results in rGO with residual oxygen functionalities, which can disrupt the stacking of rGO sheets and limit conductivity. The advantages of citric acid lie in its ability to enhance mechanical stability and compatibility within the nanocomposite matrix [25,26].
- -
- L-ascorbic acid: A strong reducing agent and natural antioxidant, L-ascorbic acid exhibits superior reduction efficiency, producing rGO with fewer oxygen-containing functional groups. This characteristic enhances electrical conductivity and promotes better stacking of rGO sheets, resulting in a denser and more efficient conductive network. While effective for improving conductivity, L-ascorbic acid can sometimes lead to challenges in achieving uniform dispersion within the matrix [27,28].
- Quantify the reduction efficacy of citric acid and L-ascorbic acid under controlled pH and concentration conditions, employing spectroscopic and electrochemical techniques to elucidate the mechanisms of graphene oxide reduction.
- Elucidate the structural integration of cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), and reduced graphene oxide (rGO) within the nanocomposite matrix, with particular emphasis on the role of reducing agents in modulating dispersion and alignment, utilizing advanced microscopy and scattering techniques.
- Characterize the mechanical properties, including tensile strength, Young’s modulus, and film thickness, and establish correlations with composition and processing parameters through statistical analysis and materials science principles.
- Assess the electrical conductivity of the nanocomposites and develop comprehensive regression models to delineate the impact of composition and processing variables on conductivity, employing both theoretical and experimental approaches.
- Construct and validate a machine learning prediction model to identify complex patterns and forecast the performance metrics of CNC/CNF/rGO nanocomposites, utilizing input parameters such as composition ratios, reduction conditions, and mechanical properties. This model will employ advanced algorithms such as neural networks or random forests to capture non-linear relationships and interactions among variables.
- Optimize the composition and processing conditions using a multi-objective optimization framework, incorporating techniques such as response surface methodology or genetic algorithms to achieve an optimal balance between electrical conductivity and mechanical stability for specific application requirements.
Validation from Literature
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of CNC/CNF/rGO Nanocomposites
2.3. Reduction Process with Citric Acid and L-Ascorbic Acid
2.4. Characterization Techniques
- -
- Surface roughness: The roughness of LAA-treated films was measured at approximately 43.75, indicating a significant reduction compared to CA-treated films (56.29). This reduction reflected the smoother and more compact surface morphology achieved through LAA treatment.
- -
- Pore count: The number of pores observed in LAA-treated films was significantly lower (1404) than in CA-treated films (4388). This reduction highlighted the role of LAA in minimizing porosity.
- -
- Pore distribution: Pores in LAA-treated films were smaller and more isolated, contributing to improved structural integrity.
2.5. Film Thickness Models
- ○
- m is the mass of the composite film;
- ○
- A is the area of the film;
- ○
- ρ is the density of the composite material.
3. Model Training and Evaluation
- Complexity of the material system: The CNC/CNF/rGO nanocomposite system involves intricate interactions between multiple components, potentially requiring a more complex model to capture these relationships accurately.
- Overfitting prevention: Despite the depth of the network, we implemented rigorous regularization techniques, including dropout layers and early stopping, to prevent overfitting. The high R2 scores on both training and validation sets (0.9989 and 0.9987, respectively) indicate that the model generalizes well.
- Computational efficiency: While a 30-layer network is more computationally intensive, the marginal improvement in performance justified its use for our specific dataset and problem complexity.
- Future scalability: The deeper architecture allows for the potential expansion of the model to incorporate additional input parameters or predict more complex material properties in future studies without significant restructuring.
Dataset Preparation and Splitting
4. Results and Discussion
4.1. Composition and Properties of CNC/CNF/rGO Nanocomposites
4.2. Reduction Efficiency of Citric Acid and L-Ascorbic Acid
- -
- Refficiency represents the reduction of efficiency;
- -
- A is a scaling constant;
- -
- k is the reaction rate constant that quantifies the sensitivity to pH variations;
- -
- pHopt is the optimal pH for the reduction process.
4.3. Structural Effects on CNC/CNF Dispersion
4.4. Conductive Network Formation and rGO Stacking
5. Optimization of CNC/CNF/rGO Nanocomposites
5.1. Optimization Constraints and Objectives
- Composition constraint: CNC + CNF + rGO ≤ 2.0 wt%;
- pH constraint:
- -
- L-ascorbic acid: 5.7 ≤ pH ≤ 5.9;
- -
- Citric acid: 5.0 ≤ pH ≤ 5.2.
5.2. Optimization Results
6. Comparative Analysis of Citric Acid and L-Ascorbic Acid in CNC/CNF/rGO Nanocomposites
6.1. Reduction Efficiency and pH Optimization
6.2. Structural Integration and Material Properties
6.3. Synergy Between CNC, CNF, and rGO
6.4. Trade-Offs Between Conductivity and Mechanical Properties
6.5. Conductivity Sensitivity to pH Model
6.6. Challenges in Large-Scale Production
7. Conclusions and Future Directions
- The scalability of production while maintaining consistent properties;
- Long-term stability under various environmental conditions;
- Advanced modeling techniques incorporating time-dependent variables;
- The exploration of hybrid reducing agents for optimal property balance;
- Functionalization strategies to enhance specific properties;
- Application-specific optimization for emerging technologies;
- Sustainability assessments through life cycle analyses.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ishibe, T.; Maeda, Y.; Terada, T.; Naruse, N.; Mera, Y.; Kobayashi, E.; Nakamura, Y. Resistive switching memory performance in oxide hetero-nanocrystals with well-controlled interfaces. Sci. Technol. Adv. Mater. 2020, 21, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Bahk, J.-H.; Day, T.; Mohammed, A.M.S.; Snyder, G.J.; Shakouri, A.; Wu, Y. Enhanced thermoelectric properties in bulk nanowire heterostructure-based nanocomposites through minority carrier blocking. Nano Lett. 2015, 15, 1349–1355. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, G.; Stiharu, I.; van de Ven, T.G.M.; Nerguizian, V. Advancement in Biosensor Technologies of 2D MaterialIntegrated with Cellulose—Physical Properties. Micromachines 2024, 15, 82. [Google Scholar] [CrossRef]
- Ramezani, G.; Stiharu, I.; van de Ven, T.G.M.; Nerguizian, V. Advancements in Hybrid Cellulose-Based Films: Innovations and Applications in 2D Nano-Delivery Systems. J. Funct. Biomater. 2024, 15, 93. [Google Scholar] [CrossRef]
- Gupta, A.; Khodayari, A.; van Duin, A.C.T.; Hirn, U.; Van Vuure, A.W.; Seveno, D. Cellulose Nanocrystals: Tensile Strength and Failure Mechanisms Revealed Using Reactive Molecular Dynamics. Biomacromolecules 2022, 23, 2243–2254. [Google Scholar] [CrossRef]
- Jung, J.; Sodano, H.A. Cellulose nanocrystal functionalized aramid nanofiber reinforced epoxy nanocomposites with high strength and toughness. Nanotechnology 2023, 34, 245703. [Google Scholar] [CrossRef]
- Han, L.; Cui, S.; Yu, H.-Y.; Song, M.; Zhang, H.; Grishkewich, N.; Huang, C.; Kim, D.; Tam, K.M.C. Self-Healable Conductive Nanocellulose Nanocomposites for Biocompatible Electronic Skin Sensor Systems. ACS Appl. Mater. Interfaces 2019, 11, 44642–44651. [Google Scholar] [CrossRef]
- Fahma, F.; Febiyanti, I.; Lisdayana, N.; Arnata, I.; Sartika, D. Nanocellulose as a new sustainable material for various applications: A review. Arch. Mater. Sci. Eng. 2021, 109, 49–64. [Google Scholar] [CrossRef]
- Rodrigues, F.H.A.; Spagnol, C.; Pereira, A.G.B.; Martins, A.F.; Fajardo, A.R.; Rubira, A.F.; Muniz, E.C. Superabsorbent hydrogel composites with a focus on hydrogels containing nanofibers or nanowhiskers of cellulose and chitin. J. Appl. Polym. Sci. 2014, 131, 39725. [Google Scholar] [CrossRef]
- Kumar, H.; Sharma, R.; Yadav, A.; Kumari, R. Recent advancement made in the field of reduced graphene oxide-based nanocomposites used in the energy storage devices: A review. J. Energy Storage 2020, 33, 102032. [Google Scholar] [CrossRef]
- Khan, F.; Khan, M.S.; Kamal, S.; Arshad, M.; Ahmad, S.I.; Nami, S.A.A. Recent advances in graphene oxide and reduced graphene oxide based nanocomposites for the photodegradation of dyes. J. Mater. Chem. C. 2020, 8, 15940–15955. [Google Scholar] [CrossRef]
- Affi, J.; Handayani, M.; Anggoro, M.A.; Esmawan, A.; Sabarman, H.; Satriawan, A.; Shalannanda, W.; Siburian, R.; Anshori, I. Electrochemical and capacitive behavior of reduced graphene oxide from green reduction of graphene oxide by urea for supercapacitor electrodes. J. Mater. Sci. Mater. Electron. 2023, 34, 1638. [Google Scholar] [CrossRef]
- Palsaniya, S.; Nemade, H.B.; Dasmahapatra, A.K. Hierarchical Nylon-6/reduced graphene oxide/polyaniline nanocomposites with enhanced dielectric properties for energy storage applications. J. Energy Storage 2020, 32, 101821. [Google Scholar] [CrossRef]
- Elashry, M.H.; Mohamed, F.; Sharmoukh, W.; Hameed, T.A.; Shalaby, R.M. An investigation of structural, optical, and electrical properties of poly(3-hexylthiophene)/reduced graphene oxide nanocomposites for electronic and optoelectronic applications. Polym. Adv. Technol. 2023, 35, e6220. [Google Scholar] [CrossRef]
- Karim, M.R.; Hatakeyama, K.; Matsui, T.; Takehira, H.; Taniguchi, T.; Koinuma, M.; Matsumoto, Y.; Akutagawa, T.; Nakamura, T.; Noro, S.-I.; et al. Graphene oxide nanosheet with high proton conductivity. J. Am. Chem. Soc. 2013, 135, 8097–8100. [Google Scholar] [CrossRef]
- Ri, G.-C.; Kim, J.-S.; Yu, C.-J. Role of Water Molecules in Enhancing the Proton Conductivity on Reduced Graphene Oxide Under High Humidity. Phys. Rev. Appl. 2018, 10, 034018. [Google Scholar] [CrossRef]
- Quezada-Renteria, J.A.; Ania, C.O.; Chazaro-Ruiz, L.F.; Rangel-Mendez, J.R. Influence of protons on reduction degree and defect formation in electrochemically reduced graphene oxide. Carbon 2019, 149, 722–732. [Google Scholar] [CrossRef]
- Park, M.; Ju, H.; Oh, J.; Park, K.; Lim, H.; Yoon, S.M.; Song, I. Proton-electron coupling and mixed conductivity in a hydrogen-bonded coordination polymer. Nat. Commun. 2025, 16, 1316. [Google Scholar] [CrossRef]
- Fernández, K.; Llanquileo, A.; Bustos, M.; Aedo, V.; Ruiz, I.; Carrasco, S.; Tapia, M.; Pereira, M.; Meléndrez, M.F.; Aguayo, C.; et al. Self-Assembled CNF/rGO/Tannin Composite: Study of the Physicochemical and Wound Healing Properties. Polymers 2023, 15, 2752. [Google Scholar] [CrossRef]
- Ramezani, G.; Stiharu, I.; van de Ven, T.G.M.; Nerguizian, V. Optimizing Graphene Oxide Content in Cellulose Matrices: A Comprehensive Review on Enhancing the Structural and Functional Performance of Composites. Encyclopedia 2024, 4, 1827–1856. [Google Scholar] [CrossRef]
- Hu, H.; Qi, L.; Chao, X. Physics-informed Neural Networks (PINN) for computational solid mechanics: Numerical frameworks and applications. Thin-Walled Struct. 2024, 205, 112495. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Nazir, A.; Waqas, A.; Imran, M.; Ali, A.; Iqbal, M.; Chaudhry, H.; Bibi, I.; Kausar, A.; Alwadai, N.; Ahmad, N. Fabrication and structural elucidation of graphene oxide-based nanocomposites (GO-Ag, rGO-Ag) for degradation of methylene blue. Z. Fur Phys. Chem. 2023, 237, 645–662. [Google Scholar] [CrossRef]
- Garcés, Y.J.; Pérez, M.S.; Pinzon, G.M.; Pinzon, K.M.; Londoño, G.C.; Sandoval, E.R. Effect of low-temperature storage time on rejected green banana for flour production. Rev. Fac. Nac. Agron. Medellin 2023, 76, 10517–10526. [Google Scholar] [CrossRef]
- Liu, C.; Du, H.; Yu, G.; Zhang, Y.; Kong, Q.; Li, B.; Mu, X. Simultaneous Extraction of Carboxylated Celulose Nanocrystals and Nanofibrils via Citric Acid Hydrolysis—A Sustainable Route. Pap. Biomater. 2017, 2, 19. [Google Scholar] [CrossRef]
- Ortega-Amaya, R.; Matsumoto, Y.; Flores-Conde, A.; A Pérez-Guzmán, M.; Ortega-López, M. In situ formation of rGO quantum dots during GO reduction via interaction with citric acid in aqueous medium. Mater. Res. Express 2016, 3, 105601. [Google Scholar] [CrossRef]
- Wang, F.; Jia, Z.; Su, W.; Shang, Y.; Wang, Z.-L. Adsorption of phenanthrene and 1-naphthol to graphene oxide and L-ascorbic-acid-reduced graphene oxide: Effects of pH and surfactants. Environ. Sci. Pollut. Res. 2019, 26, 11062–11073. [Google Scholar] [CrossRef]
- Keshavarz, M.R.; Hassanajili, S. Effect of graphene oxide reduction with L-ascorbic acid on electrical conductivity and mechanical properties of graphene oxide-epoxy nanocomposites. Iran. J. Chem. Chem. Eng. 2020, 40, 731–742. [Google Scholar] [CrossRef]
- Fernández-Merino, M.J.; Guardia, L.; Paredes, J.I.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascón, J.M.D. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C. 2010, 114, 6426–6432. [Google Scholar] [CrossRef]
- Khosroshahi, Z.; Kharaziha, M.; Karimzadeh, F.; Allafchian, A. Green reduction of graphene oxide by ascorbic acid. AIP Conf. Proc. 2018, 1920, 020009. [Google Scholar] [CrossRef]
- Na, Y.I.; Song, Y.I.; Kim, S.W.; Suh, S.J. Study on properties of eco-friendly reduction agents for the reduced graphene oxide method Review Articles. Carbon Lett. 2017, 24, 1–9. [Google Scholar] [CrossRef]
- Lee, A.; Sarker, S.; Saal, J.E.; Ward, L.; Borg, C.; Mehta, A.; Wolverton, C. Machine learned synthesizability predictions aided by density functional theory. Commun. Mater. 2022, 3, 73. [Google Scholar] [CrossRef]
- Zhu, R.; Tian, S.I.P.; Ren, Z.; Li, J.; Buonassisi, T.; Hippalgaonkar, K. Predicting Synthesizability using Machine Learning on Databases of Existing Inorganic Materials. ACS Omega 2023, 8, 8210–8218. [Google Scholar] [CrossRef]
- Kim, S.; Noh, J.; Gu, G.H.; Chen, S.; Jung, Y. Predicting synthesis recipes of inorganic crystal materials using elementwise template formulation. Chem. Sci. 2023, 15, 1039. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Lozano, N.; Pérez-Reynoso, F.; González-Gutiérrez, C. Eco-Friendly Approach for Graphene Oxide Synthesis by Modified Hummers Method. Materials 2022, 15, 7228. [Google Scholar] [CrossRef]
- Dutta, N.; Sangma, H.; Roy, C. Synthesis and Characterization of Graphene Oxide by Modified Hummers Method. Mater. Sci. Chem. 2023, 7, 203–206. [Google Scholar]
- Mohamed, M.I.; Eletr, W.; Awad, E.; Dahdouh, S. Graphene Oxide Synthesis and Characterizations as a Carbonaceous Nanoparticle by Using Modified Hummers’ Method. Egypt. J. Soil Sci. 2023, 63, 537–552. [Google Scholar] [CrossRef]
- Alam, S.N.; Sharma, N.; Kumar, L. Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO). Graphene 2017, 6, 1–18. [Google Scholar] [CrossRef]
- Santamaría-Juárez, G.; Gómez-Barojas, E.; Quiroga-González, E.; Sánchez-Mora, E.; Quintana-Ruiz, M.; Santamaría-Juárez, J.D. Safer modified Hummers’ method for the synthesis of graphene oxide with high quality and high yield. Mater. Res. Express 2019, 6, 125631. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, D.; Zhang, X.; Li, L.; Hou, H.; Niwa, O.; You, T. Pd-Ni alloy nanoparticle/carbon nanofiber composites: Preparation, structure, and superior electrocatalytic properties for sugar analysis. Anal. Chem. 2014, 86, 5898–5905. [Google Scholar] [CrossRef]
- Li, J.; Lu, J.; Zhang, T.C.; Yuan, S. Superhydrophobic DTMS/rGO-nanocomposites modified polyurethane sponge for efficient oil–water separation. Surf. Eng. 2023, 39, 349–360. [Google Scholar] [CrossRef]
- Yein, W.T.; Wang, Q.; Feng, X.; Li, Y.; Wu, X. Enhancement of photocatalytic performance in sonochemical synthesized ZnO–rGO nanocomposites owing to effective interfacial interaction. Environ. Chem. Lett. 2018, 16, 251–264. [Google Scholar] [CrossRef]
- Golsheikh, A.M. Graphene-Based Metal/Metal Sulphide Nanocomposites: Fabrication, Characterization and Its Applications. Ph.D. Thesis, University of Malaya, Kuala Lumpur, Malaysia, 2014. [Google Scholar]
- Romeiro, F.C.; Silva, S.C.; Nossol, E.; Lima, R.C. One step microwave-hydrothermal synthesis of rGO–TiO2 nanocomposites for enhanced electrochemical oxygen evolution reaction. New J. Chem. 2020, 44, 6825–6832. [Google Scholar] [CrossRef]
- Palomba, M.; Longo, A.; Carotenuto, G. Gel-Phase Reduction of Graphene Oxide Coatings by L-Ascorbic Acid. Mater. Proc. 2020, 4, 33. [Google Scholar] [CrossRef]
- Ostermann, M.; Bilotto, P.; Kadlec, M.; Schodl, J.; Duchoslav, J.; Stöger-Pollach, M.; Lieberzeit, P.; Valtiner, M. l-Ascorbic Acid Treatment of Electrochemical Graphene Nanosheets: Reduction Optimization and Application for De-Icing, Water Uptake Prevention, and Corrosion Resistance. ACS Appl. Mater. Interfaces 2023, 15, 22471–22484. [Google Scholar] [CrossRef]
- Palomba, M.; Carotenuto, G.; Longo, A. A Brief Review: The Use of L-Ascorbic Acid as a Green Reducing Agent of Graphene Oxide. Materials 2022, 15, 6456. [Google Scholar] [CrossRef] [PubMed]
- Schugmann, M.; Foerst, P. Tailoring Crystallization Kinetics in Thin Sucrose Films during Convective Drying: Impact of Temperature and Humidity on Onset, Growth, and Nucleation Rate. Pharmaceutics 2024, 16, 1260. [Google Scholar] [CrossRef]
- Yu, Y.; Hu, Y.; Song, X.; Chen, J.; Kang, J.; Cao, Y.; Xiang, M. Investigation on Nanocomposites of Polysulfone and Different Ratios of Graphene Oxide with Structural Defects Repaired by Cellulose Nanocrystals. Polymers 2023, 15, 3821. [Google Scholar] [CrossRef]
- Kabeb, S.M. Environmentally Benign High-Performance Composites-Based Hybrid Microcrystalline Cellulose/Graphene Oxide. Polym. Adv. Technol. 2024, 35, e6610. [Google Scholar] [CrossRef]
- Lu, Y.; Santino, L.M.; Acharya, S.; Anandarajah, H.; D’Arcy, J.M. Studying Electrical Conductivity Using a 3D Printed Four-Point Probe Station. J. Chem. Educ. 2017, 94, 950–955. [Google Scholar] [CrossRef]
- Luckner, M.; Wanner, G. From Light Microscopy to Analytical Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB)/SEM in Biology: Fixed Coordinates, Flat Embedding, Absolute References. Microsc. Microanal. 2018, 24, 526. [Google Scholar] [CrossRef]
- Wong, C.P.P.; Lai, C.W.; Lee, K.M.; Hamid, S.B.A. Advanced Chemical Reduction of Reduced Graphene Oxide and Its Photocatalytic Activity in Degrading Reactive Black 5. Materials 2015, 8, 7118–7128. [Google Scholar] [CrossRef] [PubMed]
- Gengler, R.Y.N.; Badali, D.S.; Zhang, D.; Dimos, K.; Spyrou, K.; Gournis, D.; Miller, R.J.D. Revealing the ultrafast process behind the photoreduction of graphene oxide. Nat. Commun. 2013, 4, 2560. [Google Scholar] [CrossRef]
- Bian, X.; Wang, Q. A comprehensive mathematical model for an accurate calculation of the oil film thickness of strip cold rolling. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2019, 234, 350–361. [Google Scholar] [CrossRef]
- Amadu, M.; Miadonye, A. Effect of equilibrium contact angle on water equilibrium film thickness for the carbon dioxide-brine-mineral system based on surface force theory Activity coefficient. J. Pet. Explor. Prod. Technol. 2024, 14, 2037–2054. [Google Scholar] [CrossRef]
- Chaupal, P.; Rajendran, P. Flexural strength prediction of randomly oriented chopped glass fiber composite laminate using artificial neural network. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 131. [Google Scholar] [CrossRef]
- Suhermi, N.; Suhartono; Rahayu, S.P.; Prastyasari, F.I.; Ali, B.; Fachruddin, M.I. Feature and Architecture Selection on Deep Feedforward Network for Roll Motion Time Series Prediction. In Proceedings of the International Conference on Soft Computing in Data Science, Bangkok, Thailand, 15–16 August 2018; pp. 58–71. [Google Scholar] [CrossRef]
- Gisleris, E.; Serackis, A. Enhancing 3D Pose Estimation Accuracy from Multiple Camera Perspectives Through Machine Learning Model Integration. In Proceedings of the 2023 IEEE 10th Jubilee Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), Vilnius, Lithuania, 27–29 April 2023. [Google Scholar] [CrossRef]
- Hsieh, Y.-T.; Anjum, K.; Huang, S.; Kulkarni, I.; Pompili, D. Neural Network Design via Voltage-based Resistive Processing Unit and Diode Activation Function—A New Architecture. In Proceedings of the Midwest Symposium on Circuits and Systems, Lansing, MI, USA, 9–11 August 2021; pp. 59–62. [Google Scholar] [CrossRef]
- Razali, N.F.; Isa, I.S.; Sulaiman, S.N.; Osman, M.K.; Karim, N.K.A.; Nordin, S.A. Optimization of ReLU Activation Function for Deep-Learning-based Breast Cancer Classification on Mammogram Images. In Proceedings of the 2024 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Shah Alam, Malaysia, 29 June 2024; pp. 267–272. [Google Scholar] [CrossRef]
- Rubio, J.d.J. Stability Analysis of the Modified Levenberg-Marquardt Algorithm for the Artificial Neural Network Training. IEEE Trans. Neural Netw. Learn Syst. 2021, 32, 3510–3524. [Google Scholar] [CrossRef]
- Roy, D.K.; Munmun, T.H.; Paul, C.R.; Haque, M.P.; Al-Ansari, N.; Mattar, M.A. Improving Forecasting Accuracy of Multi-Scale Groundwater Level Fluctuations Using a Heterogeneous Ensemble of Machine Learning Algorithms. Water 2023, 15, 3624. [Google Scholar] [CrossRef]
- Murhekar, S.; Kamble, Y.; Dongre, S.; Dasarwar, P.; Khan, T.H.; Patil, V. Real-Time Traffic Intensity Estimation and Management using Deep Learning Techniques. In Proceedings of the 2024 Second International Conference on Networks, Multimedia and Information Technology (NMITCON), Bengaluru, India, 9–10 August 2024. [Google Scholar] [CrossRef]
- Smock, B.; Pesala, R.; Abraham, R. PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA; 2022; pp. 4624–4632. [Google Scholar] [CrossRef]
- Laubscher, R.; Van Der Merwe, J.; Herbst, P.; Liebenberg, J. Estimation of Simulated Left Ventricle Elastance Using Lumped Parameter Modelling and Gradient-Based Optimization With Forward-Mode Automatic Differentiation Based on Synthetically Generated Noninvasive Data. J. Biomech. Eng. 2023, 145, 021008. [Google Scholar] [CrossRef]
- Humphreys, P.C.; Daie, K.; Svoboda, K.; Botvinick, M.; Lillicrap, T.P. BCI learning phenomena can be explained by gradient-based optimization. bioRxiv 2022. [Google Scholar] [CrossRef]
- Chen, W.; Gong, Q.; Zhang, L.; Yang, M. Parameters identification of twelve-phase synchronous generator based on Levenberg-Marquardt algorithm. In Proceedings of the International Conference on Electrical Machines and Systems, Wuhan, China, 17–20 October 2008. [Google Scholar]
- Andriopoulos, V.; Kornaros, M. LASSO Regression with Multiple Imputations for the Selection of Key Variables Affecting the Fatty Acid Profile of Nannochloropsis oculata. Mar. Drugs 2023, 21, 483. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.R.; Manalo, R.D.; Ong, H.L.; Herrera, M.U.; Balela, M.D.L. The Effects of Citric Acid as Crosslinking Agent on Selected Properties of Cassava Starch Films. Mater. Sci. Forum 2023, 1087, 29–34. [Google Scholar] [CrossRef]
- Cobos, M.; Fernández, M.J.; Fernández, M.D. Graphene Based Poly(Vinyl Alcohol) Nanocomposites Prepared by In Situ Green Reduction of Graphene Oxide by Ascorbic Acid: Influence of Graphene Content and Glycerol Plasticizer on Properties. Nanomaterials 2018, 8, 1013. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, A.; Abdulkhani, A.; Ashori, A.; Hosseinzadeh, J. Development of high-performance biocomposites through lignin modification and fiber reinforcement. Sci. Rep. 2024, 14, 28932. [Google Scholar] [CrossRef]
- Solhi, L.; Guccini, V.; Heise, K.; Solala, I.; Niinivaara, E.; Xu, W.; Mihhels, K.; Kröger, M.; Meng, Z.; Wohlert, J.; et al. Understanding Nanocellulose–Water Interactions: Turning a Detriment into an Asset. Chem. Rev. 2023, 123, 1925. [Google Scholar] [CrossRef]
- Mallakpour, S.; Naghdi, M. Application of SiO2 nanoparticles with double layer coverage consist of citric acid and l(+)-ascorbic acid for the production of poly(vinyl chloride)/SiO2 nanocomposite films with enhanced optical and thermal properties. Polym. Bull. 2016, 73, 1701–1717. [Google Scholar] [CrossRef]
- Ramezani, H.; Koohpayeh, M.H.A.; Tajedini, A.; Ramezani, G.; Mohseni, A. Nonlocal stability of curved carbon nanotubes conveying fluid based on Eringen’s nonlocal elasticity theory in a thermomagnetic environment. Acta Mech. 2024, 235, 4273–4287. [Google Scholar] [CrossRef]
- Dias, O.A.T.; Konar, S.; Leão, A.L.; Yang, W.; Tjong, J.; Sain, M. Current State of Applications of Nanocellulose in Flexible Energy and Electronic Devices. Front. Chem. 2020, 8, 420. [Google Scholar] [CrossRef]
- Demchenko, V.; Riabov, S.; Kobylinskyi, S.; Goncharenko, L.; Rybalchenko, N.; Kruk, A.; Moskalenko, O.; Shut, M. Effect of the type of reducing agents of silver ions in interpolyelectrolyte-metal complexes on the structure, morphology and properties of silver-containing nanocomposites. Sci. Rep. 2020, 10, 7126. [Google Scholar] [CrossRef]
- Murphy, B.B.; Apollo, N.V.; Unegbu, P.; Posey, T.; Rodriguez-Perez, N.; Hendricks, Q.; Cimino, F.; Richardson, A.G.; Vitale, F. Vitamin C-reduced graphene oxide improves the performance and stability of multimodal neural microelectrodes. iScience 2022, 25, 104652. [Google Scholar] [CrossRef]
- Kers, J.; Majak, J.; Goljandin, D.; Gregor, A.; Malmstein, M.; Vilsaar, K. Extremes of apparent and tap densities of recovered GFRP filler materials. Compos. Struct. 2010, 92, 2097–2101. [Google Scholar] [CrossRef]
Picture | Description | Scale |
---|---|---|
Figure 1a | LAA-Treated CNC/CNF/rGO Film—High Magnification (10,000×): Smooth surface with well-defined pores of irregular shapes and sizes. The compact pore walls suggest reduced porosity and a densified matrix due to LAA treatment. | 2 µm |
Figure 1b | LAA-Treated CNC/CNF/rGO Film—Medium Magnification (5000×): Broader view showing fewer and more isolated pores with smoother transitions. This indicates uniform material distribution and enhanced film densification. | 5 µm |
Figure 1c | LAA-Treated CNC/CNF/rGO Film—Low Magnification (500×): Large-scale morphology with a predominantly smooth surface and minimal disruptions. Elongated features are less pronounced, highlighting structural uniformity. | 50 µm |
No. | CNC (wt%) | CNF (wt%) | rGO (wt%) | Citric Acid (M) | Temp (°C) | pH | Conductivity (S/m) | Tensile Strength (MPa) | Thickness (μm) |
---|---|---|---|---|---|---|---|---|---|
1 | 0.5 | 0.5 | 0.1 | 0.1 | 95 | 5.8 | 0.28 | 26 | 54 |
2 | 1 | 1 | 0.2 | 0.2 | 95 | 5.6 | 0.68 | 33 | 81 |
3 | 1.5 | 1.5 | 0.3 | 0.3 | 95 | 5.4 | 1.15 | 39 | 109 |
4 | 0.8 | 1.2 | 0.15 | 0.16 | 95 | 5.7 | 0.55 | 31 | 92 |
5 | 1.2 | 0.8 | 0.25 | 0.24 | 95 | 5.5 | 0.85 | 36 | 99 |
6 | 0.3 | 1.7 | 0.18 | 0.14 | 95 | 5.9 | 0.45 | 29 | 86 |
7 | 1.7 | 0.3 | 0.35 | 0.28 | 95 | 5.3 | 1.32 | 41 | 116 |
8 | 0.6 | 0.6 | 0.12 | 0.12 | 95 | 5.8 | 0.35 | 27 | 63 |
9 | 1.1 | 1.1 | 0.22 | 0.22 | 95 | 5.5 | 0.78 | 34 | 88 |
10 | 1.6 | 1.6 | 0.32 | 0.32 | 95 | 5.3 | 1.25 | 40 | 122 |
11 | 0.9 | 1.3 | 0.17 | 0.18 | 95 | 5.6 | 0.62 | 32 | 96 |
12 | 1.3 | 0.9 | 0.27 | 0.26 | 95 | 5.4 | 0.95 | 37 | 104 |
13 | 0.4 | 1.8 | 0.19 | 0.16 | 95 | 5.8 | 0.52 | 30 | 90 |
14 | 1.8 | 0.4 | 0.37 | 0.3 | 95 | 5.2 | 1.42 | 42 | 128 |
15 | 0.7 | 0.7 | 0.14 | 0.14 | 95 | 5.7 | 0.43 | 28 | 71 |
16 | 1.2 | 1.2 | 0.24 | 0.24 | 95 | 5.4 | 0.88 | 35 | 95 |
17 | 1.7 | 1.7 | 0.34 | 0.34 | 95 | 5.2 | 1.35 | 41 | 135 |
18 | 1 | 1.4 | 0.2 | 0.2 | 95 | 5.5 | 0.72 | 33 | 101 |
19 | 1.4 | 1 | 0.29 | 0.28 | 95 | 5.3 | 1.05 | 38 | 110 |
20 | 0.5 | 1.9 | 0.21 | 0.18 | 95 | 5.7 | 0.59 | 31 | 94 |
21 | 1.9 | 0.5 | 0.39 | 0.32 | 95 | 5.1 | 1.52 | 43 | 140 |
22 | 0.8 | 0.8 | 0.16 | 0.16 | 95 | 5.6 | 0.51 | 29 | 79 |
23 | 1.3 | 1.3 | 0.26 | 0.26 | 95 | 5.3 | 0.98 | 36 | 102 |
24 | 1.8 | 1.8 | 0.36 | 0.36 | 95 | 5.1 | 1.45 | 42 | 147 |
25 | 1.1 | 1.5 | 0.23 | 0.22 | 95 | 5.4 | 0.82 | 34 | 106 |
26 | 1.5 | 1.1 | 0.31 | 0.3 | 95 | 5.2 | 1.15 | 39 | 116 |
27 | 0.6 | 2 | 0.22 | 0.2 | 95 | 5.6 | 0.66 | 32 | 98 |
28 | 2 | 0.6 | 0.41 | 0.34 | 95 | 5 | 1.62 | 44 | 152 |
29 | 1.2 | 1.6 | 0.25 | 0.25 | 95 | 5.3 | 0.92 | 35 | 111 |
30 | 1.6 | 1.2 | 0.33 | 0.32 | 95 | 5.1 | 1.25 | 40 | 120 |
No. | CNC (wt%) | CNF (wt%) | rGO (wt%) | L-Ascorbic Acid (M) | Temp (°C) | pH | Conductivity (S/m) | Tensile Strength (MPa) | Thickness (μm) |
---|---|---|---|---|---|---|---|---|---|
1 | 0.5 | 0.5 | 0.1 | 0.05 | 95 | 6.5 | 0.32 | 28 | 52 |
2 | 1 | 1 | 0.2 | 0.1 | 95 | 6.3 | 0.78 | 35 | 78 |
3 | 1.5 | 1.5 | 0.3 | 0.15 | 95 | 6.1 | 1.25 | 41 | 105 |
4 | 0.8 | 1.2 | 0.15 | 0.08 | 95 | 6.4 | 0.65 | 33 | 89 |
5 | 1.2 | 0.8 | 0.25 | 0.12 | 95 | 6.2 | 0.95 | 38 | 96 |
6 | 0.3 | 1.7 | 0.18 | 0.07 | 95 | 6.6 | 0.55 | 31 | 83 |
7 | 1.7 | 0.3 | 0.35 | 0.14 | 95 | 6 | 1.42 | 43 | 112 |
8 | 0.6 | 0.6 | 0.12 | 0.06 | 95 | 6.5 | 0.41 | 29 | 61 |
9 | 1.1 | 1.1 | 0.22 | 0.11 | 95 | 6.2 | 0.88 | 36 | 85 |
10 | 1.6 | 1.6 | 0.32 | 0.16 | 95 | 6 | 1.35 | 42 | 118 |
11 | 0.9 | 1.3 | 0.17 | 0.09 | 95 | 6.3 | 0.72 | 34 | 93 |
12 | 1.3 | 0.9 | 0.27 | 0.13 | 95 | 6.1 | 1.05 | 39 | 101 |
13 | 0.4 | 1.8 | 0.19 | 0.08 | 95 | 6.5 | 0.62 | 32 | 87 |
14 | 1.8 | 0.4 | 0.37 | 0.15 | 95 | 5.9 | 1.52 | 44 | 124 |
15 | 0.7 | 0.7 | 0.14 | 0.07 | 95 | 6.4 | 0.51 | 30 | 69 |
16 | 1.2 | 1.2 | 0.24 | 0.12 | 95 | 6.1 | 0.98 | 37 | 92 |
17 | 1.7 | 1.7 | 0.34 | 0.17 | 95 | 5.9 | 1.45 | 43 | 131 |
18 | 1 | 1.4 | 0.2 | 0.1 | 95 | 6.2 | 0.82 | 35 | 98 |
19 | 1.4 | 1 | 0.29 | 0.14 | 95 | 6 | 1.15 | 40 | 107 |
20 | 0.5 | 1.9 | 0.21 | 0.09 | 95 | 6.4 | 0.69 | 33 | 91 |
21 | 1.9 | 0.5 | 0.39 | 0.16 | 95 | 5.8 | 1.62 | 45 | 136 |
22 | 0.8 | 0.8 | 0.16 | 0.08 | 95 | 6.3 | 0.61 | 31 | 77 |
23 | 1.3 | 1.3 | 0.26 | 0.13 | 95 | 6 | 1.08 | 38 | 99 |
24 | 1.8 | 1.8 | 0.36 | 0.18 | 95 | 5.8 | 1.55 | 44 | 143 |
25 | 1.1 | 1.5 | 0.23 | 0.11 | 95 | 6.1 | 0.92 | 36 | 103 |
26 | 1.5 | 1.1 | 0.31 | 0.15 | 95 | 5.9 | 1.25 | 41 | 113 |
27 | 0.6 | 2 | 0.22 | 0.1 | 95 | 6.3 | 0.76 | 34 | 95 |
28 | 2 | 0.6 | 0.41 | 0.17 | 95 | 5.7 | 1.72 | 46 | 148 |
29 | 0.9 | 0.9 | 0.18 | 0.09 | 95 | 6.2 | 0.71 | 32 | 85 |
30 | 1.4 | 1.4 | 0.28 | 0.14 | 95 | 5.9 | 1.18 | 39 | 106 |
Parameter | Value |
---|---|
Objective Function | F = 0.7σ + 0.3Ts |
Optimal Composition | CNC: 0.5 wt%, CNF: 0.7 wt%, rGO: 0.8 wt% |
Optimal pH | 5.8 (L-ascorbic acid) |
Achieved Conductivity (σ) | 2.5 S/m |
Achieved Tensile Strength (Ts) | 40 MPa |
Performance Metric (F) | 14.75 |
Property | L-Ascorbic Acid | Citric Acid |
---|---|---|
Optimal pH Range | 5.7 ≤ pH ≤ 5.9 | 5.0 ≤ pH ≤ 5.2 |
Reduction Efficiency | Higher | Lower |
Electron-Donating Capability | Stronger | Weaker |
Property | Effect of L-Ascorbic Acid-Reduced rGO |
---|---|
Thermal Stability | Improved in thermoplastic elastomer composites |
Melting Temperature | Increased in graphene/TPU composites |
Tensile Strength | Highest at 0.05 wt% graphene in nanocomposites |
Electrical Properties | Suitable for chemical-resistive sensors |
Component | Primary Contribution | Specific Effects |
---|---|---|
CNC | Mechanical strength | Increased elastic modulus and tensile strength |
CNF | Flexibility and bonding | Improved tensile strength and interfacial bonding |
rGO | Electrical properties | Enhanced conductivity and EMI shielding |
Property | Effect | Optimal Conditions |
---|---|---|
Mechanical Properties | Increased tensile strength and Young’s modulus | 2 wt% rGO-MWCNT (3:1) hybrid filler |
Thermal Stability | Enhanced at high temperatures | Addition of boric acid to CNF and CNC films |
Electrical Conductivity | Decreased resistivity | rGO percolation threshold between 1 and 2 phr in PLA/PDoF blends |
Parameter | Effect on Conductivity | Effect on Mechanical Strength |
---|---|---|
Increasing rGO (0.5 to 2 wt%) | ↑ (10−6 to 10−2 S/cm) | ↓ (15–20% decrease above 1.5 wt%) |
Increasing CNC (5 to 15 wt%) | ↓ (10−2 to 10−4 S/cm) | ↑ (40% increase, up to 120 MPa) |
Citric Acid Treatment | ↓ (10−2 to 10−3 S/cm) | ↑ (25% increase) |
L-ascorbic Acid Treatment | ↑ (10−4 to 10−2 S/cm) | ↓ (10–15% decrease) |
Factor | L-Ascorbic Acid | Citric Acid |
---|---|---|
pH Sensitivity | High | Low |
Conductivity Range | Higher | Moderate |
Cost | Higher | Lower |
Stability | Less stable, prone to oxidation | More stable |
pH Control Difficulty | More challenging | Less challenging |
Application Suitability | High-performance electronics | General purpose, packaging |
Challenge | Description | Potential Solution |
---|---|---|
Homogeneity | Ensuring uniform pH throughout large batches | Implement real-time pH monitoring systems |
Chemical Stability | L-ascorbic acid prone to oxidation | Use controlled environments and stabilizers |
Cost Considerations | L-ascorbic acid more expensive than citric acid | Optimize usage or explore alternative reducing agents |
Environmental Factors | Humidity and CO2 influence on pH | Use controlled environments for sensitive processes |
Scaling Effects | Changes in surface area to volume ratio | Adjust pH control strategies for larger volumes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramezani, G.; Silva, I.O.; Stiharu, I.; Ven, T.G.M.v.d.; Nerguizian, V. Lasso Model-Based Optimization of CNC/CNF/rGO Nanocomposites. Micromachines 2025, 16, 393. https://doi.org/10.3390/mi16040393
Ramezani G, Silva IO, Stiharu I, Ven TGMvd, Nerguizian V. Lasso Model-Based Optimization of CNC/CNF/rGO Nanocomposites. Micromachines. 2025; 16(4):393. https://doi.org/10.3390/mi16040393
Chicago/Turabian StyleRamezani, Ghazaleh, Ixchel Ocampo Silva, Ion Stiharu, Theo G. M. van de Ven, and Vahe Nerguizian. 2025. "Lasso Model-Based Optimization of CNC/CNF/rGO Nanocomposites" Micromachines 16, no. 4: 393. https://doi.org/10.3390/mi16040393
APA StyleRamezani, G., Silva, I. O., Stiharu, I., Ven, T. G. M. v. d., & Nerguizian, V. (2025). Lasso Model-Based Optimization of CNC/CNF/rGO Nanocomposites. Micromachines, 16(4), 393. https://doi.org/10.3390/mi16040393