A Review of the Application of Seal Whiskers in Vortex-Induced Vibration Suppression and Bionic Sensor Research
Abstract
1. Introduction
2. Investigation of Seal Hydrodynamic Characteristics and the Development of a Whisker Structural Model
2.1. Progress in Seal Hydrodynamic Characteristics Research
2.2. Establishment of the Structural Model of Seal Whiskers
3. Fluid–Structure Interaction (FSI) Theory
3.1. Generation and Shedding of Kármán Vortex Streets
3.2. Generation and Research of Vortex-Induced Vibrations
4. The Excellent Vortex-Induced Vibration Suppression Mechanism of Seal Whiskers
4.1. Comparative Analysis of the Role of Seal Whiskers and Other Structures in Suppressing Vortex-Induced Vibrations (VIVs)
4.2. Effect of Angle of Attack (AOA) on the VIV Suppression Performance of Seal Whiskers
4.3. Engineering Applications of Seal Whisker-Inspired Structures in VIVs Suppression
5. Advances in Bioinspired Seal Whisker Sensors
5.1. Selection and Performance Comparison of Materials for Bionic Seal Whiskers
5.2. Capacitive Bioinspired Seal Whisker Sensors
5.3. Resistive Bioinspired Seal Whisker Sensors
5.4. Piezoelectric Bioinspired Seal Whisker Sensors
5.5. Triboelectric Bioinspired Seal Whisker Sensors
5.6. Optical Bioinspired Seal Whisker Sensors
6. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hanke, F.D.; Hanke, W.; Scholtyssek, C.; Dehnhardt, G. Basic mechanisms in pinniped vision. Exp. Brain Res. 2009, 199, 299–311. [Google Scholar] [CrossRef]
- Bleckmann, H.; Schmitz, H.; von der Emde, G. Nature as a model for technical sensors. J. Comp. Physiol. A 2004, 190, 971–981. [Google Scholar] [CrossRef]
- Kroese, A.B.; Van der Zalm, J.M.; Van den Bercken, J. Frequency response of the lateral-line organ of Xenopus laevis. Pflügers Arch. 1978, 375, 167–175. [Google Scholar] [CrossRef]
- Dehnhardt, G.; Mauck, B.; Bleckmann, H. Seal whiskers detect water movements. Nature 1998, 394, 235–236. [Google Scholar] [CrossRef]
- Berta, A. Pinnipeds. In Encyclopedia of Marine Mammals; Würsig, B., Thewissen, J.G.M., Kovacs, K.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 733–740. [Google Scholar]
- Elder, A.; Evans, E.; Brassey, C.; Kitchener, A.C.; Hantke, G.; Grant, R. Describing the musculature of mystacial pads in harbour seals (Phoca vitulina) using diceCT. J. Anat. 2025, 246, 696–708. [Google Scholar] [CrossRef]
- Schusterman, R.J.; Kastak, D.; Levenson, D.H.; Reichmuth, C.J.; Southall, B.L. Why pinnipeds don’t echolocate. J. Acoust. Am. 2000, 107, 2256–2264. [Google Scholar] [CrossRef]
- Marshall, C.D.; Rozas, K.; Kot, B.; Gill, V.A. Innervation patterns of sea otter (Enhydra lutris) mystacial follicle-sinus complexes. Front. Neuroanat. 2014, 8, 121. [Google Scholar] [CrossRef] [PubMed]
- Dehnhardt, G.; Hyvärinen, H.; Palviainen, A.; Klauer, G. Structure and innervation of the vibrissal follicle-sinus complex in the Australian water rat, Hydromys chrysogaster. J. Comp. Neurol. 1999, 411, 550–562. [Google Scholar] [CrossRef]
- Marshall, C.D.; Amin, H.; Kovacs, K.M.; Lydersen, C. Microstructure and innervation of the mystacial vibrissal follicle-sinus complex in bearded seals, Erignathus barbatus (Pinnipedia: Phocidae). Anat. Rec. 2006, 288, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Hyvärinen, H.; Katajisto, H. Functional structure of the vibrissae of the ringed seal (Phoca hispida Schr.). Acta Zool. Fenn. 1984, 171, 17–30. [Google Scholar]
- Hyvärinen, H. Diving in darkness: Whiskers as sense organs of the ringed seal (Phoca hispida saimensis). J. Zool. 1989, 218, 663–678. [Google Scholar] [CrossRef]
- Mcgovern, K.A.; Marshall, C.D.; Davis, R.W. Are Vibrissae Viable Sensory Structures for Prey Capture in Northern Elephant Seals, Mirounga angustirostris? Anat. Rec. 2015, 298, 750–760. [Google Scholar] [CrossRef]
- Adachi, T.; Naito, Y.; Robinson, P.W.; Costa, D.P.; Hückstädt, L.A.; Holser, R.R.; Iwasaki, W.; Takahashi, A. Whiskers as hydrodynamic prey sensors in foraging seals. Proc. Natl. Acad. Sci. USA 2022, 119, e2119502119. [Google Scholar] [CrossRef]
- Dougill, G.; Starostin, E.L.; Milne, A.O.; van der Heijden, G.H.; Goss, V.G.; Grant, R.A. Ecomorphology reveals Euler spiral of mammalian whiskers. J. Comp. Physiol. A 2020, 281, 1271–1279. [Google Scholar] [CrossRef]
- Milne, A.O.; Smith, C.; Orton, L.D.; Sullivan, M.S.; Grant, R.A. Pinnipeds orient and control their whiskers: A study on Pacific walrus, California sea lion and Harbor seal. J. Comp. Physiol. A 2020, 206, 441–451. [Google Scholar] [CrossRef]
- Hanke, W.; Witte, M.; Miersch, L.; Brede, M.; Oeffner, J.; Michael, M.; Hanke, F.; Leder, A.; Dehnhardt, G. Harbor seal vibrissa morphology suppresses vortex-induced vibrations. J. Exp. Biol. 2010, 213, 2665–2672. [Google Scholar] [CrossRef]
- Bunjevac, J.; Turk, J.; Rinehart, A.; Zhang, W. Wake induced by an undulating elephant seal whisker. J. Vis. 2018, 21, 597–612. [Google Scholar] [CrossRef]
- Sayegh, M.A.; Daraghma, H.; Mekid, S.; Bashmal, S. Review of Recent Bio-Inspired Design and Manufacturing of Whisker Tactile Sensors. Sensors 2022, 22, 2705. [Google Scholar] [CrossRef]
- Williams, T.; Kooyman, G. Swimming performance and hydrodynamic characteristics of harbor seals Phoca vitulina. Physiol. Zool. 1985, 58, 576–589. [Google Scholar] [CrossRef]
- Renouf, D. Fishing in captive harbour seals (Phoca vitulina concolor): A possible role for vibrissae. Neth. J. Zool. 1979, 30, 504–509. [Google Scholar] [CrossRef]
- Dehnhardt, G.; Mauck, B.; Hanke, W.; Bleckmann, H. Hydrodynamic trail-following in harbor seals (Phoca vitulina). Science 2001, 293, 102–104. [Google Scholar] [CrossRef]
- Bleckmann, H.; Breithaupt, T.; Blickhan, R.; Tautz, J. The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and crustaceans. J. Comp. Physiol. A 1991, 168, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Schulte-Pelkum, N.; Wieskotten, S.; Hanke, W.; Dehnhardt, G.; Mauck, B. Tracking of biogenic hydrodynamic trails in harbour seals (Phoca vitulina). J. Exp. Biol. 2007, 210, 781–787. [Google Scholar] [CrossRef]
- Wieskotten, S.; Dehnhardt, G.; Mauck, B.; Miersch, L.; Hanke, W. Hydrodynamic determination of the moving direction of an artificial fin by a harbour seal (Phoca vitulina). J. Exp. Biol. 2010, 213, 2194–2200. [Google Scholar] [CrossRef] [PubMed]
- Wieskotten, S.; Mauck, B.; Miersch, L.; Dehnhardt, G.; Hanke, W. Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbour seal (Phoca vitulina). J. Exp. Biol. 2011, 214, 1922–1930. [Google Scholar] [CrossRef]
- Niesterok, B.; Krüger, Y.; Wieskotten, S.; Dehnhardt, G.; Hanke, W. Hydrodynamic detection and localization of artificial flatfish breathing currents by harbour seals (Phoca vitulina). J. Exp. Biol. 2017, 220, 174–185. [Google Scholar] [CrossRef]
- Niesterok, B.; Dehnhardt, G.; Hanke, W. Hydrodynamic sensory threshold in harbour seals (Phoca vitulina) for artificial flatfish breathing currents. J. Exp. Biol. 2017, 220, 2364–2371. [Google Scholar] [CrossRef]
- Kruger, Y.; Hanke, W.; Miersch, L.; Dehnhardt, G. Detection and direction discrimination of single vortex rings by harbour seals (Phoca vitulina). J. Exp. Biol. 2018, 221, jeb170753. [Google Scholar] [CrossRef]
- Murphy, C.T.; Reichmuth, C.; Mann, D. Vibrissal sensitivity in a harbor seal (Phoca vitulina). J. Exp. Biol. 2015, 218, 2463–2471. [Google Scholar] [CrossRef] [PubMed]
- Hans, H.; Miao, J.; Triantafyllou, M. Mechanical characteristics of harbor seal (Phoca vitulina) vibrissae under different circumstances and their implications on its sensing methodology. Bioinspiration Biomim. 2014, 9, 036013. [Google Scholar] [CrossRef]
- Zheng, X.; Kamat, A.M.; Cao, M.; Kottapalli, A.G.P. Creating underwater vision through wavy whiskers: A review of the flow-sensing mechanisms and biomimetic potential of seal whiskers. J. R. Soc. Interface 2021, 18, 20210629. [Google Scholar] [CrossRef] [PubMed]
- Hanke, W.; Wieskotten, S.; Niesterok, B.; Miersch, L.; Witte, M.; Brede, M.; Leder, A.; Dehnhardt, G. Hydrodynamic Perception in Pinnipeds; Springer: Berlin/Heidelberg, Germany, 2012; Volume 119, pp. 255–270. [Google Scholar]
- Ginter, C.C.; Fish, F.E.; Marshall, C.D. Morphological analysis of the bumpy profile of phocid vibrissae. Mar. Mammal. Sci. 2010, 26, 733–743. [Google Scholar] [CrossRef]
- Ginter, C.C.; DeWitt, T.J.; Fish, F.E.; Marshall, C.D. Fused Traditional and Geometric Morphometrics Demonstrate Pinniped Whisker Diversity. PLoS ONE 2012, 7, e34481. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.T.; Eberhardt, W.C.; Calhoun, B.H.; Mann, K.A.; Mann, D.A. Effect of Angle on Flow-Induced Vibrations of Pinniped Vibrissae. PLoS ONE 2013, 8, e69872. [Google Scholar] [CrossRef]
- Rinehart, A.; Shyam, V.; Zhang, W. Characterization of seal whisker morphology: Implications for whisker-inspired flow control applications. Bioinspir. Biomim. 2017, 12, 066005. [Google Scholar] [CrossRef]
- Kamat, A.M.; Zheng, X.; Bos, J.; Cao, M.; Triantafyllou, M.S.; Kottapalli, A.G.P. Undulating Seal Whiskers Evolved Optimal Wavelength-to-Diameter Ratio for Efficient Reduction in Vortex-Induced Vibrations. Adv. Sci. 2023, 11, 2304303. [Google Scholar] [CrossRef]
- Heil, M.; Rosso, J.; Hazel, A.L.; Brøns, M. Topological fluid mechanics of the formation of the Kármán-vortex street. J. Fluid. Mech. 2017, 812, 199–221. [Google Scholar] [CrossRef]
- Beem, H.R.; Triantafyllou, M.S. Wake-induced ‘slaloming’ response explains exquisite sensitivity of seal whisker-like sensors. J. Fluid. Mech. 2015, 783, 306–322. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Tian, Z.; Qiao, X.; Jiang, S.; Xu, L. Three dimensional numerical simulation of vivonmarine riser. Chin. J. Hydrodyn. 2011, 26, 437–443. [Google Scholar]
- Chagnaud, B.P.; Bleckmann, H.; Hofmann, M.H. Kármán vortex street detection by the lateral line. J. Comp. Physiol. A 2007, 193, 753–763. [Google Scholar] [CrossRef]
- Hanke, W.; Bleckmann, H. The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) investigated with scanning particle image velocimetry. J. Exp. Biol. 2004, 207, 1585–1596. [Google Scholar] [CrossRef]
- Feng, X.; Jin-ping, O. CFD numerical simulation of flow-induced vibration with different cross-section cylinder. Eng. Mech. 2009, 26, 7–15. [Google Scholar]
- Govardhan, R.; Williamson, C.H.K. Modes of vortex formation and frequency response of a freely vibrating cylinder. J. Fluid. Mech. 2000, 420, 85–130. [Google Scholar] [CrossRef]
- Williamson, C.H.; Govardhan, R. Vortex-induced vibrations. Annu. Rev. Fluid. Mech. 2004, 36, 413–455. [Google Scholar] [CrossRef]
- Williamson, C.; Jauvtis, N. A high-amplitude 2T mode of vortex-induced vibration for a light body in XY motion. Eur. J. Mech. -B/Fluids 2004, 23, 107–114. [Google Scholar] [CrossRef]
- Wang, J.-s. Flow Around a Circular Cylinder Using a Finite-Volume TVD Scheme Based on a Vector Transformation Approach. J. Hydrodyn. 2010, 22, 221–228. [Google Scholar] [CrossRef]
- Wang, J.-s.; Liu, H.; Jiang, S.-q.; Xu, L.-b.; Zhao, P.-l. Vortex-induced vibration on 2D circular riser using a high resolution numerical scheme. J. Hydrodyn. 2010, 22, 911–916. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, L.; An, H.; Lu, L. Three-dimensional numerical simulation of vortex-induced vibration of an elastically mounted rigid circular cylinder in steady current. J. Fluids Struct. 2014, 50, 292–311. [Google Scholar] [CrossRef]
- Martini, S.; Morgut, M.; Pigazzini, R. Numerical VIV analysis of a single elastically-mounted cylinder: Comparison between 2D and 3D URANS simulations. J. Fluids Struct. 2021, 104, 103303. [Google Scholar] [CrossRef]
- Fish, F.E.; Battle, J.M. Hydrodynamic design of the humpback whale flipper. J. Morphol. 1995, 225, 51–60. [Google Scholar] [CrossRef]
- Ginter, C.C.; Böttger, S.A.; Fish, F.E. Morphology and microanatomy of harbor porpoise (Phocoena phocoena) dorsal fin tubercles. J. Morphol. 2010, 272, 27–33. [Google Scholar] [CrossRef]
- Miersch, L.; Hanke, W.; Wieskotten, S.; Hanke, F.D.; Oeffner, J.; Leder, A.; Brede, M.; Witte, M.; Dehnhardt, G. Flow sensing by pinniped whiskers. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 3077–3084. [Google Scholar] [CrossRef]
- Witte, M.; Hanke, W.; Wieskotten, S.; Miersch, L.; Brede, M.; Dehnhardt, G.; Leder, A. On the Wake Flow Dynamics Behind Harbor Seal Vibrissae–A Fluid Mechanical Explanation for an Extraordinary Capability; Springer: Berlin/Heidelberg, Germany, 2012; Volume 119, pp. 271–289. [Google Scholar]
- Song, L.; Ji, C.; Yuan, D.; Xu, D.; Zhang, X.; Wei, Y.; Yin, T. Single degree-of-freedom flow-induced vibration of an elastically-supported harbor seal whisker model: An experimental study. Chin. J. Theor. Appl. Mech. 2022, 54, 653–668. [Google Scholar]
- Weiffen, M.; Möller, B.; Mauck, B.; Dehnhardt, G. Effect of water turbidity on the visual acuity of harbor seals (Phoca vitulina). Vis. Res. 2006, 46, 1777–1783. [Google Scholar] [CrossRef]
- Chen, W.-L.; Min, X.-W.; Guo, Y.-J. Performance of seal vibrissa-inspired bionic surface in suppressing aerodynamic forces and vortex shedding around a circular cylinder. Ocean Eng. 2022, 260, 112032. [Google Scholar] [CrossRef]
- Song, L.; Ji, C.; Zhang, X. Vortex-induced vibration and wake tracing mechanism of harbor seal whisker: A direct numerical simulation. Chin. J. Theor. Appl. Mech. 2021, 53, 395–412. [Google Scholar]
- Kim, H.; Yoon, H.S. Effect of the orientation of the harbor seal vibrissa based biomimetic cylinder on hydrodynamic forces and vortex induced frequency. AIP Adv. 2017, 7, 105015. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y. Wake dynamics behind a seal-vibrissa-shaped cylinder: A comparative study by time-resolved particle velocimetry measurements. Exp. Fluids 2016, 57, 36. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.Z. Flow structures behind a vibrissa-shaped cylinder at different angles of attack: Complication on vortex-induced vibration. Int. J. Heat Fluid Flow 2017, 68, 31–52. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, Z.; Ji, C.; Zhao, Y.; Li, X.; Du, M. Dynamics of harbor seal whiskers at different angles of attack in wake flow. Phys. Fluids 2024, 36, 071906. [Google Scholar] [CrossRef]
- Assi, G.R.S.; Bearman, P.W. Vortex-induced vibration of a wavy elliptic cylinder. J. Fluids Struct. 2018, 80, 1–21. [Google Scholar] [CrossRef]
- Owen, J.C.; Szewczyk, A.A.; Bearman, P.W. Suppression of Kármán Vortex Shedding. Phys. Fluids 2000, 12, S9. [Google Scholar] [CrossRef]
- Owen, J.C.; Bearman, P.W.; Szewczyk, A.A. Passive control of VIV with drag reduction. J. Fluids Struct. 2001, 15, 597–605. [Google Scholar] [CrossRef]
- Williamson, C.; Govardhan, R. A brief review of recent results in vortex-induced vibrations. J. Wind Eng. Ind. Aerodyn. Aerodyn. 2008, 96, 713–735. [Google Scholar] [CrossRef]
- Shyam, V.; Ameri, A.; Poinsatte, P.; Thurman, D.; Wroblewski, A.; Snyder, C. Application of Pinniped Vibrissae to Aeropropulsion. In Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Montreal, QC, Canada, 15–19 June 2015. [Google Scholar]
- Bearman, P.W.; Owen, J.C. Reduction of bluff-body drag and suppression of vortex shedding by the introduction of wavy separation lines. J. Fluids Struct. 1998, 12, 123–130. [Google Scholar] [CrossRef]
- Lam, K.; Wang, F.H.; Li, J.Y.; So, R.M.C. Experimental investigation of the mean and fluctuating forces of wavy (varicose) cylinders in a cross-flow. J. Fluids Struct. 2004, 19, 321–334. [Google Scholar] [CrossRef]
- Yang, J.; Sun, X.; Yang, H.; Wang, X. Experimental Study on Aerodynamic Characteristics of Downwind Bionic Tower Wind Turbine. Biomimetics 2024, 9, 336. [Google Scholar] [CrossRef]
- Wen, F.; Luo, Y.; Wang, S.; Wang, S.; Wang, Z. Numerical Study on the Biomimetic Trailing Edge of a Turbine Blade Under a Wide Range of Outlet Mach Numbers. Front. Energy Res. 2021, 9, 789246. [Google Scholar] [CrossRef]
- Fan, S.; Han, X.; Tang, Y.; Wang, Y.; Kong, X. Shark Skin—An Inspiration for the Development of a Novel and Simple Biomimetic Turbulent Drag Reduction Topology. Sustainability 2022, 14, 16662. [Google Scholar] [CrossRef]
- Dean, B.; Bhushan, B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: A review. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 4775–4806. [Google Scholar] [CrossRef]
- Pu, X.; Li, G.; Liu, Y. Progress and perspective of studies on biomimetic shark skin drag reduction. ChemBioEng Rev. 2016, 3, 26–40. [Google Scholar] [CrossRef]
- Haehnel-Taguchi, M.; Akanyeti, O.; Liao, J.C. Behavior, electrophysiology, and robotics experiments to study lateral line sensing in fishes. Integr. Comp. Biol. 2018, 58, 874–883. [Google Scholar] [CrossRef]
- Yu, J.; Wang, M.; Dong, H.; Zhang, Y.; Wu, Z. Motion control and motion coordination of bionic robotic fish: A review. J. Bionic Eng. 2018, 15, 579–598. [Google Scholar] [CrossRef]
- Liu, G.; Wang, M.; Xu, L.; Incecik, A.; Sotelo, M.A.; Li, Z.; Li, W. A new bionic lateral line system applied to pitch motion parameters perception for autonomous underwater vehicles. Appl. Ocean Res. 2020, 99, 102142. [Google Scholar] [CrossRef]
- Kottapalli, A.G.P.; Asadnia, M.; Miao, J.; Triantafyllou, M. Touch at a distance sensing: Lateral-line inspired MEMS flow sensors. Bioinspiration Biomim. 2014, 9, 046011. [Google Scholar]
- Zhai, Y.; Zheng, X.; Xie, G. Fish lateral line inspired flow sensors and flow-aided control: A review. J. Bionic Eng. 2021, 18, 264–291. [Google Scholar] [CrossRef]
- Triantafyllou, M.S.; Weymouth, G.D.; Miao, J. Biomimetic survival hydrodynamics and flow sensing. Annu. Rev. Fluid Mech. 2016, 48, 1–24. [Google Scholar] [CrossRef]
- Jiang, Y.; Ma, Z.; Fu, J.; Zhang, D. Development of a Flexible Artificial Lateral Line Canal System for Hydrodynamic Pressure Detection. Sensors 2017, 17, 1220. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Kamat, A.M.; Cao, M.; Kottapalli, A.G.P. Wavy Whiskers in Wakes: Explaining the Trail-Tracking Capabilities of Whisker Arrays on Seal Muzzles. Adv. Sci. 2022, 10, 2203062. [Google Scholar] [CrossRef]
- Wang, S.; Liu, J.; Liu, B.; Wang, H.; Si, J.; Xu, P.; Xu, M. Potential Applications of Whisker Sensors in Marine Science and Engineering: A Review. J. Mar. Sci. Eng. 2023, 11, 2108. [Google Scholar] [CrossRef]
- Eberhardt, W.C.; Shakhsheer, Y.A.; Calhoun, B.H.; Paulus, J.R.; Appleby, M. A bio-inspired artificial whisker for fluid motion sensing with increased sensitivity and reliability. In Proceedings of the SENSORS, 2011 IEEE, Limerick, Ireland, 28–31 October 2011; pp. 982–985. [Google Scholar]
- Stocking, J.; Eberhardt, W.; Shakhsheer, Y.; Calhoun, B.; Paulus, J.; Appleby, M. A capacitance-based whisker-like artificial sensor for fluid motion sensing. In Proceedings of the SENSORS, 2010 IEEE, Waikoloa, HI, USA, 1–4 November 2010; pp. 2224–2229. [Google Scholar]
- Fend, M.; Bovet, S.; Hafner, V. The artificial mouse-a robot with whiskers and vision. In Proceedings of the 35th International Symposium on Robotics (ISR 2004), Paris France, 23–26 March 2004. [Google Scholar]
- Zhang, B.; Qiao, H.; Chen, S.; Liu, J.; Zhang, W.; Xiong, J.; Xue, C.; Zhang, G. Modeling and characterization of a micromachined artificial hair cell vector hydrophone. Microsyst. Technol. 2008, 14, 821–828. [Google Scholar] [CrossRef]
- Alvarado, P.V.y.; Subramaniam, V.; Triantafyllou, M. Design of a bio-inspired whisker sensor for underwater applications. In Proceedings of the SENSORS, 2012 IEEE, Taipei, China, 28–31 October 2012; pp. 1–4. [Google Scholar]
- Alvarado, P.V.; Subramaniam, V.; Triantafyllou, M. Performance analysis and characterization of bio-inspired whisker sensors for underwater applications. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 5956–5961. [Google Scholar]
- Valdivia y Alvarado, P.; Bhat, S. Whisker-like sensors with tunable follicle sinus complex for underwater applications. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, 2014, San Diego, CA, USA, 9–13 March 2014. [Google Scholar]
- Gul, J.Z.; Su, K.Y.; Choi, K.H. Fully 3D Printed Multi-Material Soft Bio-Inspired Whisker Sensor for Underwater-Induced Vortex Detection. Soft Robot. 2018, 5, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Beem, H.; Hildner, M.; Triantafyllou, M. Calibration and validation of a harbor seal whisker-inspired flow sensor. Smart Mater. Struct. 2013, 22, 014012. [Google Scholar] [CrossRef]
- Liu, G.; Jiang, Y.; Wu, P.; Ma, Z.; Chen, H.; Zhang, D. Artificial Whisker Sensor with Undulated Morphology and Self-Spread Piezoresistors for Diverse Flow Analyses. Soft Robot. 2023, 10, 97–105. [Google Scholar] [CrossRef]
- Xia, Q.; Song, N.; Liu, C.; Zhai, R.; Ai, C.; Sun, X.; Zhang, S. Current development of bionic flexible sensors applied to marine flow field detection. Sens. Actuators A Phys. 2023, 351, 114158. [Google Scholar] [CrossRef]
- Abolpour Moshizi, S.; Azadi, S.; Belford, A.; Razmjou, A.; Wu, S.; Han, Z.J.; Asadnia, M. Development of an Ultra-Sensitive and Flexible Piezoresistive Flow Sensor Using Vertical Graphene Nanosheets. Nano-Micro Lett. 2020, 12, 109. [Google Scholar] [CrossRef]
- Zheng, X.; Kamat, A.M.; Harish, V.S.; Cao, M.; Kottapalli, A.G.P. Optimizing Harbor Seal Whisker Morphology for Developing 3D-Printed Flow Sensor. In Proceedings of the 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Orlando, FL, USA, 20–24 June 2021; pp. 1271–1274. [Google Scholar]
- Zheng, X.; Kamat, A.M.; Krushynska, A.O.; Cao, M.; Kottapalli, A.G.P. 3D Printed Graphene Piezoresistive Microelectromechanical System Sensors to Explain the Ultrasensitive Wake Tracking of Wavy Seal Whiskers. Adv. Funct. Mater. 2022, 32, 2207274. [Google Scholar] [CrossRef]
- Kottapalli, A.; Asadnia, M.; Hans, H.; Miao, J.; Triantafyllou, M. Harbor seal inspired MEMS artificial micro-whisker sensor. In Proceedings of the 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), San Francisco, CA, USA, 26–30 January 2014; pp. 741–744. [Google Scholar]
- Kottapalli, A.; Asadnia, M.; Miao, J.; Triantafyllou, M. Harbor seal whisker inspired flow sensors to reduce vortex-induced vibrations. In Proceedings of the 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, Portugal, 18–22 January 2015; pp. 889–892. [Google Scholar]
- Zhang, X.; Shan, X.; Xie, T.; Miao, J.; Du, H.; Song, R. Harbor seal whisker inspired self-powered piezoelectric sensor for detecting the underwater flow angle of attack and velocity. Measurement 2021, 172, 108866. [Google Scholar] [CrossRef]
- Xu, P.; Wang, X.; Wang, S.; Chen, T.; Liu, J.; Zheng, J.; Li, W.; Xu, M.; Tao, J.; Xie, G. A Triboelectric-Based Artificial Whisker for Reactive Obstacle Avoidance and Local Mapping. Research 2021, 2021, 9864967. [Google Scholar] [CrossRef]
- Wang, S.; Xu, P.; Wang, X.; Wang, H.; Liu, C.; Song, L.; Xie, G.; Xu, M. Bionic Tactile Sensor based on Triboelectric Nanogenerator for Motion Perception. In Proceedings of the 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China, 25–29 April 2021; pp. 1853–1857. [Google Scholar]
- Wang, S.; Xu, P.; Wang, X.; Zheng, J.; Liu, X.; Liu, J.; Chen, T.; Wang, H.; Xie, G.; Tao, J.; et al. Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception. Nano Energy 2022, 97, 107210. [Google Scholar] [CrossRef]
- Wang, J.; Wang, A.; Niu, C.; Kou, Y.; Chen, J.; Yang, X.; Wang, S.; Geng, T.; Sun, W. Bioinspired Whisker Sensor Based on Orthometric FBGs for Underwater Applications. IEEE Trans. Instrum. Meas. 2024, 73, 1–9. [Google Scholar] [CrossRef]
- Glick, R.; Brücker, C.; Fabian, M.; Grattan, K.T.V. Tracking hydrodynamic disturbances with fibre-optic whiskers. Opt. Lasers Eng. 2024, 177, 108125. [Google Scholar] [CrossRef]
- Elshalakani, M.; Muthuramalingam, M.; Bruecker, C. A Deep-Learning Model for Underwater Position Sensing of a Wake’s Source Using Artificial Seal Whiskers. Sensors 2020, 20, 3522. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, C.; Hu, H.; Hu, Z.; Sun, H.; Liu, K.; Li, T.; Fu, J.; Zhao, P.; Yang, H. Biomimetic Hydrodynamic Sensor with Whisker Array Architecture and Multidirectional Perception Ability. Adv. Sci. 2024, 11, 2405276. [Google Scholar] [CrossRef]
- Dunt, T.K.; Heck, K.S.; Lyons, K.; Murphy, C.T.; Bayoán Cal, R.; Franck, J.A. Wavelength-induced shedding frequency modulation of seal whisker inspired cylinders. Bioinspiration Biomim. 2024, 19, 036004. [Google Scholar] [CrossRef]
- Kim, H.J.; Yoon, H.S. Reynolds number effect on the fluid flow and heat transfer around a harbor seal vibrissa shaped cylinder. Int. J. Heat. Mass. Transf. 2018, 126, 618–638. [Google Scholar] [CrossRef]
Researchers | Methodology | Key Findings | Key Data/Parameters | Ref. |
---|---|---|---|---|
Renouf et al. | Trout prey capture behavioral experiment | Seals without whiskers failed to effectively capture prey; first proposed sensory function of whiskers | N/A | [21] |
Dehnhardt et al. | Vibrating sphere stimulation + sensory blocking | Seals can detect weak hydrodynamic disturbances using whiskers | Sensitivity threshold > 50 Hz; response range: 10–100 Hz | [4] |
Dehnhardt et al. | Mini-submarine trail tracking experiment | Seals tracked hydrodynamic trails produced up to 30 s earlier; demonstrated vortex wake tracking ability | Detectable flow speed: 16 mm/s | [22] |
Schulte-Pelkum et al. | Real seal tracking + PIV visualization | Identified two tracking modes: linear and oscillatory | 64% linear tracking; 34% oscillatory tracking | [24] |
Wieskotten et al. | Drag-induced wake recognition + PIV | First confirmed that seals can judge object direction, size, and shape via reverse vortex patterns | Whiskers can resolve spatial structures in wakes | [25,26] |
Murphy et al. | Vibration frequency stimulation experiment | Seals are sensitive to frequencies between 20 and 250 Hz; optimal response around 80 Hz | Optimal frequency response: ~80 Hz | [30] |
Harbor Seal | 2a | 2k | Peak to Peak | Trough to Trough | Ref. |
---|---|---|---|---|---|
Hanke | 1.19 | 095 | 1.82 | N/A | [17] |
Ginter | 0.92 ± 0.13 | 0.73 ± 0.12 | 3.27 ± 0.39 | 3.26 ± 0.40 | [35] |
Murphy | 1.11 ± 0.08 | 0.879 ± 0.03 | 3.88 ± 0.45 | N/A | [36] |
Rinehart | 1.05 ± 0.24 | 0.83 ± 0.19 | 3.44 ± 0.72 | 3.45 ± 0.73 | [37] |
Kamat | 1.17 ± 0.10 | 0.93 ± 0.19 | 3.49 ± 0.33 | 3.53 ± 0.33 | [38] |
Researchers | Methodology | Key Findings | Metrics/Conclusions | Ref. |
---|---|---|---|---|
Hanke et al. | PIV + CFD (comparison between seal and sea lion) | Whisker structure delays vortex street formation, improves wake symmetry | Lift reduced by 90%; drag reduced by 40%; >6× suppression vs. sea lion | [17] |
Miersch et al. | Experiment (control upstream cylinder size) | Whiskers accurately detect wake frequencies; significantly improved SNR | Frequency detection error < 30%; >10× VIV suppression vs. sea lion | [54] |
Beem et al. | Dye visualization + amplitude/frequency testing | Whisker wakes show no large vortices; vortices remain far from body surface | Minimal vibration amplitude in free flow; significantly increased in wake | [40] |
Bunjevac et al. | PIV (comparison: wavy vs. smooth whiskers) | Wavy whiskers reduce wake turbulence and vortex shedding frequency | Power spectral density ~40% lower; smaller and weaker wake zones | [18] |
Witte et al. | Stereo-PIV + CFD + POD | 3D whisker geometry significantly reduces lift/drag fluctuations; no Kármán vortices | Lift/drag fluctuation reduced by 90%; ~40% drag reduction at Re = 500 | [55] |
Kamat et al. | Finite element analysis | Geometric parameter λ/Dₘ strongly influences vibration suppression efficiency | Optimal VIV suppression when λ/Dₘ = 4.4–4.6 | [38] |
Researchers | Methodology | AOA Range (°) | Key Findings | Metrics/Conclusions | Ref. |
---|---|---|---|---|---|
Murphy et al. | Experimental comparison (wavy vs. smooth whiskers) | 0, 90 | Whisker geometry has minimal effect on frequency; AOA significantly affects vibration characteristics | Frequency highest and velocity lowest at AOA = 0°; inverse at AOA = 90° | [36] |
Bunjevac et al. | PIV | 0, 90 | More stable wake and stronger VIV suppression at 0°; more turbulence at 90° | Vortex rapidly decays at AOA = 0°; intensified at AOA = 90° | [18] |
Wang & Liu | PIV comparison (vs. elliptical/circular cylinders) | –30–30 | Whisker structure shows minimal wake and weaker velocity fluctuations within ±30° AOA | Harbor seals can naturally maintain AOA within this range | [61] |
Wang et al. | TR-PIV wind tunnel experiments | 0, 30, 60, 90 | Negligible vibration at AOA ≤ 30°; significant increase in amplitude at AOA > 30° | AOA significantly influences VIV response | [62] |
Kim & Yoon | Experimental comparison (HSV vs. elliptical cylinder) | 0–90 | HSV shedding frequency increases then decreases with AOA; lower force coefficients than elliptical cylinder | HSV shows superior VIV suppression performance | [60] |
Method Type | Advantages | Limitations |
---|---|---|
PIV experiments (e.g., Hanke [17], Bunjevac [18]) | Enables visualization of real flow fields and acquisition of instantaneous velocity distributions | Limited spatial resolution; challenging to track complex unsteady flow structures over time |
CFD simulations (e.g., Witte [55], Kamat [38]) | Provides controlled parameters for evaluating structural variations on vortex dynamics | Requires assumptions of boundary conditions; difficult to account for environmental noise and stochastic disturbances |
Scaled water tunnel experiments (e.g., Miersch [54]) | Capable of replicating real-world flow perturbations and validating dynamic responses of biomimetic structures | Scale effects and material mismatches may reduce fidelity to actual biological structures |
Comparative tests on biomimetic geometries (e.g., Song [56,59], Chen [58]) | Highlights performance differences across multiple geometric configurations, emphasizing the advantage of biomimicry | Often relies on idealized numerical conditions or simplified models |
FEA (e.g., Kamat [38]) | Enables accurate modeling of structural mechanics, stress distribution, and fluid–structure interactions | Computationally intensive; complex to model; highly sensitive to material parameters and boundary conditions, which may not fully reflect real environments |
Material | Young’s Modulus | Operational Lifetime in Water (Years) | Dynamic Bionic Compatibility |
---|---|---|---|
Natural Keratin (Seal) | ≈2–4 GPa | 25–30 | Benchmark for bionic reference |
PDMS | 0.5–3 MPa | 2–5 | Soft–rigid balance, good dynamic match |
Polyurethane | 1–100 MPa | 2–5 | Flexible, good bionic response |
Photopolymer Resin | 1–3 GPa | <1 | Moderately rigid, high-frequency performance |
PEEK | ≈3.5 GPa | 5–10 | Balanced stiffness, excellent durability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Gao, Z.; Wang, J.; Zhang, Y.; Chen, J.; Zhang, R.; Yang, J. A Review of the Application of Seal Whiskers in Vortex-Induced Vibration Suppression and Bionic Sensor Research. Micromachines 2025, 16, 870. https://doi.org/10.3390/mi16080870
Zhang J, Gao Z, Wang J, Zhang Y, Chen J, Zhang R, Yang J. A Review of the Application of Seal Whiskers in Vortex-Induced Vibration Suppression and Bionic Sensor Research. Micromachines. 2025; 16(8):870. https://doi.org/10.3390/mi16080870
Chicago/Turabian StyleZhang, Jinying, Zhongwei Gao, Jiacheng Wang, Yexiaotong Zhang, Jialin Chen, Ruiheng Zhang, and Jiaxing Yang. 2025. "A Review of the Application of Seal Whiskers in Vortex-Induced Vibration Suppression and Bionic Sensor Research" Micromachines 16, no. 8: 870. https://doi.org/10.3390/mi16080870
APA StyleZhang, J., Gao, Z., Wang, J., Zhang, Y., Chen, J., Zhang, R., & Yang, J. (2025). A Review of the Application of Seal Whiskers in Vortex-Induced Vibration Suppression and Bionic Sensor Research. Micromachines, 16(8), 870. https://doi.org/10.3390/mi16080870