Study of an Ultra-Low-Frequency Inertial Vibration Energy Harvester with a Frequency Up-Conversion Approach
Abstract
1. Introduction
2. System Design and Modeling
2.1. System Design
2.2. System Model
2.3. Magnetic Force and Magnetic Potential Energy
3. Theoretical Analysis
3.1. Potential Energy Analysis
3.2. Dynamic Response
4. Experimental Setup and Results
4.1. Experimental Setup
4.2. Experimental Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bernitsas, M.M.; Raghavan, K.; Ben-Simon, Y.; Garcia, E.M.H. VIVACE (vortex induced vibration aquatic clean energy): A new concept in generation of clean and renewable energy from fluid flow. J. Offshore Mech. Arct. 2008, 130, 041101. [Google Scholar] [CrossRef]
- Chang, C.-C.; Kumar, R.A.; Bernitsas, M.M. VIV and galloping of single circular cylinder with surface roughness at 3.0 × 104 ≤ Re ≤ 1.2 × 105. Ocean Eng. 2011, 38, 1713–1732. [Google Scholar] [CrossRef]
- Park, H.; Kumar, R.A.; Bernitsas, M.M. Enhancement of flow-induced motion of rigid circular cylinder on springs by localized surface roughness at 3 × 104 ≤< Re ≤ 1.2 × 105. Ocean Eng. 2013, 72, 403–415. [Google Scholar]
- Li, N.; Park, H.; Sun, H.; Bernitsas, M.M. Hydrokinetic energy conversion using flow induced oscillations of single-cylinder with large passive turbulence control. Appl. Energy 2022, 308, 118380. [Google Scholar] [CrossRef]
- Barrero-Gil, A.; Pindado, S.; Avila, S. Extracting energy from Vortex-Induced Vibrations: A parametric study. Appl. Math. 2012, 36, 3147–3154. [Google Scholar] [CrossRef]
- Kim, E.S.; Bernitsas, M.M. Performance prediction of horizontal hydrokinetic energy converter using multiple-cylinder synergy in flow induced motion. Appl. Energy 2016, 170, 92–100. [Google Scholar] [CrossRef]
- Zhao, D.; Zhou, J.; Tan, T.; Yan, Z.; Sun, W.; Yin, J.; Zhang, W. Hydrokinetic piezoelectric energy harvesting by wake induced vibration. Energy 2021, 220, 119722. [Google Scholar] [CrossRef]
- Muthalif, A.G.A.; Hafizh, M.; Renno, J.; Paurobally, M.R. A hybrid piezoelectric-electromagnetic energy harvester from vortex-induced vibrations in fluid-flow; the influence of boundary condition in tuning the harvester. Energy Convers. Manag. 2022, 256, 115371. [Google Scholar] [CrossRef]
- Sun, W.; Zhao, D.; Tan, T.; Yan, Z.; Guo, P.; Luo, X. Low velocity water flow energy harvesting using vortex induced vibration and galloping. Appl. Energy 2019, 251, 113392. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, B.; Chen, X.; Wang, X.; Liu, J. Modeling and experimental study of a piezoelectric energy harvester from vortex shedding-induced vibration. Energy Convers. Manag. 2018, 162, 145–158. [Google Scholar] [CrossRef]
- Hafizh, M.; Muthalif, A.G.A.; Renno, J.; Paurobally, M.R.; Ali, M.S.M. A vortex-induced vibration-based self-tunable airfoil-shaped piezoelectric energy harvester for remote sensing applications in water. Ocean Eng. 2023, 269, 113467. [Google Scholar] [CrossRef]
- Cao, D.; Ding, X.; Guo, X.; Yao, M. Improved Flow-Induced Vibration Energy Harvester by Using Magnetic Force: An Experimental Study. Int. J. Precis. Eng. Manuf. Technol. 2020, 8, 879–887. [Google Scholar] [CrossRef]
- Wan, C.; Tian, H.; Shan, X.; Xie, T. Enhanced performance of airfoil-based piezoelectric energy harvester under coupled flutter and vortex-induced vibration. Int. J. Mech. Sci. 2023, 241, 107979. [Google Scholar] [CrossRef]
- Shi, G.; Tan, T.; Hu, S.; Yan, Z. Hydrodynamic piezoelectric energy harvesting with topological strong vortex by forced separation. Int. J. Mech. Sci. 2022, 223, 107261. [Google Scholar] [CrossRef]
- Lv, Y.; Sun, L.; Bernitsas, M.M.; Sun, H. A comprehensive review of nonlinear oscillators in hydrokinetic energy harnessing using flow-induced vibrations. Renew. Sustain. Energy Rev. 2021, 150, 111388. [Google Scholar] [CrossRef]
- Tang, H.; Hua, C.; Huang, H.; Liu, W.; Yang, Z.; Yuan, Y.; Zhang, Z. Low-frequency vibration energy harvesting: A comprehensive review of frequency up-conversion approaches. Smart Mater. Struct. 2022, 31, 103001. [Google Scholar] [CrossRef]
- Cheng, Q.; Lv, Z.; Liu, Z.; Wang, Q. Theoretical modelling and experimental investigation on a frequency up-converted nonlinear piezoelectric energy harvester. Sens. Actuat. A-Phys. 2022, 347, 113979. [Google Scholar] [CrossRef]
- Pillatsch, P.; Yeatman, E.M.; Holmes, A.S. Magnetic plucking of piezoelectric beams for frequency up-converting energy harvesters. Smart Mater. Struct. 2014, 23, 025009. [Google Scholar] [CrossRef]
- Tang, Q.; Li, X. Two-Stage Wideband Energy Harvester Driven by Multimode Coupled Vibration. IEEE-ASME Trans. Mech. 2015, 20, 115–121. [Google Scholar] [CrossRef]
- Lin, W.; Xu, Y.; Wang, S.; Chen, Z.; Xie, Z.; Huang, W. A nonlinear magnetic and torsional spring coupling piezoelectric energy harvester with internal resonance. Smart Mater. Struct. 2022, 31, 115007. [Google Scholar] [CrossRef]
- Gao, Y.J.; Leng, Y.G.; Fan, S.B.; Lai, Z.H. Performance of bistable piezoelectric cantilever vibration energy harvesters with an elastic support external magnet. Smart Mater. Struct. 2014, 23, 095003. [Google Scholar] [CrossRef]
- Ramezanpour, R.; Nahvi, H.; Ziaei-Rad, S. Electromechanical behavior of a pendulum-based piezoelectric frequency up-converting energy harvester. J. Sound Vib. 2016, 370, 280–305. [Google Scholar] [CrossRef]
- Mei, X.; Dong, R.; Sun, F.; Zhou, R.; Zhou, S. Array piezoelectric energy harvester with frequency up-conversion in rotational motions: Theoretical analyses and experimental validations. Nonlinear Dyn. 2023, 111, 9989–10009. [Google Scholar] [CrossRef]
- Leng, Y.G.; Gao, Y.J.; Tan, D.; Fan, S.B.; Lai, Z.H. An elastic-support model for enhanced bistable piezoelectric energy harvesting from random vibrations. J. Appl. Phys. 2015, 117, 064901. [Google Scholar] [CrossRef]
- Chen, L.; Liao, X.; Sun, B.; Zhang, N.; Wu, J. A numerical-experimental dynamic analysis of high-efficiency and broadband bistable energy harvester with self-decreasing potential barrier effect. Appl. Energy 2022, 317, 119161. [Google Scholar] [CrossRef]
- Tang, L.; Yang, Y.; Soh, C.-K. Improving functionality of vibration energy harvesters using magnets. J. Intell. Mater. Syst. Struct. 2012, 23, 1433–1449. [Google Scholar] [CrossRef]
Parameters | Symbol | Value | Parameters | Symbol | Value |
---|---|---|---|---|---|
Mass(copper) | Magnet (NdFeB) | ||||
Length | lB | 30 mm | Length | ln | 8 mm |
Width | wB | 30 mm | Width | wn | 30 mm |
Height | hB | 20 mm | Thickness | hn | 10 mm |
Cantilever (aluminum) | PZT-5H | ||||
Length | L | 200 mm | Length | lp | 60 mm |
Width | wb | 70 mm | Width | wp | 30 mm |
Thickness | hb | 1 mm | Thickness | hp | 0.4 mm |
Modulus of elasticity | Eb | 72 GPa | Density | ρp | 7.5 × 103 kg/m3 |
Density | ρb | 2.7 × 103 kg/m3 | Modulus of elasticity | Ep | 56 GPa |
Other parameters | piezoelectric constant | d31 | −275 pC/N | ||
Remanent flux density | Br | 1.21 T | Other parameters | ||
Stiffness of spring | keq2 | 20 N/m | correction factor | μ1 | 1.0344 |
equivalent damping | ceq1 | 0.1802 | Vacuum permeability | μ0 | 4π × 10−7 N/A2 |
Circuit capacitance | 65 × 10−9 F |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Xu, J.; Guan, M.; Shen, Z.; Cheng, Z. Study of an Ultra-Low-Frequency Inertial Vibration Energy Harvester with a Frequency Up-Conversion Approach. Micromachines 2025, 16, 942. https://doi.org/10.3390/mi16080942
Chen J, Xu J, Guan M, Shen Z, Cheng Z. Study of an Ultra-Low-Frequency Inertial Vibration Energy Harvester with a Frequency Up-Conversion Approach. Micromachines. 2025; 16(8):942. https://doi.org/10.3390/mi16080942
Chicago/Turabian StyleChen, Jun, Jieliang Xu, Mingjie Guan, Ziqiao Shen, and Zilong Cheng. 2025. "Study of an Ultra-Low-Frequency Inertial Vibration Energy Harvester with a Frequency Up-Conversion Approach" Micromachines 16, no. 8: 942. https://doi.org/10.3390/mi16080942
APA StyleChen, J., Xu, J., Guan, M., Shen, Z., & Cheng, Z. (2025). Study of an Ultra-Low-Frequency Inertial Vibration Energy Harvester with a Frequency Up-Conversion Approach. Micromachines, 16(8), 942. https://doi.org/10.3390/mi16080942