Characteristics Prediction and Optimization of GaN CAVET Using a Novel Physics-Guided Machine Learning Method
Abstract
1. Introduction
2. TCAD Simulations of GaN CAVET
3. The PGML Approach and PG-ANN Model
3.1. Designing the PG-ANN Model
3.1.1. Designing the Shallow Neural Network Model
3.1.2. Designing the Hypernetwork Model
3.1.3. Integration of Shallow Neural Network and Hypernetwork
3.1.4. Extension of PG-ANN
3.2. The Loss Function of PG-ANN Models
3.3. PG-ANN Model Training
3.3.1. Pre-Training of Shallow Neural Network
3.3.2. Pre-Training of Hypernetwork
3.3.3. Combined Training of Shallow Neural Network and Hypernetwork
3.4. Model Screening
4. Results and Discussion
4.1. Anti-Jamming Capability of the PG-ANN Model
4.2. PG-ANN Model Accuracy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Perez Martinez, R.; Munzer, D.J.; Shankar, B.; Murmann, B.; Chowdhury, S. Linearity Performance of Derivative Superposition in GaN HEMTs: A Device-to-Circuit Perspective. IEEE Trans. Electron. Devices 2023, 70, 2247–2254. [Google Scholar] [CrossRef]
- Fu, H.; Fu, K.; Chowdhury, S.; Palacios, T.; Zhao, Y. Vertical GaN Power Devices: Device Principles and Fabrication Technologies—Part I. IEEE Trans. Electron. Devices 2021, 68, 3200–3211. [Google Scholar] [CrossRef]
- Wang, Q.; Cheng, X.; Zheng, L.; Ye, P.; Zhang, J.; Liu, F.; Xiang, L.; Li, H.; Maki, P.; Chattopadhyay, D. Band alignment between PEALD-AlNO and AlGaN/GaN determined by angle-resolved X-ray photoelectron spectroscopy. Appl. Surf. Sci. 2017, 423, 675–679. [Google Scholar] [CrossRef]
- Zhang, D.; Cheng, X.; Zheng, L.; Shen, L.; Wang, Q.; Gu, Z.; Qian, R.; Wu, D.; Zhou, W.; Cao, D.; et al. Effects of polycrystalline AlN film on the dynamic performance of AlGaN/GaN high electron mobility transistors. Mater. Des. 2018, 148, 1–7. [Google Scholar] [CrossRef]
- Verma, S.; Akhoon, M.S.; Loan, S.A.; Al Reshan, M.A. A normally OFF GaN CAVET and its thermal and trap analysis. J. Comput. Electron. 2019, 18, 941–950. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, X.; Li, D.; Ma, Z.; Liu, Z.; Bai, X.; Mao, Z. Predicting flow status of a flexible rectifier using cognitive computing. Expert. Syst. Appl. 2025, 264, 125878. [Google Scholar] [CrossRef]
- Mao, Z.; Suzuki, S.; Wiranata, A.; Zheng, Y.; Miyagawa, S. Bio-inspired circular soft actuators for simulating defecation process of human rectum. J. Artif. Organs 2025, 28, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.Y.; Xiao, M.; Wang, B.; Chiu, Y.K.; Yan, X.; Ma, J.; Sasaki, K.; Wang, H.; Zhang, Y. TCAD-Machine Learning Framework for Device Variation and Operating Temperature Analysis With Experimental Demonstration. IEEE J. Electron. Devices Soc. 2020, 8, 992–1000. [Google Scholar] [CrossRef]
- Teo, C.-W.; Low, K.L.; Narang, V.; Thean, A.V.-Y. TCAD-enabled machine learning defect prediction to accelerate advanced semiconductor device failure analysis. In Proceedings of the SISPAD, Udine, Italy, 4–6 September 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Hirtz, T.; Huurman, S.; Tian, H.; Yang, Y.; Ren, T.-L. Framework for TCAD augmented machine learning on multi–I–V characteristics using convolutional neural network and multiprocessing. J. Semicond. 2021, 42, 124101. [Google Scholar] [CrossRef]
- Woo, S.; Jeon, J.; Kim, S. Prediction of device characteristics of feedback field-effect transistors using TCAD-augmented machine learning. Micromachines 2023, 14, 504. [Google Scholar] [CrossRef]
- Mehta, K.; Raju, S.S.; Xiao, M.; Wang, B.; Zhang, Y.; Wong, H.Y. Improvement of TCAD-augmented machine learning using autoencoder for semiconductor variation identification and inverse design. IEEE Access 2020, 8, 143519–143529. [Google Scholar] [CrossRef]
- Lu, T.; Lu, A.; Wong, H.Y. Device image–I–V mapping using variational autoencoder for inverse design and forward prediction. In Proceedings of the SISPAD, Kobe, Japan, 27–29 September 2023; pp. 161–164. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, J.; Wang, X.; Xiao, M.; Zhang, Y.; Wong, H.Y. New-generation design-technology co-optimization (DTCO): Machine-learning assisted modeling framework. In Proceedings of the Silicon Nanoelectron. Workshop (SNW), Kyoto, Japan, 9–10 June 2019; pp. 1–2. [Google Scholar] [CrossRef]
- Lu, A.; Marshall, J.; Wang, Y.; Xiao, M.; Zhang, Y.; Wong, H.Y. Vertical GaN diode BV maximization through rapid TCAD simulation and ML-enabled surrogate model. Solid-State Electron. 2022, 198, 108468. [Google Scholar] [CrossRef]
- Eranki, V.; Lu, T.; Wong, H.Y. Comparison of manifold learning algorithms for rapid circuit defect extraction in SPICE-augmented machine learning. In Proceedings of the IEEE 19th Annual Workshop Microelectron. Electron Devices (WMED), Virtual, 8 April 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Mehta, K.; Wong, H.-Y. Prediction of FinFET current–voltage and capacitance–voltage curves using machine learning with autoencoder. IEEE Electron. Device Lett. 2021, 42, 136–139. [Google Scholar] [CrossRef]
- Radhakrishna, U. Modeling gallium-nitride based high electron mobility transistors: Linking device physics to high voltage and high frequency circuit design. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2016. Available online: https://hdl.handle.net/1721.1/105951 (accessed on 23 August 2025).
- Sourabh, K.; Chandresh, Y.; Shantanu, A.; Yogesh, S.C.; Arnaud, C.; Thomas, Z.; Jaeger, J.-C.D.; Nicolas, D.; Tor, A.T. Robust surface-potential-based compact model for GaN HEMT IC design. IEEE Trans. Electron. Devices 2013, 60, 3216–3222. [Google Scholar] [CrossRef]
- Scholten, A.J.; Smit, G.D.J.; De Vries, B.A.; Tiemeijer, L.F.; Croon, J.A.; Klaassen, D.B.M.; van Langevelde, R.; Li, X.; Wu, W.; Gildenblat, G. The new CMC standard compact MOS model PSP: Advantages for RF applications. IEEE J. Solid-State Circuits 2009, 44, 1415–1424. [Google Scholar] [CrossRef]
- Chauhan, Y.S.; Venugopalan, S.; Karim, M.A.; Khandelwal, S.; Paydavosi, N.; Thakur, P.; Niknejad, A.M.; Hu, C.C. BSIM – Industry standard compact MOSFET models. In Proceedings of the ESSDERC/ESSCIRC, Bordeaux, France, 17–21 September 2012; pp. 30–33. [Google Scholar] [CrossRef]
- Daw, A.; Karpatne, A.; Watkins, W.; Read, J.; Kumar, V. Physics-guided neural networks (PGNN): An application in lake temperature modeling. arXiv 2017, arXiv:1710.11431. [Google Scholar] [CrossRef]
- Statz, H.; Newman, P.; Smith, I.W.; Pucel, R.; Haus, H.A. GaAs FET device and circuit simulation in SPICE. IEEE Trans. Electron. Devices 1987, 34, 160–169. [Google Scholar] [CrossRef]
- Materka, A.; Kacprzak, T. Computer calculation of large-signal GaAs FET amplifier characteristics. IEEE Trans. Microw. Theory Tech. 1985, 33, 129–135. [Google Scholar] [CrossRef]
- Curtice, W.R.; Ettenberg, M. A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers. IEEE Trans. Microw. Theory Tech. 1985, 33, 1383–1394. [Google Scholar] [CrossRef]
- Parker, A.E.; Skellern, D.J. A realistic large-signal MESFET model for SPICE. IEEE Trans. Microw. Theory Tech. 1997, 45, 1563–1571. [Google Scholar] [CrossRef]
- Angelov, I.; Zirath, H.; Rorsman, N. A new empirical nonlinear model for HEMT and MESFET devices. IEEE Trans. Microw. Theory Tech. 1992, 40, 2258–2266. [Google Scholar] [CrossRef]
- Manno, A.; Rossi, F.; Smriglio, S.; Cerone, L. Comparing deep and shallow neural networks in forecasting call center arrivals. Soft Comput. 2023, 27, 12943–12957. [Google Scholar] [CrossRef]
- Zheng, L.; Kochmann, D.M.; Kumar, S. HyperCAN: Hypernetwork-driven deep parameterized constitutive models for metamaterials. Extrem. Mech. Lett. 2024, 72, 102243. [Google Scholar] [CrossRef]
- Wang, D. An improved residual network based on enhancing projection shortcuts performance. In Proceedings of the ISCEIC, Wuhan, China, 8–10 November 2024; pp. 120–124. [Google Scholar] [CrossRef]
- Silvaco-TCAD. Available online: https://silvaco.com/tcad (accessed on 23 August 2025).
- Chowdhury, S.; Wong, M.H.; Swenson, B.L.; Mishra, U.K. CAVET on bulk GaN substrates achieved with MBE-regrown AlGaN/GaN layers to suppress dispersion. IEEE Electron. Device Lett. 2012, 33, 41–43. [Google Scholar] [CrossRef]
- Jie, X.; Wang, J.; Ouyang, X.; Zhuang, Y. Characteristics prediction and optimization of InP HBT using machine learning. Comput. Electron. 2024, 23, 305–313. [Google Scholar] [CrossRef]
Parameter | Range (Min, Max) | Step |
---|---|---|
[m] | (1, 4, 10, 15) | |
(1, 3, 5) | 2 | |
(0.1, 0.3, 0.5) | 0.2 | |
[cm−3] | (8 × 1016, 2 × 1017, 8 × 1017) | |
[cm−3] | (2 × 1015, 2 × 1016, 2 × 1017) | |
[] | (0.1, 0.15, 0.2) | 0.05 |
[] | (1, 3, 5) | 2 |
[V] | (−8, 0) | 0.2 |
[V] | (0, 40) | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Wang, J.; Su, J.; Chen, Z.; Yu, Z. Characteristics Prediction and Optimization of GaN CAVET Using a Novel Physics-Guided Machine Learning Method. Micromachines 2025, 16, 1005. https://doi.org/10.3390/mi16091005
Wu W, Wang J, Su J, Chen Z, Yu Z. Characteristics Prediction and Optimization of GaN CAVET Using a Novel Physics-Guided Machine Learning Method. Micromachines. 2025; 16(9):1005. https://doi.org/10.3390/mi16091005
Chicago/Turabian StyleWu, Wenbo, Jie Wang, Jiangtao Su, Zhanfei Chen, and Zhiping Yu. 2025. "Characteristics Prediction and Optimization of GaN CAVET Using a Novel Physics-Guided Machine Learning Method" Micromachines 16, no. 9: 1005. https://doi.org/10.3390/mi16091005
APA StyleWu, W., Wang, J., Su, J., Chen, Z., & Yu, Z. (2025). Characteristics Prediction and Optimization of GaN CAVET Using a Novel Physics-Guided Machine Learning Method. Micromachines, 16(9), 1005. https://doi.org/10.3390/mi16091005