Non-Invasive Three-Dimensional Cell Manipulation Technology Based on Acoustic Microfluidic Chips
Abstract
1. Introduction
2. Materials and Methods
2.1. AMPA Chip Composition and Manipulation Working Principle
2.2. Sample Preparation
2.3. Experimental Setup
3. Experimental Study of Particle Manipulation Based on AMPA-Based Chips
3.1. Research on Different Vibration Modes
3.2. Research on the Effects of Frequency and Voltage on the Rotational Speed of a Single Particle
3.3. Multi-Particle Rotation Experiment
3.4. Rotational Manipulation of Cancer Cells
3.5. Effects of Biological Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Habaza, M.; Kirschbaum, M.; Guernth-Marschner, C.; Dardikman, G.; Barnea, I.; Korenstein, R.; Duschl, C.; Shaked, N.T. Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation. Adv. Sci. 2017, 4, 1600205. [Google Scholar] [CrossRef]
- Wollrab, V.; Thiagarajan, R.; Wald, A.; Kruse, K.; Riveline, D. Still and rotating myosin clusters determine cytokinetic ring constriction. Nat. Commun. 2016, 7, 11860. [Google Scholar] [CrossRef]
- Leung, C.; Lu, Z.; Zhang, X.P.; Sun, Y. Three-dimensional rotation of mouse embryos. IEEE Trans. Bio-Med. Eng. 2012, 59, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.L.; Sun, M.Z.; Cui, M.S.; Yu, J.; Qin, Y.D.; Zhao, X. Robotic Cell Rotation Based on the Minimum Rotation Force. IEEE Trans. Autom. Sci. Eng. 2015, 12, 1504–1515. [Google Scholar] [CrossRef]
- Kuncova, J.; Kallio, P. Challenges in capillary pressure microinjection. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Annual Conference, San Francisco, CA, USA, 1–5 September 2004; IEEE Engineering in Medicine and Biology Society: New York, NY, USA, 2004; pp. 4998–5001. [Google Scholar] [CrossRef]
- Iritani, A. Micromanipulation of gametes for in vitro assisted fertilization. Mol. Reprod. Dev. 1991, 28, 199–207. [Google Scholar] [CrossRef]
- Ren, D.; Wang, J.; Wang, B.; You, Z. Probes for biomolecules detection based on RET-enhanced fluorescence polarization. Biosens. Bioelectron. 2016, 79, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.H.; Xia, Y.Q.; Wang, B.; You, Z. Multiplexed Analysis for Anti-Epidermal Growth Factor Receptor Tumor Cell Growth Inhibition Based on Quantum Dot Probes. Anal. Chem. 2016, 88, 4318–4327. [Google Scholar] [CrossRef] [PubMed]
- Ashkin, A.; Dziedzic, J.M. Optical trapping and manipulation of viruses and bacteria. Science 1987, 235, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Ashkin, A.; Dziedzic, J.M.; Bjorkholm, J.E.; Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 1986, 11, 288. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, P.; Wang, W.H. 3D cell electrorotation and imaging for measuring multiple cellular biophysical properties. Lab. A Chip 2018, 18, 2359–2368. [Google Scholar] [CrossRef]
- Benhal, P.; Chase, J.G. System identification and stochastic estimation of dielectric properties of a spherical particle using AC-induced electro-rotation. In Proceedings of the 20th International Conference on Process Control (PC), Strbske Pleso, Slovakia, 9–12 June 2015; pp. 332–337. [Google Scholar]
- Yu, Y.R.; Shang, L.R.; Guo, J.H.; Wang, J.; Zhao, Y.J. Design of capillary microfluidics for spinning cell-laden microfibers. Nat. Protoc. 2018, 13, 2557–2579. [Google Scholar] [CrossRef]
- Han, S.I.; Joo, Y.D.; Han, K.H. An electrorotation technique for measuring the dielectric properties of cells with simultaneous use of negative quadrupolar dielectrophoresis and electrorotation. Analyst 2013, 138, 1529–1537. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, P.; Liang, F.; Wang, W.H. Single-cell 3D electro-rotation. In Methods in Cell Biology; Fletcher, D.A., Doh, J., Piel, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 148, pp. 97–116. [Google Scholar]
- Fang, Y.; Eglen, R.M. Three-Dimensional Cell Cultures in Drug Discovery and Development. Slas Discov. 2017, 22, 456–472. [Google Scholar] [CrossRef]
- Conway, J.R.W.; Carragher, N.O.; Timpson, P. Developments in preclinical cancer imaging: Innovating the discovery of therapeutics. Nat. Rev. Cancer 2014, 14, 314–328. [Google Scholar] [CrossRef] [PubMed]
- Moreira, L.; Bakir, B.; Chatterji, P.; Dantes, Z.; Reichert, M.; Rustgi, A.K. Pancreas 3D Organoids: Current and Future Aspects as a Research Platform for Personalized Medicine in Pancreatic Cancer. Cell. Mol. Gastroenterol. Hepatol. 2018, 5, 289–298. [Google Scholar] [CrossRef]
- Idbaih, A. Structural and functional intratumor heterogeneities in glioblastoma: A spacetime odyssey at single-cell level. Ann. Oncol. 2017, 28, 1415–1417. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Hosokawa, Y.; Hayakawa, T.; Tanaka, Y.; Li, W.H.; Li, M.; Yalikun, Y. Rotation of Biological Cells: Fundamentals and Applications. Engineering 2022, 10, 110–126. [Google Scholar] [CrossRef]
- Wang, Z.; Latt, W.T.; Tan, S.Y.M.; Ang, W.T. Visual Servoed Three-Dimensional Cell Rotation System. IEEE Trans. Biomed. Eng. 2015, 62, 2498–2507. [Google Scholar] [CrossRef]
- Wang, B.C.; Zhao, H.C.; Liu, Y.Y.; Jia, Y.; Sakanishi, A. The effects of alternative stress on the cell membrane deformability of chrysanthemum callus cells. Colloids Surf. B Biointerfaces 2001, 20, 321–325. [Google Scholar]
- Kolb, T.; Albert, S.; Haug, M.; Whyte, G. Optofluidic rotation of living cells for single-cell tomography. J. Biophotonics 2015, 8, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Carmon, G.; Feingold, M. Rotation of single bacterial cells relative to the optical axis using optical tweezers. Opt. Lett. 2011, 36, 40–42. [Google Scholar] [CrossRef]
- Lapotko, D.O.; Zharov, V.P. Spectral evaluation of laser-induced cell damage with photothermal microscopy. Lasers Surg. Med. 2005, 36, 22–30. [Google Scholar] [CrossRef]
- Galli, R.; Uckermann, O.; Andresen, E.F.; Geiger, K.D.; Koch, E.; Schackert, G.; Steiner, G.; Kirsch, M. Intrinsic Indicator of Photodamage during Label-Free Multiphoton Microscopy of Cells and Tissues. PLoS ONE 2014, 9, e110295. [Google Scholar] [CrossRef]
- Liu, Y.; Sonek, G.J.; Berns, M.W.; Tromberg, B.J. Physiological monitoring of optically trapped cells: Assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry. Biophys. J. 1996, 71, 2158–2167. [Google Scholar] [CrossRef] [PubMed]
- Doukas, A.G.; Flotte, T.J. Physical characteristics and biological effects of laser-induced stress waves. Ultrasound Med. Biol. 1996, 22, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, T.; Sakuma, S.; Arai, F. On-chip 3D rotation of oocyte based on a vibration-induced local whirling flow. Microsyst. Nanoeng. 2015, 1, 15001. [Google Scholar] [CrossRef]
- Neuman, K.C.; Nagy, A. Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 2008, 5, 491–505. [Google Scholar] [CrossRef]
- Cohen, A.E.; Moerner, W.E. Method for trapping and manipulating nanoscale objects in solution. Appl. Phys. Lett. 2005, 86, 093109. [Google Scholar] [CrossRef]
- Probst, R.; Shapiro, B. Three-dimensional electrokinetic tweezing: Device design, modeling, and control algorithms. J. Micromech. Microeng. 2011, 21, 027004. [Google Scholar] [CrossRef]
- Soffe, R.; Tang, S.Y.; Baratchi, S.; Nahavandi, S.; Nasabi, M.; Cooper, J.M.; Mitchell, A.; Khoshmanesh, K. Controlled Rotation and Vibration of Patterned Cell Clusters Using Dielectrophoresis. Anal. Chem. 2015, 87, 2389–2395. [Google Scholar] [CrossRef]
- Khan, M.R.; Trlica, C.; Dickey, M.D. Recapillarity: Electrochemically Controlled Capillary Withdrawal of a Liquid Metal Alloy from Microchannels. Adv. Funct. Mater. 2015, 25, 671–678. [Google Scholar] [CrossRef]
- Benhal, P.; Chase, J.G.; Gaynor, P.; Oback, B.; Wang, W.H. Multiple-cylindrical Electrode System for Rotational Electric Field Generation in Particle Rotation Applications. Int. J. Adv. Robot. Syst. 2015, 12. [Google Scholar] [CrossRef]
- Ebrahimian, H.; Giesguth, M.; Dietz, K.J.; Reiss, G.; Herth, S. Magnetic tweezers for manipulation of magnetic particles in single cells. Appl. Phys. Lett. 2014, 104, 063701. [Google Scholar] [CrossRef]
- Chen, L.; Offenhäusser, A.; Krause, H.J. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads. Rev. Sci. Instrum. 2015, 86, 044701. [Google Scholar] [CrossRef]
- Bausch, A.R.; Möller, W.; Sackmann, E. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 1999, 76, 573–579. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, J.W.; Levy, M.; Kao, A.; Noh, S.H.; Bozovic, D.; Cheon, J. Magnetic Nanoparticles for Ultrafast Mechanical Control of Inner Ear Hair Cells. Acs Nano 2014, 8, 6590–6598. [Google Scholar] [CrossRef]
- Dobson, J. Remote control of cellular behaviour with magnetic nanoparticles. Nat. Nanotechnol. 2008, 3, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, R.; Rybenkov, V.V. A Guide to Magnetic Tweezers and Their Applications. Front. Phys. 2016, 4. [Google Scholar] [CrossRef]
- Janssen, X.J.A.; Lipfert, J.; Jager, T.; Daudey, R.; Beekman, J.; Dekker, N.H. Electromagnetic Torque Tweezers: A Versatile Approach for Measurement of Single-Molecule Twist and Torque. Nano Lett. 2012, 12, 3634–3639. [Google Scholar] [CrossRef]
- Van Oene, M.M.; Ha, S.; Jager, T.; Lee, M.; Pedaci, F.; Lipfert, J.; Dekker, N.H. Quantifying the Precision of Single-Molecule Torque and Twist Measurements Using Allan Variance. Biophys. J. 2018, 114, 1970–1979. [Google Scholar] [CrossRef]
- Ozcelik, A.; Rufo, J.; Guo, F.; Gu, Y.Y.; Li, P.; Lata, J.; Huang, T.J. Acoustic tweezers for the life sciences. Nat. Methods 2018, 15, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, D.; Ozcelik, A.; Bojanala, N.; Nama, N.; Upadhyay, A.; Chen, Y.C.; Hanna-Rose, W.; Huang, T.J. Rotational manipulation of single cells and organisms using acoustic waves. Nat. Commun. 2016, 7, 11085. [Google Scholar] [CrossRef] [PubMed]
- Ozcelik, A.; Nama, N.; Huang, P.H.; Kaynak, M.; McReynolds, M.R.; Hanna-Rose, W.; Huang, T.J. Acoustofluidic Rotational Manipulation of Cells and Organisms Using Oscillating Solid Structures. Small 2016, 12, 5120–5125. [Google Scholar] [CrossRef]
- Wiklund, M. Acoustofluidics 12: Biocompatibility and cell viability in microfluidic acoustic resonators. Lab Chip 2012, 12, 2018–2028. [Google Scholar] [CrossRef]
- Feng, L.; Zhou, Q.; Song, B.; Feng, Y.M.; Cai, J.; Jiang, Y.G.; Zhang, D.Y. Cell Injection Millirobot Development and Evaluation in Microfluidic Chip. Micromachines 2018, 9, 590. [Google Scholar] [CrossRef]
- Yalikun, Y.; Aishan, Y.; Mosha, A.; Sumiyama, K.; Tanaka, Y. Oocyte all-surfaces’ imaging method using micro-scale rotational flow. Micro Nano Lett. 2018, 13, 306–311. [Google Scholar] [CrossRef]
- Yalikun, Y.; Akiyama, Y.; Asano, T.; Morishima, K. 3A1-I03 Multi-Freedom Bio-Manipulation Based on Multiple Microfluidic Streams in Open-space(Bio Manipulation). The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec); The Japan Society of Mechanical Engineers: Tokyo, Japan, 2014; pp. _3A1–I03_1. [Google Scholar] [CrossRef]
- Yalikun, Y.; Kanda, Y.; Morishima, K. A Method of Three-Dimensional Micro-Rotational Flow Generation for Biological Applications. Micromachines 2016, 7, 140. [Google Scholar] [CrossRef]
- Lutz, B.R.; Chen, J.; Schwartz, D.T. Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies. Anal. Chem. 2006, 78, 5429–5435. [Google Scholar] [CrossRef]
- Shetty, R.M.; Myers, J.R.; Sreenivasulu, M.; Teller, W.; Vela, J.; Houkal, J.; Chao, S.H.; Johnson, R.H.; Kelbauskas, L.; Wang, H.; et al. Characterization and comparison of three microfabrication methods to generate out-of-plane microvortices for single cell rotation and 3D imaging. J. Micromechanics Microengineering 2017, 27, 015004. [Google Scholar] [CrossRef]
- Tanyeri, M.; Johnson-Chavarria, E.M.; Schroeder, C.M. Hydrodynamic trap for single particles and cells. Appl. Phys. Lett. 2010, 96, 224101. [Google Scholar] [CrossRef]
- Tanyeri, M.; Ranka, M.; Sittipolkul, N.; Schroeder, C.M. A microfluidic-based hydrodynamic trap: Design and implementation. Lab. A Chip 2011, 11, 1786–1794. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.L.; Zhao, K.D.; Peng, H.M.; Li, H.F.; Liu, W.J. Local Enhanced Microstreaming for Controllable High-Speed Acoustic Rotary Microsystems. Phys. Rev. Appl. 2019, 11, 044064. [Google Scholar] [CrossRef]
- Ma, Z.; Zhou, Y.; Cai, F.; Meng, L.; Zheng, H.; Ai, Y. Ultrasonic microstreaming for complex-trajectory transport and rotation of single particles and cells. Lab. Chip 2020, 20, 2947–2953. [Google Scholar] [CrossRef]
- Lin, L.; Zhu, R.X.; Li, W.; Dong, G.Q.; You, H. The Shape Effect of Acoustic Micropillar Array Chips in Flexible Label-Free Separation of Cancer Cells. Micromachines 2024, 15, 421. [Google Scholar] [CrossRef]
- Settnes, M.; Bruus, H. Forces acting on a small particle in an acoustical field in a viscous fluid. Phys. Rev. E 2012, 85, 016327. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, L.; Zhen, Y.; Li, W.; Dong, G.; Zhu, R.; Liang, M. Non-Invasive Three-Dimensional Cell Manipulation Technology Based on Acoustic Microfluidic Chips. Micromachines 2025, 16, 1068. https://doi.org/10.3390/mi16091068
Lin L, Zhen Y, Li W, Dong G, Zhu R, Liang M. Non-Invasive Three-Dimensional Cell Manipulation Technology Based on Acoustic Microfluidic Chips. Micromachines. 2025; 16(9):1068. https://doi.org/10.3390/mi16091068
Chicago/Turabian StyleLin, Lin, Yiming Zhen, Wang Li, Guoqiang Dong, Rongxing Zhu, and Minhui Liang. 2025. "Non-Invasive Three-Dimensional Cell Manipulation Technology Based on Acoustic Microfluidic Chips" Micromachines 16, no. 9: 1068. https://doi.org/10.3390/mi16091068
APA StyleLin, L., Zhen, Y., Li, W., Dong, G., Zhu, R., & Liang, M. (2025). Non-Invasive Three-Dimensional Cell Manipulation Technology Based on Acoustic Microfluidic Chips. Micromachines, 16(9), 1068. https://doi.org/10.3390/mi16091068