Impact of Magnetic Fields on Arc Pressure, Temperature, Plasma Velocity, and Voltage in TIG Welding
Abstract
1. Introduction
2. Numerical Model
2.1. Models and Assumptions
- The arc is assumed to be in steady state and axisymmetric in two dimensions;
- The effect of the anode surface state on the arc is not considered;
- The plasma isoforms of the arc are laminar;
- The external environment has standard atmospheric pressure, and the physical properties of argon gas depend on temperature;
- A uniform current density is assumed at the tip of the tungsten electrode.
2.2. Grid Independence Verification
2.3. Control Equation
2.4. Boundary Conditions
3. Results
3.1. Longitudinal Magnetic Field Effects on Temperature Field
3.2. Longitudinal Magnetic Field Effects on Velocity Field
3.3. Longitudinal Magnetic Field Effects on Arc Pressure
3.4. Longitudinal Magnetic Field Effects on Electric Field
4. Empirical Verification
5. Conclusions
- (1)
- As the magnetic field increases, the arc morphology changes from bell-shaped to hollow, and the high-temperature region of the arc compresses and moves away from the arc centre axis. The maximum temperature of the arc decreases from 14,600 K at 0 mT to 13,500 K at 150 mT. With increasing auxiliary magnetic field strength, the high-temperature zone shifts toward the edge of the arc, with the maximum displacement of 0.45 mm occurring at 150 mT.
- (2)
- The maximum plasma velocity of the arc occurs below the cathode regardless of whether a magnetic field is applied. The maximum velocity gradually increases from 74 m/s at 0 mT to 296 m/s at 150 mT. In addition, a clear low velocity zone appears along the central axis of the arc. This zone gradually expands from the anode toward the cathode as the magnetic field strength increases. At a magnetic field strength of 579 mT, this low-velocity zone extends through the entire central axis region between the cathode and the anode.
- (3)
- When the magnetic field strength is 0 mT, the pressure near the cathode and anode of the arc is larger, and the middle area is smaller. As the magnetic field strength increases, negative pressure first appears near the cathode. This negative pressure region then expands toward the cathode with increasing magnetic field strength, subsequently extending toward the anode, until a distinct negative pressure zone emerges along the entire central axis. During the process of negative pressure expansion, the arc pressure decreases from 296 Pa at 0 mT to −3470 Pa at 150 mT, with a difference of 12.72 times.
Author Contributions
Funding
Conflicts of Interest
Glossary
z | Axial coordinates |
P | Gas pressure |
Heat capacity | |
r-direction volumetric forces | |
J | Current density |
g | Acceleration of gravity |
Electromagnetic force | |
Plasma velocity | |
Acceleration of plasma | |
Argon conductivity | |
μ0 | Vacuum permeability |
T | Temperature of argon |
TR | Temperature of radiating body |
u | Axial velocity |
v | Radial velocity |
μ | Argon viscosity |
Thermal conductivity | |
z-direction volumetric forces | |
B | Magnetic intensity |
Q | Energy |
Longitudinal magnetic field | |
Jr | Radial current density |
Electric potential | |
Jz | Axial current density |
K | Boltzmann’s constant |
e | Electron charge |
r | Radial coordinates |
References
- Nandhakumar, S.; Kumar, K.G.; Jose, B. Development of a novel autogenous double pulse tungsten inert gas welding technique for joining IN625 in concentrated solar power plants. Mater. Today Commun. 2024, 39, 108567. [Google Scholar] [CrossRef]
- Semenov, O.; Krivtsun, I.; Demchenko, V.; Reisgen, U.; Mokrov, O.; Sharma, R.; Sydoruk, V. Modeling of heat transfer and fluid flow in the metal being welded during DC and HFPC TIG spot welding. Numer. Heat Transf. Part B-Fundam. 2025, 86, 1095–1110. [Google Scholar] [CrossRef]
- Narayanan, R.; Rameshkumar, K.; Sumesh, A.; Shankar, B.; Thekkuden, D.T. Effect of Nano TiO2 Flux on Depth of Penetration and Mechanical Properties of TIG-Welded SA516 Grade 70 Steel Joints-An Experimental Investigation. Metals 2025, 15, 399. [Google Scholar] [CrossRef]
- Bimbi, A.; Kawabata, M.; Tsunekawa, T.; Sasahara, H.; Campatelli, G. Influence of electrode rotation speed on geometry and internal structure of weld beads in rotary TIG wire-arc-directed energy deposition. Int. J. Adv. Manuf. Technol. 2024, 135, 4401–4420. [Google Scholar] [CrossRef]
- Kuang, Y.W.; Hu, J.L.; Su, W.J.; Zhu, Z.G.; Liao, H.P.; Wang, Z.M. Elimination of pores and microstructural characterization in Ti-6Al-4V alloy welds using fast-frequency double pulse TIG welding. Mater. Today Commun. 2024, 41, 110516. [Google Scholar] [CrossRef]
- Sonar, T.; Ivanov, M.; Shcherbakov, I.; Trofimov, E.; Khasanova, E.; Cheepu, M.; Liu, K. Enhancing Welding Productivity and Mitigation of Distortion in Dissimilar Welding of Ferritic-Martensitic Steel and Austenitic stainless Steel Using Robotic A-TIG Welding Process. J. Manuf. Mater. Process. 2024, 8, 283. [Google Scholar] [CrossRef]
- Yang, H.Y.; Cheng, Z.G.; Tao, X.K.; Liu, L.M. Characterization of low-power pulsed laser-induced single/double arc hybrid heat source bottoming welding of medium-thick plate titanium alloy. Opt. Laser Technol. 2025, 181, 11623. [Google Scholar] [CrossRef]
- Ebrahimpour, A.; Aghapour, A.; Saeid, T. Finite element and experimental study on ultrasonic-assisted TIG welding of 5083 aluminum alloy. Int. J. Adv. Manuf. Technol. 2025, 136, 2857–2875. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Zhao, H.L.; Li, Y.W.; Miao, J.Y.; Chang, C.H.; Chang, Y.L. TIG-based hybrid arc welding: A review. Int. J. Adv. Manuf. Technol. 2025, 22, 15833. [Google Scholar] [CrossRef]
- Zhan, J.T.; Ye, X.Y.; Liu, Z.Z.; Zhong, S.T.; Zhou, Y.C.; Zhang, R.; Liang, Z.X.; Shi, Y.H. Numerical investigation of dynamic arc behavior in K-TIG welding enhanced by an external sinusoidal alternating longitudinal magnetic field. Int. J. Therm. Sci. 2025, 212, 109744. [Google Scholar] [CrossRef]
- Zhan, J.T.; Ye, X.Y.; Zhong, S.T.; Liu, Z.Z.; Shi, Y.H. Analysis of sine alternating longitudinal magnetic field frequency on Q345 K-TIG welding with a Y groove: Formation, mechanical, and mechanism. Int. J. Adv. Manuf. Technol. 2025, 137, 697–716. [Google Scholar] [CrossRef]
- Reddy, P.V.R.R.; Reddy, G.C.M.; Kumar, L.S.; Viswanadhula, U.M.; Aluvalu, R.; Rao, N.M.B. Development of fuzzy inference engine for prediction of mechanical properties in TIG-welded Al-65,032 alloy through reduced experimentation using Taguchi method. Int. J. Interact. Des. Manuf. IJIDeM 2025, 19, 2077–2088. [Google Scholar] [CrossRef]
- Arora, H.; Kumar, R.; Gulati, P.; Sharma, S.; Dwivedi, S.P.; Saxena, A.; Kumar, A.; Sharma, K.; Kozak, D.; Hunjet, A.; et al. Numerical simulation of temperature distribution and residual stress in TIG welding of stainless-steel single-pass flange butt joint using finite element analysis. High Temp. Mater. Process. 2024, 43, 20240015. [Google Scholar] [CrossRef]
- Song, B.Y.; Dong, B.L.; Cai, X.Y.; Lin, S.B. Numerical simulation of arc characteristics in K-TIG welding. Int. J. Adv. Manuf. Technol. 2024, 132, 3821–3837. [Google Scholar] [CrossRef]
- Li, J.J.; Zhu, X.Y.; Jiang, Y.P.; Peng, X.; Li, Q.H.; Huang, X.L. Characteristics and Control of High Current Vacuum Arc Deflection Under the Impact of Lateral Magnetic Field. IEEE Access 2025, 13, 2571–2580. [Google Scholar] [CrossRef]
- Qin, B.; Qu, R.; Xie, Y.F.; Liu, S. Numerical Simulation and Experimental Study on the TIG (A-TIG) Welding of Dissimilar Magnesium Alloys. Materials 2022, 15, 4922. [Google Scholar] [CrossRef]
- Yadav, A.K.; Agrawal, M.K.; Saxena, K.K.; Yelamasetti, B. Numerical simulation and experimental residual stress analyses of dissimilar GTA weld ments of AA 5083 and AA 6082. Int. J. Interact. Des. Manuf. IJIDeM 2024, 18, 1207. [Google Scholar] [CrossRef]
- Aberbache, H.; Mathieu, A.; Haglon, N.; Bolot, R.; Bleurvacq, L.; Corolleur, A.; Laurent, F. Numerical Study of the Cold Metal Transfer (CMT) Welding of Thin Austenitic Steel Plates with an Equivalent Heat Source Approach. J. Manuf. Mater. Process. 2024, 8, 20. [Google Scholar] [CrossRef]
- Ebrahimpour, A.; Salami, S.; Saeid, T. Finite element investigation on the effect of arc configuration and torch angle on heat distribution in TIG-MIG hybrid welding of DSS 2205. Int. J. Adv. Manuf. Technol. 2022, 121, 2495–2509. [Google Scholar] [CrossRef]
- Lei, Z.; Zhu, Z.T.; Li, Y.X.; Liu, Y.; Chen, H. Numerical Simulation of Characteristics of Laser-Hollow Tungsten Inert Gas Coaxial Composite Welding Arc. Chin. J. Lasers 2021, 48, 1802011. [Google Scholar] [CrossRef]
- Wei, L.M.; Xiu, S.X.; Liu, Z.X.; Guo, M.Q.; Zhu, D.J. Numerical Simulation and Experimental Investigation of the Influence of Gap Distance on Vacuum Arc Characteristics Between TMF Contacts. IEEE Trans. Plasma Sci. 2024, 52, 951–958. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, Y.S.; Cao, T.; Xue, R.R.; Zhang, J.J.; Zhang, J. Investigation of the effect of electrode materials on Arc Discharge Machining of 40% SiCp/Al composites. Int. J. Adv. Manuf. Technol. 2025, 137, 455–464. [Google Scholar] [CrossRef]
- Zong, R.; Li, Y.H.; Zhang, Y.J.; Li, J.Q.; Liu, Q.R.; Wu, H.Y. Multi-physics coupled simulation of the thermal-pressure characteristics of hybrid TIG-MIG arc. Int. J. Adv. Manuf. Technol. 2025, 139, 503–518. [Google Scholar] [CrossRef]
- Kou, K.P.; Cao, J.L.; Yang, Y. Weight function method for stress intensity factors of semi-elliptical surface cracks on functionally graded plates subjected to non-uniform stresses. Materials 2020, 13, 3155. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Ding, H.F.; Luo, J.; Bair, D.; Xu, X.L.; Chang, Y.L. Numerical and experimental study of TIG welding arc in high frequency longitudinal magnetic field. J. Mater. Res. Technol. 2024, 33, 5253–5262. [Google Scholar] [CrossRef]
- Lei, Z.; Zhu, Z.T.; Li, Y.X. Numerical simulation of hollow tungsten electrode TIG welding arc characteristics. Trans. China Weld. Inst. 2021, 42, 9–14+27+97. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Li, G.; Wu, L.; Wang, Z. Impact of Magnetic Fields on Arc Pressure, Temperature, Plasma Velocity, and Voltage in TIG Welding. Micromachines 2025, 16, 967. https://doi.org/10.3390/mi16090967
Chen G, Li G, Wu L, Wang Z. Impact of Magnetic Fields on Arc Pressure, Temperature, Plasma Velocity, and Voltage in TIG Welding. Micromachines. 2025; 16(9):967. https://doi.org/10.3390/mi16090967
Chicago/Turabian StyleChen, Gang, Gaosong Li, Lei Wu, and Zhenya Wang. 2025. "Impact of Magnetic Fields on Arc Pressure, Temperature, Plasma Velocity, and Voltage in TIG Welding" Micromachines 16, no. 9: 967. https://doi.org/10.3390/mi16090967
APA StyleChen, G., Li, G., Wu, L., & Wang, Z. (2025). Impact of Magnetic Fields on Arc Pressure, Temperature, Plasma Velocity, and Voltage in TIG Welding. Micromachines, 16(9), 967. https://doi.org/10.3390/mi16090967