Transparent and Fine Film Stencils with Functional Coating for Advanced Surface Mount Technology
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication of Fine Film Stencil
2.2. Application Methods of Fine Film Stencil
3. Results and Discussions
3.1. Experimental Verifications for Laser Cutting Quality
3.2. Experimental Verifications for Minimizing Burr Formation
3.3. Experimental Verifications for Solder Paste Release
3.4. Experimental Verifications for Spatial Alignment of Apertures
3.5. Experimental Verifications for Printing Quality in Repeated SMT Process
3.6. Comparison Between Conventional Metal Stencils and Fine Film Stencil
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kay, R.; Desmulliez, M. A review of stencil printing for microelectronic packaging, Solder. Surf. Mt. Technol. 2012, 24, 38–50. [Google Scholar] [CrossRef]
- Huang, C.Y.; Lin, Y.H.; Ying, K.C.; Ku, C.L. The solder paste printing process: Critical parameters, defect scenarios, specifications, and cost reduction. Surf. Mt. Technol. 2011, 23, 211–223. [Google Scholar] [CrossRef]
- Manessis, D.; Patzelt, R.; Ostmann, A.; Aschenbrenner, R.; Reichl, H. Technical challenges of stencil printing technology for ultra fine pitch flip chip bumping. Microelectron. Reliab. 2004, 44, 797–803. [Google Scholar] [CrossRef]
- Whitmore, M.; Schake, J. The Impact of Stencil Printing Upon Assembly & Reliability Of 0.3 mm Pitch CSP Components. In Proceedings of the 49th International Symposium on Microelectronics, Pasadena, CA, USA, 10–13 October 2016; Volume 1, pp. 000667–000674. [Google Scholar]
- Sunar, M.M.; Baker, M.A.; Jalar, A.; Ani, F.C.; Ramli, M.R. Effect of stencil wall aperture on solder paste release via stencil printing. J. Phys. Conf. Ser. 2022, 2169, 012037. [Google Scholar] [CrossRef]
- Schweigstill, T.; Mielich, N.; Vogt, A.; Schulz-Ruhtenberg, M.; Clement, F.; Huyeng, J.D.; Lorenz, A. Advanced Fine Line Printing with Glass Stencils: Achieving Metal Contact Fingers Below 10 μm. Prog. Photovolt. Res. Appl. 2024. [CrossRef]
- Lim, W.Y.L.; Jaafar, M.; Ishak, K.M.K.; Chinniah, K.; Chan, W.K. Recent developments in advanced polymeric materials for solder mask application: Progress and challenges. J. Sci. Adv. Mater. Devices 2023, 8, 100567. [Google Scholar] [CrossRef]
- Lim, J.H.; Park, E.C.; Lee, S.Y.; Yoon, J.W.; Ha, S.S.; Joo, J.; Lee, H.J.; Jung, S.B.; Song, K. Fabrication of Ni metal mask by electroforming process using wetting agents. J. Electron. Mater. 2007, 36, 1510–1515. [Google Scholar] [CrossRef]
- Stoyanov, S.; Kay, R.; Bailey, C.; Desmulliez, M. Computational modelling for reliable flip-chip packaging at sub-100 μm pitch using isotropic conductive adhesives. Microelectron. Reliab. 2017, 47, 132–141. [Google Scholar] [CrossRef]
- Nagayama, T.; Yamamoto, T.; Nakamura, T.; Mizutani, Y. Fabrication of low CTE metal masks by the Invar Fe-Ni alloy electroforming process for large and fine pitch OLED displays. ECS Trans. 2013, 50, 117. [Google Scholar] [CrossRef]
- Chung, S.I.; Kim, P.K.; Ha, T.G. Fabrication of hybrid fine metal mask through micro/nano-photolithography and electroforming. Microelectron. Eng. 2021, 247, 111598. [Google Scholar] [CrossRef]
- Rai, P.K.; Gupta, A. Electroforming process for microsystems fabrication. J. Electrochem. Soc. 2023, 170, 123510. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, N.; Gilchrist, M.; Fang, F. Advances in precision micro/nano-electroforming: A state-of-the-art review. J. Micromech. Microeng. 2020, 30, 103002. [Google Scholar] [CrossRef]
- Olender-Skóra, M.; Banaś, W.; Turek, M.; Skóra, P.; Gwiazda, A.; Foit, K.; Sękala, A.; Stawowiak, M. Effects of Using Laser Technology for Cutting Polymer Films. Materials 2024, 17, 3678. [Google Scholar] [CrossRef]
- Koo, B.J.; Lee, J.H.; Kwon, H.K.; Lee, H.; Jeong, J.; Ahn, S.K.; Seo, M.H. Photo-Thermal Approaches on Polyimide Film for Demonstration of Sub-50 µm Polymer Stencil Mask. Adv. Electron. Mater. 2025, 11, 2400979. [Google Scholar] [CrossRef]
- Ni, H.J.; Liu, J.G.; Wang, Z.H.; Yang, S.Y. A review on colorless and optically transparent polyimide films: Chemistry, process and engineering applications. J. Ind. Eng. Chem. 2015, 28, 16–27. [Google Scholar] [CrossRef]
- Yamamoto, S.; Nonaka, T. Protective properties of hydrogenated diamond-like carbon coatings against electrostatic discharge damage. Thin Solid Film. 2021, 736, 138912. [Google Scholar] [CrossRef]
- Shih, C.L.; Ruo, C.W. Auto-calibration of an SMT machine by machine vision. J. Adv. Manuf. Technol. 2005, 26, 243–250. [Google Scholar] [CrossRef]
- Jahns, D.; Kaszemeikat, T.; Mueller, N.; Ashkenasi, D.; Dietrich, R.; Eichler, H.J. Laser trepanning of stainless steel. Phys. Procedia 2013, 41, 630–635. [Google Scholar] [CrossRef]
- Ten, J.S.; Sparkes, M.; O’Neill, W. Femtosecond laser-induced chemical vapor deposition of tungsten quasi-periodic structures on silicon substrates. J. Laser Appl. 2018, 30, 032606. [Google Scholar] [CrossRef]
- Malinauskas, M.; Žukauskas, A.; Hasegawa, S.; Hayasaki, Y.; Mizeikis, V.; Buividas, R.; Juodkazis, S. Ultrafast laser processing of materials: From science to industry. Light Sci. Appl. 2016, 5, e16133. [Google Scholar] [CrossRef]
- Lei, S.; Zhao, X.; Yu, X.; Hu, A.; Vukelic, S.; Jun, M.B.; Joe, H.E.; Yao, Y.L.; Shin, Y.C. Ultrafast laser applications in manufacturing processes: A state-of-the-art review. J. Manuf. Sci. Eng. 2020, 142, 031005. [Google Scholar] [CrossRef]
- Lifeng, D.; Xiaobing, Z.; Rongzhu, Z. The thermal-stress accumulation in anti-reflective coatings with multi-pulse laser irradiation. Opt. Commun. 2015, 350, 263–269. [Google Scholar] [CrossRef]
- Park, W.; Tokioka, H.; Tanaka, M.; Choi, J. DLC coating on a micro-trench by bipolar PBII&D and analysis of plasma behavior. J. Phys. D Appl. Phys. 2014, 47, 335306. [Google Scholar]
- Park, C.; Dey, S.; Ouyang, L.; Byun, J.H.; Leeds, M. Improved bootstrap confidence intervals for the process capability index Cpk. Commun. Stat. Simul. Comput. 2020, 49, 2583–2603. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, B.-H.; Park, W.; Park, K.; Lee, H.; Yoo, J.; Park, N.; Jung, C. Transparent and Fine Film Stencils with Functional Coating for Advanced Surface Mount Technology. Micromachines 2025, 16, 969. https://doi.org/10.3390/mi16090969
Kang B-H, Park W, Park K, Lee H, Yoo J, Park N, Jung C. Transparent and Fine Film Stencils with Functional Coating for Advanced Surface Mount Technology. Micromachines. 2025; 16(9):969. https://doi.org/10.3390/mi16090969
Chicago/Turabian StyleKang, Byoung-Hoon, Wonsoon Park, Kyungjun Park, Hunjoong Lee, Junjong Yoo, Namsun Park, and Chulyong Jung. 2025. "Transparent and Fine Film Stencils with Functional Coating for Advanced Surface Mount Technology" Micromachines 16, no. 9: 969. https://doi.org/10.3390/mi16090969
APA StyleKang, B.-H., Park, W., Park, K., Lee, H., Yoo, J., Park, N., & Jung, C. (2025). Transparent and Fine Film Stencils with Functional Coating for Advanced Surface Mount Technology. Micromachines, 16(9), 969. https://doi.org/10.3390/mi16090969