Research on Spatial Optical Path System for Evaluating the Reflection Performance of Quartz-Based Volume Bragg Grating Applied to Fabry–Perot Cavity
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of Volume Bragg Grating
2.2. Reflection Characteristics Simulation of Volume Bragg Grating
2.3. Test System Design and Simulation
3. Results and Discussion
3.1. Test System Construction
3.2. Test System Calibration
3.3. Reflection Characteristics Test of VBG
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Jiang, Y.; Yang, S.; Zhang, D. All-sapphire fiber-optic sensor for the simultaneous measurement of ultra-high temperature and high pressure. Opt. Express 2024, 32, 14826–14836. [Google Scholar] [CrossRef]
- Zhao, S.; Jiang, Y.; Zhang, Y.; Deng, H. High-Sensitivity Sapphire Vacuum Fiber Pressure Sensor for High Temperature Applications. IEEE Sens. J. 2025, 25, 16889–16896. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, J. Optical Fiber Sensors in Extreme Temperature and Radiation Environments: A Review. IEEE Sens. J. 2022, 22, 13811–13834. [Google Scholar] [CrossRef]
- Ma, S.; Xu, Y.; Pang, Y.; Zhao, X.; Li, Y.; Qin, Z.; Liu, Z.; Lu, P.; Bao, X. Optical Fiber Sensors for High-Temperature Monitoring: A Review. Sensors 2022, 22, 5722. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jiang, Y.; Deng, H.; Gao, H.; Tang, C.; Wang, X. All-sapphire-based optical fiber pressure sensor with an ultra-wide pressure range based on femtosecond laser micromachining and direct bonding. Opt. Express 2023, 31, 41967–41978. [Google Scholar] [CrossRef]
- Gao, S.; Liu, Y.; Yang, J.; Bai, Y.; Chen, Y.; Shi, J.; Yuan, L.; Guan, C. Ultracompact Fabry-Perot interferometer based on femtosecond laser-assisted wet etching for high-temperature sensing. Opt. Express 2025, 33, 24350–24360. [Google Scholar] [CrossRef]
- Xi, Q.; Ma, B.; Tian, Z.; Li, R.; Wang, Y.; Ma, Z. Micro-Fabricated Compact Extrinsic Fabry-Perot Sensor for In-Situ Harsh Environment Acoustic Measurement. IEEE Photonics J. 2025, 17, 6800807. [Google Scholar] [CrossRef]
- Zhao, X.; Ren, X.; Bai, J.; Yang, Y.; Chen, J.; Zheng, Y.; Xue, C. A High-Sensitivity and High-Temperature-Resistant Gas Pressure Sensor Based on Open Hollow-Core Fibers Fabry–Pérot Interferometer Probe. J. Light. Technol. 2025, 43, 5967–5973. [Google Scholar] [CrossRef]
- Shao, Z.; Chen, M.; Shan, Z.; Sun, Z.; Wang, Y.; Yan, L.; Wang, Y.; Liu, B. High Sensitivity All Sapphire-Based Optical Fiber Fabry–Perot Pressure Sensor for Harsh Environment. IEEE Trans. Instrum. Meas. 2024, 73, 9515009. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Li, W.; Liu, Y.; Li, J.; Jia, P. A MEMS-Based High-Fineness Fiber-Optic Fabry–Perot Pressure Sensor for High-Temperature Application. Micromachines 2022, 13, 763. [Google Scholar] [CrossRef]
- Liao, Y.; Liu, J.; Dai, Y.; Wang, J.; Wan, S.; Zhang, L.; Wang, H.; Jia, P. Temperature-compensated fiber-optic Fabry-Perot pressure sensor based on sapphire MEMS technology for high temperature environment up to 1500 °C. Opt. Express 2025, 33, 19453–19463. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, P.; Wang, G. High-Sensitive Fiber-Optic Gas Pressure Sensor Consisting of Cascaded Polymer–Air Cavities Based on Vernier Effect. IEEE Sens. J. 2025, 25, 17018–17025. [Google Scholar] [CrossRef]
- Birri, A.; Sweeney, D.C.; Hyer, H.C.; Schreiber, B.; Cakmak, E.; Petrie, C.M. A Miniaturized, High-Bandwidth Optical Fiber Fabry–Perot Cavity Vibration Sensor Demonstrated up to 800 °C. IEEE Sens. J. 2025, 25, 11082–11091. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Li, H.; Xiao, H.; Xia, Y.; Gao, R.; Li, X.; Zheng, Q. Wavelength stabilization and spectra narrowing of a 405 nm external-cavity semiconductor laser based on a volume Bragg grating. Appl. Opt. 2022, 61, 4132–4139. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Huang, S.; Nie, H.; Zhang, J.; Ma, T.; Zhang, J.; Chen, Z.; Jia, C.; Yao, B.; Xia, J.; et al. High power narrow bandwidth picosecond PPLN-OPO. Opt. Express 2025, 33, 24178–24184. [Google Scholar] [CrossRef]
- Han, J.; Zhang, J.; Zhang, Y.; Peng, H.; Zhang, J.; Ye, S.; Shan, X.; Wang, L. Tunable narrow linewidth diode laser based on a fibre-coupled external cavity feedback structure. Opt. Laser Technol. 2025, 183, 112409. [Google Scholar] [CrossRef]
- Wang, M.; Yan, C.; Liu, X.; Sun, S.; Qiu, J. Efficient fabrication of volume diffraction gratings in sapphire with a femtosecond laser. Mater. Lett. 2025, 392, 138476. [Google Scholar] [CrossRef]
- Chai, C.; Yan, Y.; Cao, B.; Guo, L.; Huang, L.; Xu, S.; Zhao, S. Low melting temperature chloride borosilicate photothermal refractive glass for holographic applications. Ceram. Int. 2025, 51, 15129–15137. [Google Scholar] [CrossRef]
- Fagginger Auer, F.J.; Keller, C.U. Stacking spectral lines with multiplexed Bragg gratings in an acousto-optical tunable filter. Opt. Express 2024, 32, 27140–27157. [Google Scholar] [CrossRef]
- Wang, H.; Chen, J.; Wen, F.; Zheng, Z.; Han, H.; Zheng, Y.; Xue, C. Volume Bragg grating with tunable reflectivity and the bandwidth assisted Fabry-Pérot cavity. Opt. Express 2025, 33, 1148–1162. [Google Scholar] [CrossRef]
- Ge, Z.; Xiong, B.; Li, Q.; Zhang, X.; Yuan, X. The effect of photo-thermo-induced crystallization on the properties and microstructure of transmission volume Bragg gratings. Ceram. Int. 2024, 50, 55801–55815. [Google Scholar] [CrossRef]
- Ge, Z.; Xiong, B.; Zhang, X.; Yuan, X. Evolution of microstructure and spectral characteristics of silver nanoparticles in photo-thermo-refractive glass. J. Non-Cryst. Solids 2024, 640, 123113. [Google Scholar] [CrossRef]
- Ge, Z.; Xiong, B.; Mo, D.; Chen, X.; Zhang, X.; Yuan, X. Crystallization heat treatments for the fabrication of volume Bragg gratings based on photo-thermo-refractive glass. Opt. Mater. 2023, 145, 114428. [Google Scholar] [CrossRef]
- Yao, H.; Pugliese, D.; Lancry, M.; Dai, Y. Ultrafast Laser Direct Writing Nanogratings and their Engineering in Transparent Materials. Laser Photonics Rev. 2024, 18, 2300891. [Google Scholar] [CrossRef]
- Talbot, L.; Per Siems, M.; Richter, D.; David, N.; Blais-Ouellette, S.; Nolte, S.; Bernier, M. Mid-infrared tunable filter based on a femtosecond-written silica volume Bragg grating. Opt. Lett. 2024, 49, 3745–3748. [Google Scholar] [CrossRef]
- Ren, G.; Sun, H.; Nakagawa, K.; Sugita, N.; Ito, Y. Crackless high-aspect-ratio processing of a silica glass with a temporally shaped ultrafast laser. Opt. Lett. 2024, 49, 2321–2324. [Google Scholar] [CrossRef]
- Fang, X.; Cui, C.; Zhang, K.; Chen, X.; Pan, S. High-power narrow-linewidth nanosecond Ti:sapphire laser with volume Bragg grating. Opt. Express 2025, 33, 8632–8639. [Google Scholar] [CrossRef]
- Talbot, L.; Bernier, M. Femtosecond writing of intra-phase-mask volume Bragg gratings. Opt. Lett. 2023, 48, 1954–1957. [Google Scholar] [CrossRef]
- Richter, D.; Siems, M.P.; Middents, W.J.; Heck, M.; Goebel, T.A.; Matzdorf, C.; Krämer, R.G.; Tünnermann, A.; Nolte, S. Minimizing residual spectral drift in laser diode bars using femtosecond-written volume Bragg gratings in fused silica. Opt. Lett. 2017, 42, 623–626. [Google Scholar] [CrossRef]
- He, J.; Zhao, S.L.; Guo, L.W.; Hua, Y.J.; Ye, R.G.; Xu, S.Q. Design of reflective volume Bragg grating and its applicationin lasers. J. Optoelectron. Laser 2024, 35, 122–127. [Google Scholar]
- Talbot, L.; Richter, D.; Heck, M.; Nolte, S.; Bernier, M. Femtosecond-written volume Bragg gratings in fluoride glasses. Opt. Lett. 2020, 45, 3625–3628. [Google Scholar] [CrossRef]
- Harb, J.; Talbot, L.; Petit, Y.; Bernier, M.; Canioni, L. Demonstration of Type A volume Bragg gratings inscribed with a femtosecond Gaussian-Bessel laser beam. Opt. Express 2023, 31, 15736–15746. [Google Scholar] [CrossRef]
- Yan, Y.H.; Chai, C.P.; Guo, L.W.; Hua, Y.J.; Xu, S.Q.; Zhao, S.L. Preparation and Performance of Holographic Grating Based on Novel Chlorine-Containing Photothermal Refractive Glass. J. Chin. Ceram. Soc. 2024, 52, 2509–2516. [Google Scholar]
Type | Standard Reflectivity | Average Power of Incident Light | Average Power of Reflected Light | Tested Reflectivity | Measurement Error |
---|---|---|---|---|---|
Dielectric film reflector 1 | 30% | 6.463 | 1.783 | 28.8% | 1.2% |
Dielectric film reflector 2 | 50% | 6.463 | 3.045 | 49.2% | 0.8% |
Dielectric film reflector 3 | 99.9% | 6.463 | 6.122 | 98.9% | 1.0% |
Silicon wafer | 50.4% | 6.463 | 3.051 | 49.3% | 0.9% |
Type | Theoretical Reflectivity | Average Power of Incident Light | Average Power of Reflected Light | Tested Reflectivity | Measurement Error |
---|---|---|---|---|---|
VBG | 31.69% | 6.463 | 1.909 | 30.84% | 0.85% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Zhang, G.; Wang, H.; Ren, Q.; Zheng, Y.; Xue, C. Research on Spatial Optical Path System for Evaluating the Reflection Performance of Quartz-Based Volume Bragg Grating Applied to Fabry–Perot Cavity. Micromachines 2025, 16, 998. https://doi.org/10.3390/mi16090998
Chen J, Zhang G, Wang H, Ren Q, Zheng Y, Xue C. Research on Spatial Optical Path System for Evaluating the Reflection Performance of Quartz-Based Volume Bragg Grating Applied to Fabry–Perot Cavity. Micromachines. 2025; 16(9):998. https://doi.org/10.3390/mi16090998
Chicago/Turabian StyleChen, Jiamin, Gengchen Zhang, Hejin Wang, Qianyu Ren, Yongqiu Zheng, and Chenyang Xue. 2025. "Research on Spatial Optical Path System for Evaluating the Reflection Performance of Quartz-Based Volume Bragg Grating Applied to Fabry–Perot Cavity" Micromachines 16, no. 9: 998. https://doi.org/10.3390/mi16090998
APA StyleChen, J., Zhang, G., Wang, H., Ren, Q., Zheng, Y., & Xue, C. (2025). Research on Spatial Optical Path System for Evaluating the Reflection Performance of Quartz-Based Volume Bragg Grating Applied to Fabry–Perot Cavity. Micromachines, 16(9), 998. https://doi.org/10.3390/mi16090998