Treatment Strategies for Non-Small-Cell Lung Cancer with Comorbid Respiratory Disease; Interstitial Pneumonia, Chronic Obstructive Pulmonary Disease, and Tuberculosis
Abstract
:Simple Summary
Abstract
1. Interstitial Pneumonia
1.1. Introduction
1.2. Risk of Acute Exacerbation by Pharmacotherapy for NSCLC with Comorbid IP
1.3. First-Line Treatment of NSCLC with Comorbid IP
1.4. Second-Line Treatment of NSCLC with Comorbid IP
1.5. Antifibrotic Agents for NSCLC with Comorbid IP
2. Chronic Obstructive Pulmonary Disease
2.1. Introduction
2.2. Cytotoxic Chemotherapy for NSCLC with Severe COPD
2.3. Immune Checkpoint Inhibitors for NSCLC with Severe COPD
2.4. Treatment of COPD for NSCLC with COPD
3. Pulmonary Tuberculosis
3.1. Introduction
3.2. Diagnosis of TB Complicated by LC Patients
3.3. Treatment Strategy for LC Patients with TB
3.4. Interactions between Drugs for Tuberculosis and Lung Cancer
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Raghu, G.; Nyberg, F.; Morgan, G. The epidemiology of interstitial lung disease and its association with lung cancer. Br. J. Cancer 2004, 91 (Suppl. S2), S3–S10. [Google Scholar] [CrossRef]
- Ozawa, Y.; Suda, T.; Naito, T.; Enomoto, N.; Hashimoto, D.; Fujisawa, T.; Nakamura, Y.; Inui, N.; Nakamura, H.; Chida, K. Cumulative incidence of and predictive factors for lung cancer in IPF. Respirology 2009, 14, 723–728. [Google Scholar] [CrossRef]
- Omori, T.; Tajiri, M.; Baba, T.; Ogura, T.; Iwasawa, T.; Okudela, K.; Takemura, T.; Oba, M.S.; Maehara, T.; Nakayama, H.; et al. Pulmonary Resection for Lung Cancer in Patients With Idiopathic Interstitial Pneumonia. Ann. Thorac. Surg. 2015, 100, 954–960. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, T.; Sakashita, H.; Suzuki, T.; Tateishi, T.; Miyazaki, Y. Real world data of combined lung cancer and interstitial lung disease. J. Thorac. Dis. 2019, 11, 4144–4151. [Google Scholar] [CrossRef]
- Selman, M.; King, T.E., Jr.; Pardo, A. Idiopathic Pulmonary Fibrosis: Prevailing and Evolving Hypotheses about Its Pathogenesis and Implications for Therapy. Ann. Intern. Med. 2001, 134, 136–151. [Google Scholar] [CrossRef] [PubMed]
- Leslie, K.O.; Smith, M.L. Idiopathic Pulmonary Fibrosis May Be a Disease of Recurrent, Tractional Injury to the Periphery of the Aging Lung: A Unifying Hypothesis Regarding Etiology and Pathogenesis. Arch. Pathol. Lab. Med. 2012, 136, 591–600. [Google Scholar] [CrossRef]
- Demopoulos, K.; Arvanitis, D.A.; Vassilakis, D.A.; Siafakas, N.M.; Spandidos, D.A. MYCL1, FHIT, SPARC, p16(INK4) and TP53 genes associated to lung cancer in idiopathic pulmonary fibrosis. J. Cell. Mol. Med. 2002, 6, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Uematsu, K.; Yoshimura, A.; Gemma, A.; Mochimaru, H.; Hosoya, Y.; Kunugi, S.; Matsuda, K.; Seike, M.; Kurimoto, F.; Takenaka, K.; et al. Aberrations in the fragile histidine triad (FHIT) gene in idiopathic pulmonary fibrosis. Cancer Res. 2001, 61, 8527–8533. [Google Scholar]
- Natsuizaka, M.; Chiba, H.; Kuronuma, K.; Otsuka, M.; Kudo, K.; Mori, M.; Bando, M.; Sugiyama, Y.; Takahashi, H. Epidemi-ologic survey of Japanese patients with idiopathic pulmonary fibrosis and investigation of ethnic differences. Am. J. Respir. Crit. Care Med. 2014, 190, 773–779. [Google Scholar] [CrossRef]
- Tomassetti, S.; Gurioli, C.; Ryu, J.H.; Decker, P.A.; Ravaglia, C.; Tantalocco, P.; Buccioli, M.; Piciucchi, S.; Sverzellati, N.; Dubini, A.; et al. The Impact of Lung Cancer on Survival of Idiopathic Pulmonary Fibrosis. Chest 2015, 147, 157–164. [Google Scholar] [CrossRef]
- Khan, K.A.; Kennedy, M.P.; Moore, E.; Crush, L.; Prendeville, S.; Maher, M.M.; Burke, L.; Henry, M.T. Radiological Characteristics, Histological Features and Clinical Outcomes of Lung Cancer Patients with Coexistent Idiopathic Pulmonary Fibrosis. Lung 2014, 193, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Collard, H.R.; Ryerson, C.J.; Corte, T.J.; Jenkins, G.; Kondoh, Y.; Lederer, D.J.; Lee, J.S.; Maher, T.M.; Wells, A.U.; Antoniou, K.M.; et al. Acute Exacerbation of Idiopathic Pulmonary Fibrosis. An International Working Group Report. Am. J. Respir. Crit. Care Med. 2016, 194, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Song, J.W.; Hong, S.-B.; Lim, C.-M.; Koh, Y.; Kim, D.S. Acute exacerbation of idiopathic pulmonary fibrosis: Incidence, risk factors and outcome. Eur. Respir. J. 2011, 37, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Azuma, A.; Nukiwa, T.; Tsuboi, E.; Suga, M.; Abe, S.; Nakata, K.; Taguchi, Y.; Nagai, S.; Itoh, H.; Ohi, M.; et al. Double-blind, Placebo-controlled Trial of Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2005, 171, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, H.; Ebina, M.; Kondoh, Y.; Ogura, T.; Azuma, A.; Suga, M.; Taguchi, Y.; Takahashi, H.; Nakata, K.; Sato, A.; et al. Pirfenidone in idiopathic pulmonary fibrosis. Eur. Respir. J. 2010, 35, 821–829. [Google Scholar] [CrossRef]
- Park, I.-N.; Kim, D.S.; Shim, T.S.; Lim, C.-M.; Lee, S.D.; Koh, Y.; Kim, W.S.; Kim, W.D.; Jang, S.J.; Colby, T.V. Acute Exacerbation of Interstitial Pneumonia Other Than Idiopathic Pulmonary Fibrosis. Chest 2007, 132, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Kudoh, S.; Kato, H.; Nishiwaki, Y.; Fukuoka, M.; Nakata, K.; Ichinose, Y.; Tsuboi, M.; Yokota, S.; Nakagawa, K.; Suga, M.; et al. Interstitial lung disease in Japanese patients with lung cancer: A cohort and nested case-control study. Am. J. Respir. Crit. Care Med. 2008, 177, 1348–1357. [Google Scholar] [CrossRef]
- Minegishi, Y.; Sudoh, J.; Kuribayasi, H.; Mizutani, H.; Seike, M.; Azuma, A.; Yoshimura, A.; Kudoh, S.; Gemma, A. The safety and efficacy of weekly paclitaxel in combination with carboplatin for advanced non-small cell lung cancer with idiopathic interstitial pneumonias. Lung Cancer 2011, 71, 70–74. [Google Scholar] [CrossRef]
- Watanabe, N.; Taniguchi, H.; Kondoh, Y.; Kimura, T.; Kataoka, K.; Nishiyama, O.; Kondo, M.; Hasegawa, Y. Efficacy of Chemotherapy for Advanced Non-Small Cell Lung Cancer with Idiopathic Pulmonary Fibrosis. Respiration 2012, 85, 326–331. [Google Scholar] [CrossRef]
- Nakajima, M.; Yamamoto, N.; Hayashi, K.; Karube, M.; Ebner, D.K.; Takahashi, W.; Anzai, M.; Tsushima, K.; Tada, Y.; Tatsumi, K.; et al. Carbon-ion radiotherapy for non-small cell lung cancer with interstitial lung disease: A retrospective analysis. Radiat. Oncol. 2017, 12, 144. [Google Scholar] [CrossRef]
- Rana, J.N.; Mumtaz, S.; Han, I.; Choi, E.H. Formation of reactive species via high power microwave induced DNA damage and promoted intrinsic pathway-mediated apoptosis in lung cancer cells: An in vitro investigation. Fundam. Res. 2024. in press. [Google Scholar] [CrossRef]
- Delaunois, L.M. Mechanisms in pulmonary toxicology. Clin. Chest Med. 2004, 25, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kenmotsu, H.; Naito, T.; Kimura, M.; Ono, A.; Shukuya, T.; Nakamura, Y.; Tsuya, A.; Kaira, K.; Murakami, H.; Takahashi, T.; et al. The Risk of Cytotoxic Chemotherapy-Related Exacerbation of Interstitial Lung Disease with Lung Cancer. J. Thorac. Oncol. 2011, 6, 1242–1246. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, Y.; Inui, N.; Kato, T.; Baba, T.; Karayama, M.; Nakamura, Y.; Ogura, T.; Suda, T. Low forced vital capacity predicts cytotoxic chemotherapy-associated acute exacerbation of interstitial lung disease in patients with lung cancer. Lung Cancer 2016, 96, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Salisbury, M.L.; Xia, M.; Zhou, Y.; Murray, S.; Tayob, N.; Brown, K.K.; Wells, A.U.; Schmidt, S.L.; Martinez, F.J.; Flaherty, K.R. Idiopathic Pulmonary Fibrosis: Gender-Age-Physiology Index Stage for Predicting Future Lung Function Decline. Chest 2016, 149, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Omori, S.; Nakashima, K.; Wakuda, K.; Ono, A.; Kenmotsu, H.; Naito, T.; Murakami, H.; Endo, M.; Takahashi, T. Modified GAP index for prediction of acute exacerbation of idiopathic pulmonary fibrosis in non-small cell lung cancer. Respirology 2017, 22, 1379–1385. [Google Scholar] [CrossRef] [PubMed]
- Ogura, T.; Takigawa, N.; Tomii, K.; Kishi, K.; Inoue, Y.; Ichihara, E.; Homma, S.; Takahashi, K.; Akamatsu, H.; Ikeda, S.; et al. Summary of the Japanese Respiratory Society statement for the treatment of lung cancer with comorbid interstitial pneumonia. Respir. Investig. 2019, 57, 512–533. [Google Scholar] [CrossRef]
- Isono, T.; Kagiyama, N.; Takano, K.; Hosoda, C.; Nishida, T.; Kawate, E.; Kobayashi, Y.; Ishiguro, T.; Takaku, Y.; Kurashima, K.; et al. Outcome and risk factor of immune-related adverse events and pneumonitis in patients with advanced or postoperative recurrent non-small cell lung cancer treated with immune checkpoint inhibitors. Thorac. Cancer 2020, 12, 153–164. [Google Scholar] [CrossRef]
- Tasaka, Y.; Honda, T.; Nishiyama, N.; Tsutsui, T.; Saito, H.; Watabe, H.; Shimaya, K.; Mochizuki, A.; Tsuyuki, S.; Kawahara, T.; et al. Non-inferior clinical outcomes of immune checkpoint inhibitors in non-small cell lung cancer patients with interstitial lung disease. Lung Cancer 2021, 155, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Shibaki, R.; Murakami, S.; Matsumoto, Y.; Yoshida, T.; Goto, Y.; Kanda, S.; Horinouchi, H.; Fujiwara, Y.; Yamamoto, N.; Kusumoto, M.; et al. Association of immune-related pneumonitis with the presence of preexisting interstitial lung disease in patients with non-small lung cancer receiving anti-programmed cell death 1 antibody. Cancer Immunol. Immunother. 2019, 69, 15–22. [Google Scholar] [CrossRef]
- Matsumoto, K.; Shiroyama, T.; Kuge, T.; Miyake, K.; Yamamoto, Y.; Yoneda, M.; Yamamoto, M.; Naito, Y.; Suga, Y.; Fukushima, K.; et al. Impact of treatment line on risks and benefits of immune checkpoint inhibitor in patients with advanced non-small cell lung cancer and interstitial lung disease: A systematic review and meta-analysis of cohort studies. Transl. Lung Cancer Res. 2022, 11, 1835–1846. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, Y.; Nie, L.; Wang, G.; Sun, K.; Cheng, Y. Clinical Outcomes of Immune Checkpoint Inhibitor Therapy in Patients With Advanced Non-small Cell Lung Cancer and Preexisting Interstitial Lung Diseases: A Systematic Review and Me-ta-analysis. Chest 2022, 161, 1675–1686. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, D.; Morimoto, T.; Ito, J.; Sato, Y.; Ito, M.; Teraoka, S.; Otsuka, K.; Nagata, K.; Nakagawa, A.; Tomii, K. A pilot trial of nivolumab treatment for advanced non-small cell lung cancer patients with mild idiopathic interstitial pneumonia. Lung Cancer 2017, 111, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, D.; Yomota, M.; Sekine, A.; Morita, M.; Morimoto, T.; Hosomi, Y.; Ogura, T.; Tomioka, H.; Tomii, K. Nivolumab for advanced non-small cell lung cancer patients with mild idiopathic interstitial pneumonia: A multicenter, open-label single-arm phase II trial. Lung Cancer 2019, 134, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, S.; Kato, T.; Kenmotsu, H.; Ogura, T.; Iwasawa, S.; Sato, Y.; Harada, T.; Kubota, K.; Tokito, T.; Okamoto, I.; et al. A Phase 2 Study of Atezolizumab for Pretreated NSCLC With Idiopathic Interstitial Pneumonitis. J. Thorac. Oncol. 2020, 15, 1935–1942. [Google Scholar] [CrossRef] [PubMed]
- Ando, M.; Okamoto, I.; Yamamoto, N.; Takeda, K.; Tamura, K.; Seto, T.; Ariyoshi, Y.; Fukuoka, M. Predictive factors for inter-stitial lung disease, antitumor response, and survival in non-small-cell lung cancer patients treated with gefitinib. J. Clin. Oncol. 2006, 24, 2549–2556. [Google Scholar] [CrossRef]
- Fujimoto, D.; Tomii, K.; Otoshi, T.; Kawamura, T.; Tamai, K.; Takeshita, J.; Tanaka, K.; Matsumoto, T.; Monden, K.; Nagata, K.; et al. Preex-isting interstitial lung disease is inversely correlated to tumor epidermal growth factor receptor mutation in patients with lung adenocarcinoma. Lung Cancer 2013, 80, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Honda, T.; Sakashita, H.; Masai, K.; Totsuka, H.; Motoi, N.; Kobayashi, M.; Akashi, T.; Mimaki, S.; Tsuchihara, K.; Chiku, S.; et al. Deleterious Pul-monary Surfactant System Gene Mutations in Lung Adenocarcinomas Associated With Usual Interstitial Pneumonia. JCO Precis. Oncol. 2018, 2, 1–24. [Google Scholar] [CrossRef]
- Fujimoto, K.; Ikeda, S.; Tabata, E.; Kaneko, T.; Sagawa, S.; Yamada, C.; Kumagai, K.; Fukushima, T.; Haga, S.; Watanabe, M.; et al. KRAS G12C Inhibitor as a Treatment Option for Non-Small-Cell Lung Cancer with Comorbid In-terstitial Pneumonia. Cancers 2024, 16, 1327. [Google Scholar] [CrossRef]
- Kenmotsu, H.; Yoh, K.; Mori, K.; Ono, A.; Baba, T.; Fujiwara, Y.; Yamaguchi, O.; Ko, R.; Okamoto, H.; Yamamoto, N.; et al. Phase II study of nab-paclitaxel + carboplatin for patients with non-small-cell lung cancer and interstitial lung disease. Cancer Sci. 2019, 110, 3738–3745. [Google Scholar] [CrossRef]
- Asahina, H.; Oizumi, S.; Takamura, K.; Harada, T.; Harada, M.; Yokouchi, H.; Kanazawa, K.; Fujita, Y.; Kojima, T.; Sugaya, F.; et al. A prospective phase II study of carboplatin and nab-paclitaxel in patients with advanced non-small cell lung cancer and concomitant interstitial lung disease (HOT1302). Lung Cancer 2019, 138, 65–71. [Google Scholar] [CrossRef]
- Fukuizumi, A.; Minegishi, Y.; Omori, M.; Atsumi, K.; Takano, N.; Hisakane, K.; Takahashi, S.; Kobayashi, K.; Sugano, T.; Takeuchi, S.; et al. Weekly paclitaxel in combination with carboplatin for advanced non-small-cell lung cancer complicated by idiopathic interstitial pneumonias: A single-arm phase II study. Int. J. Clin. Oncol. 2019, 24, 1543–1548. [Google Scholar] [CrossRef] [PubMed]
- Sekine, A.; Satoh, H.; Baba, T.; Ikeda, S.; Okuda, R.; Shinohara, T.; Komatsu, S.; Hagiwara, E.; Iwasawa, T.; Ogura, T.; et al. Safety and efficacy of S-1 in combination with carboplatin in non-small cell lung cancer patients with interstitial lung disease: A pilot study. Cancer Chemother. Pharmacol. 2016, 77, 1245–1252. [Google Scholar] [CrossRef] [PubMed]
- Hanibuchi, M.; Kakiuchi, S.; Atagi, S.; Ogushi, F.; Shimizu, E.; Haku, T.; Toyoda, Y.; Azuma, M.; Kondo, M.; Kawano, H.; et al. A multicenter, open-label, phase II trial of S-1 plus carboplatin in advanced non-small cell lung cancer patients with interstitial lung disease. Lung Cancer 2018, 125, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Omori, M.; Minegishi, Y.; Uruga, H.; Fukuizumi, A.; Isobe, K.; Izumi, S.; Koyama, R.; Bando, M.; Sugiyama, H.; Takahashi, K.; et al. Carboplatin and weekly paclitaxel in combination with bevacizumab for the treatment of advanced non-small cell lung cancer complicated by idiopathic interstitial pneumonias: A feasibility study. Respir. Investig. 2023, 61, 625–631. [Google Scholar] [CrossRef]
- Otsubo, K.; Kishimoto, J.; Ando, M.; Kenmotsu, H.; Minegishi, Y.; Horinouchi, H.; Kato, T.; Ichihara, E.; Kondo, M.; Atagi, S.; et al. Nintedanib plus chemotherapy for nonsmall cell lung cancer with idiopathic pulmonary fibrosis: A randomised phase 3 trial. Eur. Respir. J. 2022, 60, 2200380. [Google Scholar] [CrossRef]
- Hamada, S.; Ichiyasu, H.; Ikeda, T.; Inaba, M.; Kashiwabara, K.; Sadamatsu, T.; Sato, N.; Akaike, K.; Okabayashi, H.; Saruwatari, K.; et al. Protective effect of bevacizumab on chemothera-py-related acute exacerbation of interstitial lung disease in patients with advanced non-squamous non-small cell lung cancer. BMC Pulm. Med. 2019, 19, 72. [Google Scholar] [CrossRef]
- Enomoto, Y.; Kenmotsu, H.; Watanabe, N.; Baba, T.; Murakami, H.; Yoh, K.; Ogura, T.; Takahashi, T.; Goto, K.; Kato, T. Efficacy and Safety of Combined Carboplatin, Paclitaxel, and Bevacizumab for Patients with Advanced Non-squamous Non-small Cell Lung Cancer with Pre-existing Interstitial Lung Disease: A Retrospective Multi-institutional Study. Anticancer Res. 2015, 35, 4259–4263. [Google Scholar] [PubMed]
- Shimizu, R.; Fujimoto, D.; Kato, R.; Otoshi, T.; Kawamura, T.; Tamai, K.; Matsumoto, T.; Nagata, K.; Otsuka, K.; Nakagawa, A.; et al. The safety and efficacy of paclitaxel and carboplatin with or without bevacizumab for treating patients with advanced nonsquamous non-small cell lung cancer with interstitial lung disease. Cancer Chemother. Pharmacol. 2014, 74, 1159–1166. [Google Scholar] [CrossRef]
- Minegishi, Y.; Gemma, A.; Homma, S.; Kishi, K.; Azuma, A.; Ogura, T.; Hamada, N.; Taniguchi, H.; Hattori, N.; Nishioka, Y.; et al. Acute exacerbation of idiopathic interstitial pneumonias related to chemotherapy for lung cancer: Nationwide surveillance in Japan. ERJ Open Res. 2020, 6, 00184-2019. [Google Scholar] [CrossRef]
- Watanabe, N.; Niho, S.; Kirita, K.; Umemura, S.; Matsumoto, S.; Yoh, K.; Ohmatsu, H.; Goto, K. Second-line docetaxel for patients with platinum-refractory advanced non-small cell lung cancer and interstitial pneumonia. Cancer Chemother. Pharmacol. 2015, 76, 69–74. [Google Scholar] [CrossRef]
- Kenmotsu, H.; Naito, T.; Mori, K.; Ko, R.; Ono, A.; Wakuda, K.; Imai, H.; Taira, T.; Murakami, H.; Endo, M.; et al. Effect of platinum-based chemotherapy for non-small cell lung cancer patients with interstitial lung disease. Cancer Chemother. Pharmacol. 2015, 75, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Shukuya, T.; Takahashi, F.; Mori, K.; Suina, K.; Asao, T.; Kanemaru, R.; Honma, Y.; Muraki, K.; Sugano, K.; et al. Pemetrexed for advanced non-small cell lung cancer patients with interstitial lung disease. BMC Cancer 2014, 14, 508. [Google Scholar] [CrossRef] [PubMed]
- Kanai, O.; Kim, Y.H.; Demura, Y.; Kanai, M.; Ito, T.; Fujita, K.; Yoshida, H.; Akai, M.; Mio, T.; Hirai, T. Efficacy and safety of nivolumab in non-small cell lung cancer with preexisting interstitial lung disease. Thorac. Cancer 2018, 9, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Richeldi, L.; Cottin, V.; du Bois, R.M.; Selman, M.; Kimura, T.; Bailes, Z.; Schlenker-Herceg, R.; Stowasser, S.; Brown, K.K. Nintedanib in patients with idiopathic pulmonary fibrosis: Combined evidence from the TOMORROW and INPULSIS® trials. Respir. Med. 2016, 113, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Iwata, T.; West Japan Oncology Group; Yoshino, I.; Yoshida, S.; Ikeda, N.; Tsuboi, M.; Asato, Y.; Katakami, N.; Sakamoto, K.; Yamashita, Y.; et al. A phase II trial evaluating the efficacy and safety of perioperative pirfenidone for prevention of acute exacerbation of idiopathic pulmonary fibrosis in lung cancer patients undergoing pulmonary resection: West Japan Oncology Group 6711 L (PEOPLE Study). Respir. Res. 2016, 17, 90. [Google Scholar] [CrossRef] [PubMed]
- Young, R.P.; Hopkins, R.J.; Christmas, T.; Black, P.N.; Metcalf, P.; Gamble, G.D. COPD prevalence is increased in lung cancer, independent of age, sex and smoking history. Eur. Respir. J. 2009, 34, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, J.L.; Resano, P.; El Hechem, A.; Almonacid, C.; Graziani, D.; Sánchez, I.M. Impact of COPD in patients with lung cancer and advanced disease treated with chemotherapy and/or tyrosine kinase inhibitors. Int. J. Chronic Obstr. Pulm. Dis. 2014, 9, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Guan, W.; Liu, Q.; Wang, H.; Zhu, Y.; Chen, R.; Zhang, G. Impact of COPD and emphysema on survival of patients with lung cancer: A meta-analysis of observational studies. Respirology 2015, 21, 269–279. [Google Scholar] [CrossRef]
- Iachina, M.; Jakobsen, E.; Møller, H.; Lüchtenborg, M.; Mellemgaard, A.; Krasnik, M.; Green, A. The Effect of Different Comorbidities on Survival of Non-small Cells Lung Cancer Patients. Lung 2014, 193, 291–297. [Google Scholar] [CrossRef]
- Kuo, C.-H.; Wu, C.-Y.; Lee, K.-Y.; Lin, S.-M.; Chung, F.-T.; Lo, Y.-L.; Liu, C.-Y.; Hsiung, T.-C.; Yang, C.-T.; Wu, Y.-C. Chronic Obstructive Pulmonary Disease in Stage I Non-small Cell Lung Cancer That Underwent Anatomic Resection: The Role of a Recurrence Promoter. COPD J. Chronic Obstr. Pulm. Dis. 2014, 11, 407–413. [Google Scholar] [CrossRef]
- A Kiri, V.; Soriano, J.B.; Visick, G.; Fabbri, L.M. Recent trends in lung cancer and its association with COPD: An analysis using the UK GP Research Database. Prim. Care Respir. J. 2009, 19, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Dou, S.; Dong, W.; Xie, M.; Cui, L.; Zheng, C.; Xiao, W. Impact of COPD on prognosis of lung cancer: From a perspective on disease heterogeneity. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 3767–3776. [Google Scholar] [CrossRef]
- Omote, N.; Hashimoto, N.; Morise, M.; Sakamoto, K.; Miyazaki, S.; Ando, A.; Nakahara, Y.; Hasegawa, Y. Impact of mild to moderate COPD on feasibility and prognosis in non-small cell lung cancer patients who received chemotherapy. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 3541–3547. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Du, Y.; Ma, S. Impact of chemotherapy in the prognosis of non-small-cell lung cancer patients with severe to very severe COPD. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 3805–3812. [Google Scholar] [CrossRef]
- Hayama, M.; Suzuki, H.; Shiroyama, T.; Tamiya, M.; Okamoto, N.; Tanaka, A.; Morishita, N.; Nishida, T.; Nishihara, T.; Hirashima, T. Chemotherapy for patients with advanced lung cancer receiving long-term oxygen therapy. J. Thorac. Dis. 2016, 8, 116–123. [Google Scholar]
- Goffin, J.R.; Corriveau, S.; Tang, G.H.; Pond, G.R. Management and outcomes of patients with chronic obstructive lung disease and lung cancer in a public healthcare system. PLoS ONE 2021, 16, e0251886. [Google Scholar] [CrossRef] [PubMed]
- Feary, J.R.; Rodrigues, L.C.; Smith, C.J.; Hubbard, R.B.; Gibson, J.E. Prevalence of major comorbidities in subjects with COPD and incidence of myocardial infarction and stroke: A comprehensive analysis using data from primary care. Thorax 2010, 65, 956–962. [Google Scholar] [CrossRef]
- Tamiya, A.; Naito, T.; Miura, S.; Morii, S.; Tsuya, A.; Nakamura, Y.; Kaira, K.; Murakami, H.; Takahashi, T.; Yamamoto, N.; et al. Interstitial lung disease associated with docetaxel in patients with advanced non-small cell lung cancer. Anticancer Res. 2012, 32, 1103–1106. [Google Scholar] [PubMed]
- Szentkereszty, M.; Komlósi, Z.I.; Szűcs, G.; Barna, G.; Tamási, L.; Losonczy, G.; Gálffy, G. Effect of COPD on Inflammation, Lymphoid Functions and Progression-Free Survival during First-Line Chemotherapy in Advanced Non-small Cell Lung Cancer. Pathol. Oncol. Res. 2019, 26, 1117–1128. [Google Scholar] [CrossRef]
- Zhou, J.; Chao, Y.; Yao, D.; Ding, N.; Li, J.; Gao, L.; Zhang, Y.; Xu, X.; Zhou, J.; Halmos, B.; et al. Impact of chronic obstructive pulmonary disease on immune checkpoint inhibitor efficacy in advanced lung cancer and the potential prognostic factors. Transl. Lung Cancer Res. 2021, 10, 2148–2162. [Google Scholar] [CrossRef]
- Shin, S.H.; Park, H.Y.; Im, Y.; Jung, H.A.; Sun, J.; Ahn, J.S.; Ahn, M.; Park, K.; Lee, H.Y.; Lee, S. Improved treatment outcome of pembrolizumab in patients with nonsmall cell lung cancer and chronic obstructive pulmonary disease. Int. J. Cancer 2019, 145, 2433–2439. [Google Scholar] [CrossRef] [PubMed]
- Mark, N.M.; Kargl, J.; Busch, S.E.; Yang, G.H.Y.; Metz, H.E.; Zhang, H.; Hubbard, J.J.; Pipavath, S.N.J.; Madtes, D.K.; Houghton, A.M. Chronic Obstructive Pulmonary Disease Alters Immune Cell Composition and Immune Checkpoint Inhibitor Efficacy in Non–Small Cell Lung Cancer. Am. J. Respir. Crit. Care Med. 2018, 197, 325–336. [Google Scholar] [CrossRef] [PubMed]
- McKendry, R.T.; Spalluto, C.M.; Burke, H.; Nicholas, B.; Cellura, D.; Al-Shamkhani, A.; Staples, K.J.; Wilkinson, T.M. Dysreg-ulation of Antiviral Function of CD8(+) T Cells in the Chronic Obstructive Pulmonary Disease Lung. Role of the PD-1-PD-L1 Axis. Am. J. Respir. Crit. Care Med. 2016, 193, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Sul, J.; Blumenthal, G.M.; Jiang, X.; He, K.; Keegan, P.; Pazdur, R. FDA Approval Summary: Pembrolizumab for the Treatment of Patients with Metastatic Non-Small Cell Lung Cancer Whose Tumors Express Programmed Death-Ligand 1. Oncologist 2016, 21, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Atchley, W.T.; Alvarez, C.; Saxena-Beem, S.; Schwartz, T.A.; Ishizawar, R.C.; Patel, K.P.; Rivera, M.P. Immune Checkpoint Inhibitor-Related Pneumonitis in Lung Cancer: Real-World Incidence, Risk Factors, and Management Practices Across Six Health Care Centers in North Carolina. Chest 2021, 160, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhou, C.; Gao, J.; Yu, P.; Lin, X.; Xie, X.; Liu, M.; Zhang, J.; Xie, Z.; Cui, F.; et al. Treatment response and safety of immunotherapy for advanced non-small cell lung cancer with comorbid chronic obstructive pulmonary disease: A retrospective cohort study. Transl. Lung Cancer Res. 2022, 11, 2306–2317. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, S.; Kato, T.; Kenmotsu, H.; Sekine, A.; Baba, T.; Ogura, T. Current Treatment Strategies for Non-Small-Cell Lung Cancer with Comorbid Interstitial Pneumonia. Cancers 2021, 13, 3979. [Google Scholar] [CrossRef] [PubMed]
- Ajimizu, H.; Ozasa, H.; Sato, S.; Funazo, T.; Sakamori, Y.; Nomizo, T.; Kuninaga, K.; Ogimoto, T.; Hosoya, K.; Yamazoe, M.; et al. Survival impact of treatment for chronic obstructive pulmonary disease in patients with advanced non-small-cell lung cancer. Sci. Rep. 2021, 11, 23677. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.Y.; Hu, H.Y.; Pu, C.Y.; Huang, N.; Shen, H.C.; Li, C.P.; Chou, Y.J. Pulmonary tuberculosis increases the risk of lung cancer: A population-based cohort study. Cancer 2011, 117, 618–624. [Google Scholar] [CrossRef]
- Hong, S.; Mok, Y.; Jeon, C.; Jee, S.H.; Samet, J.M. Tuberculosis, smoking and risk for lung cancer incidence and mortality. Int. J. Cancer 2016, 139, 2447–2455. [Google Scholar] [CrossRef]
- Cheng, M.P.; Chakra, C.N.A.; Yansouni, C.P.; Cnossen, S.; Shrier, I.; Menzies, D.; Greenaway, C. Risk of Active Tuberculosis in Patients with Cancer: A Systematic Review and Meta-Analysis. Clin. Infect. Dis. 2017, 64, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Imokawa, S.; Sato, J.; Uto, T.; Suda, T. Cumulative incidence of tuberculosis in lung cancer patients in Japan: A 6-year observational study. Respir. Investig. 2016, 54, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, H.; Ishizuka, Y.; Yoneda, R. A study of coexistence of bronchogenic carcinoma and active pulmonary tuberculosis (author’s transl). Kekkaku 1981, 56, 49–55. (In Japanese) [Google Scholar] [PubMed]
- Ogawa, N.; Arai, T.; Inagaki, K.; Morita, K.; Yano, M.; Miyazawa, H. A study on active pulmonary tuberculosis with coexistent lung carcinoma. Nihon Kyobu Rinsho 1990, 49, 901–907. (In Japanese) [Google Scholar]
- Kurasawa, T.; Takahashi, M.; Kuze, F.; Amitani, R.; Murayama, T.; Suzuki, K.; Kubo, Y.; Niimi, A.; Ikeda, N.; Nakatani, K. A clinical study on coexistence of active pulmonary tuberculosis and lung cancer. Kekkaku 1992, 67, 119–125. (In Japanese) [Google Scholar] [PubMed]
- Watanabe, A.; Tokue, Y.; Takahashi, H.; Sato, K.; Nukiwa, T.; Honda, Y.; Fujimura, S. Management of mycobacteriosis in general hospital without isolation ward for tuberculosis patients. Clinical study on pulmonary tuberculosis associated with lung cancer patients. Kekkaku 1999, 74, 157–162. (In Japanese) [Google Scholar]
- Tamura, A.; Hebisawa, A.; Masuda, K.; Shimada, M.; Ichikawa, M.; Kunogi, M.; Kaneko, Y.; Kawashima, M.; Suzuki, J.; Ariga, H.; et al. Coexisting lung cancer and active pulmonary mycobacteriosis. Nihon Kokyuki Gakkai Zasshi 2007, 45, 382–393. (In Japanese) [Google Scholar] [PubMed]
- Simonsen, D.F.; Farkas, D.K.; Søgaard, M.; Horsburgh, C.R.; Sørensen, H.T.; Thomsen, R.W. Tuberculosis and risk of cancer: A Danish nationwide cohort study. Int. J. Tuberc. Lung Dis. 2014, 18, 1211–1219. [Google Scholar] [CrossRef]
- Jurado, J.O.; Alvarez, I.B.; Pasquinelli, V.; Martínez, G.J.; Quiroga, M.F.; Abbate, E.; Musella, R.M.; Chuluyan, H.E.; García, V.E. Programmed Death (PD)-1:PD-Ligand 1/PD-Ligand 2 Pathway Inhibits T Cell Effector Functions during Human Tuberculosis. J. Immunol. 2008, 181, 116–125. [Google Scholar] [CrossRef]
- Alberg, A.J.; Brock, M.V.; Ford, J.G.; Samet, J.M.; Spivack, S.D. Epidemiology of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013, 143 (Suppl. S5), e1S–e29S. [Google Scholar] [CrossRef]
- Kim, D.K.; Lee, S.W.; Yoo, C.-G.; Kim, Y.W.; Han, S.K.; Shim, Y.-S.; Yim, J.-J. Clinical Characteristics and Treatment Responses of Tuberculosis in Patients with Malignancy Receiving Anticancer Chemotherapy. Chest 2005, 128, 2218–2222. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-F.; Li, C.-P.; Feng, J.-Y.; Chao, Y.; Su, W.-J. Increased risk of tuberculosis after gastrectomy and chemotherapy in gastric cancer: A 7-year cohort study. Gastric Cancer 2011, 14, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Tamura, A. Tuberculosis and Lung Cancer. Kekkaku 2016, 91, 17–25. [Google Scholar] [PubMed]
- Barber, D.L.; Sakai, S.; Kudchadkar, R.R.; Fling, S.P.; Day, T.A.; Vergara, J.A.; Ashkin, D.; Cheng, J.H.; Lundgren, L.M.; Raabe, V.N.; et al. Tuberculosis following PD-1 blockade for cancer im-munotherapy. Sci. Transl. Med. 2019, 11, eaat2702. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Terashima, T.; Mio, T. Anti-PD1 Antibody Treatment and the Development of Acute Pulmonary Tuberculosis. J. Thorac. Oncol. 2016, 11, 2238–2240. [Google Scholar] [CrossRef] [PubMed]
- Takata, S.; Koh, G.; Han, Y.; Yoshida, H.; Shiroyama, T.; Takada, H.; Masuhiro, K.; Nasu, S.; Morita, S.; Tanaka, A.; et al. Paradoxical response in a patient with non-small cell lung cancer who received nivolumab followed by anti-Mycobacterium tuberculosis agents. J. Infect. Chemother. 2018, 25, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Tezera, L.B.; Bielecka, M.K.; Ogongo, P.; Walker, N.F.; Ellis, M.; Garay-Baquero, D.J.; Thomas, K.; Reichmann, M.T.; A Johnston, D.; Wilkinson, K.A.; et al. Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-α. eLife 2020, 9, e52668. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Yamamoto, Y.; Kanai, O.; Okamura, M.; Hashimoto, M.; Nakatani, K.; Sawai, S.; Mio, T. Incidence of Active Tu-berculosis in Lung Cancer Patients Receiving Immune Checkpoint Inhibitors. Open Forum Infect Dis. 2020, 7, ofaa126. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; He, Z.; Liang, D.; Yu, X.; Qiu, K.; Wu, J. Pulmonary tuberculosis associated with immune checkpoint inhibitors: A pharmacovigilance study. Thorax 2022, 77, 721–723. [Google Scholar] [CrossRef]
- Leung, C.C.; Hui, L.; Lee, R.S.Y.; Lam, T.H.; Yew, W.W.; Hui, D.S.C.; Chan, R.C.Y.; Mok, T.Y.W.; Law, W.S.; Chang, K.C.; et al. Tuberculosis is associated with increased lung cancer mortality. Int. J. Tuberc. Lung Dis. 2013, 17, 687–692. [Google Scholar] [CrossRef]
- Parker, C.S.; Siracuse, C.G.; Litle, V.R. Identifying lung cancer in patients with active pulmonary tuberculosis. J. Thorac. Dis. 2018, 10 (Suppl. S28), S3392–S3397. [Google Scholar] [CrossRef] [PubMed]
- Hirashima, T.; Tamura, Y.; Han, Y.; Hashimoto, S.; Tanaka, A.; Shiroyama, T.; Morishita, N.; Suzuki, H.; Okamoto, N.; Akada, S.; et al. Efficacy and safety of concurrent anti-Cancer and anti-tuberculosis chemotherapy in Cancer patients with active Mycobacterium tuberculosis: A retrospective study. BMC Cancer 2018, 18, 975. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.C.-M.; Leung, C.-C. Management of co-existent tuberculosis and lung cancer. Lung Cancer 2018, 122, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Yin, J.; Wang, S.; Jiang, H.; Hu, P.; Kang, Z.; Lv, P.; Li, W.; Cai, C. Associated factors of co-existent pulmonary tu-berculosis and lung cancer: A case-control study. Eur. J. Clin. Investig. 2021, 51, e13432. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Zhang, L.; Liang, J.; Li, X.; Yang, Y.; Sun, W.; Hou, J. Comparison of clinical and imaging features between pulmonary tuberculosis complicated with lung cancer and simple pulmonary tuberculosis: A systematic review and meta-analysis. Epidemiol. Infect. 2022, 150, e43. [Google Scholar] [CrossRef] [PubMed]
- Dobler, C.C.; Cheung, K.; Nguyen, J.; Martin, A. Risk of tuberculosis in patients with solid cancers and haematological ma-lignancies: A systematic review and meta-analysis. Eur. Respir. J. 2017, 50, 1700157. [Google Scholar] [CrossRef]
- Champiat, S.; Lambotte, O.; Barreau, E.; Belkhir, R.; Berdelou, A.; Carbonnel, F.; Cauquil, C.; Chanson, P.; Collins, M.; Durrbach, A.; et al. Management of immune checkpoint blockade dysimmune toxicities: A collaborative position paper. Ann. Oncol. 2015, 27, 559–574. [Google Scholar] [CrossRef]
- Tamura, A.; Ikeda, M.; Shimada, M.; Yamane, A. Tuberculosis during lung cancer treatment-A case series. J. Infect. Chemother. 2021, 28, 339–342. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Harada, N.; Higuchi, K.; Sekiya, Y.; Uchimura, K.; Shimao, T. Waning of the specific interferon-gamma response after years of tuberculosis infection. Int. J. Tuberc. Lung Dis. 2007, 11, 1021–1025. [Google Scholar]
- Tamura, A.; Fukami, T.; Hebisawa, A.; Takahashi, F. Recent trends in the incidence of latent tuberculosis infection in Japanese patients with lung cancer: A small retrospective study. J. Infect. Chemother. 2019, 26, 315–317. [Google Scholar] [CrossRef]
- Ye, M.-F.; Su, S.; Huang, Z.-H.; Zou, J.-J.; Su, D.-H.; Chen, X.-H.; Zeng, L.-F.; Liao, W.-X.; Huang, H.-Y.; Zeng, Y.-Y.; et al. Efficacy and safety of concurrent anti-tuberculosis treatment and chemotherapy in lung cancer patients with co-existent tuberculosis. Ann. Transl. Med. 2020, 8, 1143. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Endo, M.; Gu, Y.; Sato, T.; Ohmagari, N. Mycobacterium tuberculosis infection in cancer patients at a tertiary care cancer center in Japan. J. Infect. Chemother. 2014, 20, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Tamura, A. Cancer and Tuberculosis/Nontuberculous Mycobacteriosis. Kekkaku 2022, 97, 13–20. (In Japanese) [Google Scholar]
- Kajosaari, L.I.; Laitila, J.; Neuvonen, P.J.; Backman, J.T. Metabolism of Repaglinide by CYP2C8 and CYP3A4 in vitro: Effect of Fibrates and Rifampicin. Basic Clin. Pharmacol. Toxicol. 2005, 97, 249–256. [Google Scholar] [CrossRef]
- Rakhit, A.; Pantze, M.P.; Fettner, S.; Jones, H.M.; Charoin, J.E.; Riek, M.; Lum, B.L.; Hamilton, M. The effects of CYP3A4 inhi-bition on erlotinib pharmacokinetics: Computer-based simulation (SimCYP) predicts in vivo metabolic inhibition. Eur. J. Clin. Pharmacol. 2008, 64, 31–41. [Google Scholar] [CrossRef]
- Bragalone, D.L. Drug Information Handbook for Oncology, 11th ed.; Lexi-Comp: Hudson, OH, USA, 2013. [Google Scholar]
Line | Phase | Study Design | Treatment Regimen | Number | PFS | OS | ORR | Incidence of AE of IP | Reference |
---|---|---|---|---|---|---|---|---|---|
First-line | 2 | Single arm | CBDCA + nab-PTX | 94 | 6.2 | 15.4 | 51% | 4.3% | [40] |
First-line | 2 | Single arm | CBDCA + nab-PTX | 36 | 5.3 | 25.4 | 55.6% | 5.6% | [41] |
First-line | Pilot | Single arm | CBDCA + weekly PTX | 18 | 10.6 | 61% | 5.6% | [18] | |
First-line | 2 | Single arm | CBDCA + weekly PTX | 35 | 6.3 | 19.8 | 69.7% | 12.1% | [42] |
First-line | Pilot | Single arm | CBDCA + S-1 | 21 | 4.2 | 9.7 | 33.0% | 9.5% | [43] |
First-line | 2 | Single arm | CBDCA + S-1 | 33 | 4.8 | 12.8 | 33.3% | 6.1% | [44] |
First-line | 2 | Single arm | CBDCA + weekly PTX + Bev | 17 | 5.7 | 12.9 | 52.9% | 5.9% | [45] |
First-line | 3 | Randomized control trial | CBDCA + nab-PTX | 120 | 5.5 | 13.0 | 56.0% | 1.6% | [46] |
CBDCA + nab-PTX + Nintedanib | 120 | 6.2 | 15.3 | 69.0% | 4.1% | ||||
Second-line | Pilot | Single arm | Nivolumab | 6 | 50% | 0.0% | [33] | ||
Second-line | 2 | Single arm | Nivolumab | 18 | 7.4 | 15.6 | 39% | 11.1% | [34] |
Second-line | 2 | Single arm | Atezolizumab | 17 (Stopped) | 3.4 | 6.3% | 29.4% | [35] |
Main Target | Drugs | Metabolic Mediator | Decrease of AUC | Decrease of Cmax |
---|---|---|---|---|
EGFR | Gefitinib | CYP3A4 | 83% | 65% |
Erlotinib | CYP3A4 | 69% | 39% | |
Afatinib | P-glycoprotein | 34% | 22% | |
Dacomitinib | CYP2D6 | No data | No data | |
Osimertinib | CYP3A | 78% | 73% | |
ALK | Alectinib | CYP3A4 | 73% | 51% |
Lorlatinib | CYP3A, UGT1A4 | 85% | 76% | |
Brigatinib | CYP2C8, CYP3A4 | 80% | 60% | |
Ceritinib | CYP2C9, CYP3A4 | 70% | 44% | |
ROS-1 | Crizotinib | CYP3A4 | 84% | 79% |
ROS-1/NTRK | Entrectinib | CYP3A | 77% | 55% |
BRAF | Dabrafenib | CYP2C8/9, CYP3A4 | 34% | 27% |
Trametinib | CYP2B6, CYP3A4 | No data | No data | |
MET | Tepotinib | CYP2C8/9, CYP3A4 | No data | No data |
Capmatinib | CYP3A4 | 67% | 56% | |
RET | Selpercatinib | CYP3A4 | 87% | 70% |
KRAS | Sotorasib | CYP3A | 51% | 35% |
HER2 | Trastuzumab | CYP3A | No data | No data |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otoshi, R.; Ikeda, S.; Kaneko, T.; Sagawa, S.; Yamada, C.; Kumagai, K.; Moriuchi, A.; Sekine, A.; Baba, T.; Ogura, T. Treatment Strategies for Non-Small-Cell Lung Cancer with Comorbid Respiratory Disease; Interstitial Pneumonia, Chronic Obstructive Pulmonary Disease, and Tuberculosis. Cancers 2024, 16, 1734. https://doi.org/10.3390/cancers16091734
Otoshi R, Ikeda S, Kaneko T, Sagawa S, Yamada C, Kumagai K, Moriuchi A, Sekine A, Baba T, Ogura T. Treatment Strategies for Non-Small-Cell Lung Cancer with Comorbid Respiratory Disease; Interstitial Pneumonia, Chronic Obstructive Pulmonary Disease, and Tuberculosis. Cancers. 2024; 16(9):1734. https://doi.org/10.3390/cancers16091734
Chicago/Turabian StyleOtoshi, Ryota, Satoshi Ikeda, Taichi Kaneko, Shinobu Sagawa, Chieri Yamada, Kosumi Kumagai, Asami Moriuchi, Akimasa Sekine, Tomohisa Baba, and Takashi Ogura. 2024. "Treatment Strategies for Non-Small-Cell Lung Cancer with Comorbid Respiratory Disease; Interstitial Pneumonia, Chronic Obstructive Pulmonary Disease, and Tuberculosis" Cancers 16, no. 9: 1734. https://doi.org/10.3390/cancers16091734
APA StyleOtoshi, R., Ikeda, S., Kaneko, T., Sagawa, S., Yamada, C., Kumagai, K., Moriuchi, A., Sekine, A., Baba, T., & Ogura, T. (2024). Treatment Strategies for Non-Small-Cell Lung Cancer with Comorbid Respiratory Disease; Interstitial Pneumonia, Chronic Obstructive Pulmonary Disease, and Tuberculosis. Cancers, 16(9), 1734. https://doi.org/10.3390/cancers16091734