Selection and Location of Fixed-Step Capacitor Banks in Distribution Grids for Minimization of Annual Operating Costs: A Two-Stage Approach
Abstract
:1. Introduction
1.1. General Context
1.2. Motivation
1.3. State of the Art
1.4. Contribution and Scope
- It presents a two-stage optimization methodology to solve the studied problem, which separates the location problem from the power flow (sizing) problem. As for the location problem, this work proposes the use of a reduced mixed-integer quadratic convex (MIQC) formulation based on the optimal branch power flow formulation presented in [33]. This MIQC formulation allows for simplifying the exact MINLP model, and it defines the nodes for the installation of the fixed-step capacitor banks.
- It determines the optimal sizes of the fixed-step capacitor banks in the slave stage by presenting a recursive-based power flow solution method that, once the nodes where the capacitor banks will be installed are defined, evaluates all the discrete possibilities for the capacitor sizes. The power flow tool used to evaluate the capacitor sizes corresponds to the triangular-based power flow method that is specialized for radial distribution system topologies [34].
1.5. Document Organization
2. Selection of the Nodes
3. Assigning the Optimal Sizes
4. Summary of the Solution Methodology
Algorithm 1: Solution methodology to locate and size fixed-step capacitor banks in distribution grids. |
5. Test Feeder Information
5.1. IEEE 33-Bus Grid
5.2. IEEE 69-Bus Grid
5.3. IEEE 85-Bus Grid
5.4. Economic Assessment Parameters
6. Computational Implementation
6.1. Comparison with Literature Reports
6.2. IEEE 33-Bus Grid
6.3. IEEE 69-Bus Grid
6.4. Numerical Results Considering Daily Load Variations
6.4.1. Daily Operation without PV Generation
6.4.2. Daily Operation including PV Generation
6.4.3. Complementary Analysis
7. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Picard, J.L.; Aguado, I.; Cobos, N.G.; Fuster-Roig, V.; Quijano-López, A. Electric Distribution System Planning Methodology Considering Distributed Energy Resources: A Contribution towards Real Smart Grid Deployment. Energies 2021, 14, 1924. [Google Scholar] [CrossRef]
- Kazmi, S.A.A.; Shahzad, M.K.; Khan, A.Z.; Shin, D.R. Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective. Energies 2017, 10, 501. [Google Scholar] [CrossRef]
- Malik, M.Z.; Kumar, M.; Soomro, A.M.; Baloch, M.H.; Farhan, M.; Gul, M.; Kaloi, G.S. Strategic planning of renewable distributed generation in radial distribution system using advanced MOPSO method. Energy Rep. 2020, 6, 2872–2886. [Google Scholar] [CrossRef]
- Montoya, O.D. Notes on the Dimension of the Solution Space in Typical Electrical Engineering Optimization Problems. Ingeniería 2022, 27, e19310. [Google Scholar] [CrossRef]
- Pareja, L.A.G.; Lezama, J.M.L.; Carmona, O.G. Optimal Placement of Capacitors, Voltage Regulators, and Distributed Generators in Electric Power Distribution Systems. Ingeniería 2020, 25, 334–354. [Google Scholar] [CrossRef]
- Zamani, A.; Sidhu, T.; Yazdani, A. A strategy for protection coordination in radial distribution networks with distributed generators. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010. [Google Scholar] [CrossRef]
- Castiblanco-Pérez, C.M.; Toro-Rodríguez, D.E.; Montoya, O.D.; Giral-Ramírez, D.A. Optimal Placement and Sizing of D-STATCOM in Radial and Meshed Distribution Networks Using a Discrete-Continuous Version of the Genetic Algorithm. Electronics 2021, 10, 1452. [Google Scholar] [CrossRef]
- Mahdavi, M.; Alhelou, H.H.; Hesamzadeh, M.R. An Efficient Stochastic Reconfiguration Model for Distribution Systems With Uncertain Loads. IEEE Access 2022, 10, 10640–10652. [Google Scholar] [CrossRef]
- Suesca, R.A.P.; León, A.I.S.; Rodríguez, C.L.T. Analysis for Selection of Battery-Based Storage Systems for Electrical Microgrids. Ingeniería 2020, 25, 284–304. (In Spanish) [Google Scholar] [CrossRef]
- The, T.T.; Ngoc, D.V.; Anh, N.T. Distribution Network Reconfiguration for Power Loss Reduction and Voltage Profile Improvement Using Chaotic Stochastic Fractal Search Algorithm. Complexity 2020, 2020, 2353901. [Google Scholar] [CrossRef]
- Zhan, J.; Liu, W.; Chung, C.Y.; Yang, J. Switch Opening and Exchange Method for Stochastic Distribution Network Reconfiguration. IEEE Trans. Smart Grid 2020, 11, 2995–3007. [Google Scholar] [CrossRef]
- Görbe, P.; Magyar, A.; Hangos, K.M. Reduction of power losses with smart grids fueled with renewable sources and applying EV batteries. J. Clean. Prod. 2012, 34, 125–137. [Google Scholar] [CrossRef]
- Montoya, O.D.; Grisales-Noreña, L.F.; Alvarado-Barrios, L.; Arias-Londoño, A.; Álvarez-Arroyo, C. Efficient Reduction in the Annual Investment Costs in AC Distribution Networks via Optimal Integration of Solar PV Sources Using the Newton Metaheuristic Algorithm. Appl. Sci. 2021, 11, 11525. [Google Scholar] [CrossRef]
- Chedid, R.; Sawwas, A. Optimal placement and sizing of photovoltaics and battery storage in distribution networks. Energy Storage 2019, 1, e46. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, M.; Bhat, A.H. Reactive power compensation using static synchronous compensator (STATCOM) with conventional control connected with 33kV grid. In Proceedings of the 2015 2nd International Conference on Recent Advances in Engineering & Computational Sciences (RAECS), Chandigarh, India, 21–22 December 2015. [Google Scholar] [CrossRef]
- Gallego, R.; Monticelli, A.; Romero, R. Optimal capacitor placement in radial distribution networks. IEEE Trans. Power Syst. 2001, 16, 630–637. [Google Scholar] [CrossRef]
- Abdelaziz, A.; Ali, E.; Elazim, S.A. Optimal sizing and locations of capacitors in radial distribution systems via flower pollination optimization algorithm and power loss index. Eng. Sci. Technol. Int. J. 2016, 19, 610–618. [Google Scholar] [CrossRef] [Green Version]
- Riaño, F.E.; Cruz, J.F.; Montoya, O.D.; Chamorro, H.R.; Alvarado-Barrios, L. Reduction of Losses and Operating Costs in Distribution Networks Using a Genetic Algorithm and Mathematical Optimization. Electronics 2021, 10, 419. [Google Scholar] [CrossRef]
- Tamilselvan, V.; Jayabarathi, T.; Raghunathan, T.; Yang, X.S. Optimal capacitor placement in radial distribution systems using flower pollination algorithm. Alex. Eng. J. 2018, 57, 2775–2786. [Google Scholar] [CrossRef]
- Gil-González, W.; Montoya, O.D.; Rajagopalan, A.; Grisales-Noreña, L.F.; Hernández, J.C. Optimal Selection and Location of Fixed-Step Capacitor Banks in Distribution Networks Using a Discrete Version of the Vortex Search Algorithm. Energies 2020, 13, 4914. [Google Scholar] [CrossRef]
- Montoya, O.D.; Gil-González, W.; Garcés, A. On the Conic Convex Approximation to Locate and Size Fixed-Step Capacitor Banks in Distribution Networks. Computation 2022, 10, 32. [Google Scholar] [CrossRef]
- Soma, G.G. Optimal Sizing and Placement of Capacitor Banks in Distribution Networks Using a Genetic Algorithm. Electricity 2021, 2, 187–204. [Google Scholar] [CrossRef]
- Tabatabaei, S.; Vahidi, B. Bacterial foraging solution based fuzzy logic decision for optimal capacitor allocation in radial distribution system. Electr. Power Syst. Res. 2011, 81, 1045–1050. [Google Scholar] [CrossRef]
- Kavousi-Fard, A.; Samet, H. Multi-objective Performance Management of the Capacitor Allocation Problem in Distributed System Based on Adaptive Modified Honey Bee Mating Optimization Evolutionary Algorithm. Electr. Power Components Syst. 2013, 41, 1223–1247. [Google Scholar] [CrossRef]
- El-Fergany, A.A.; Abdelaziz, A.Y. Cuckoo Search-based Algorithm for Optimal Shunt Capacitors Allocations in Distribution Networks. Electr. Power Compon. Syst. 2013, 41, 1567–1581. [Google Scholar] [CrossRef]
- Devabalaji, K.; Yuvaraj, T.; Ravi, K. An efficient method for solving the optimal sitting and sizing problem of capacitor banks based on cuckoo search algorithm. Ain Shams Eng. J. 2018, 9, 589–597. [Google Scholar] [CrossRef] [Green Version]
- El-Fergany, A.A.; Abdelaziz, A.Y. Artificial Bee Colony Algorithm to Allocate Fixed and Switched Static Shunt Capacitors in Radial Distribution Networks. Electr. Power Compon. Syst. 2014, 42, 427–438. [Google Scholar] [CrossRef]
- Sedighizadeh, M.; Bakhtiary, R. Optimal multi-objective reconfiguration and capacitor placement of distribution systems with the Hybrid Big Bang–Big Crunch algorithm in the fuzzy framework. Ain Shams Eng. J. 2016, 7, 113–129. [Google Scholar] [CrossRef] [Green Version]
- Sambaiah, K.S.; Jayabarathi, T. Optimal Allocation of Renewable Distributed Generation and Capacitor Banks in Distribution Systems using Salp Swarm Algorithm. Int. J. Renew. Energy Res. 2019, 9, 96–107. [Google Scholar] [CrossRef]
- Sadeghian, O.; Oshnoei, A.; Kheradmandi, M.; Mohammadi-Ivatloo, B. Optimal placement of multi-period-based switched capacitor in radial distribution systems. Comput. Electr. Eng. 2020, 82, 106549. [Google Scholar] [CrossRef]
- Tahir, M.J.; Rasheed, M.B.; Rahmat, M.K. Optimal Placement of Capacitors in Radial Distribution Grids via Enhanced Modified Particle Swarm Optimization. Energies 2022, 15, 2452. [Google Scholar] [CrossRef]
- Lei, T.; Riaz, S.; Raziq, H.; Batool, M.; Pan, F.; Wang, J. A Comparison of Metaheuristic Techniques for Solving Optimal Sitting and Sizing Problems of Capacitor Banks to Reduce the Power Loss in Radial Distribution System. Complexity 2022, 2022, 4547212. [Google Scholar] [CrossRef]
- Taylor, J.A.; Hover, F.S. Convex Models of Distribution System Reconfiguration. IEEE Trans. Power Syst. 2012, 27, 1407–1413. [Google Scholar] [CrossRef]
- Marini, A.; Mortazavi, S.; Piegari, L.; Ghazizadeh, M.S. An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations. Electr. Power Syst. Res. 2019, 170, 229–243. [Google Scholar] [CrossRef]
- Montoya, O.D.; Rivas-Trujillo, E.; Hernández, J.C. A Two-Stage Approach to Locate and Size PV Sources in Distribution Networks for Annual Grid Operative Costs Minimization. Electronics 2022, 11, 961. [Google Scholar] [CrossRef]
- Farivar, M.; Low, S.H. Branch Flow Model: Relaxations and Convexification—Part I. IEEE Trans. Power Syst. 2013, 28, 2554–2564. [Google Scholar] [CrossRef]
- Montoya, O.D.; Moya, F.D.; Rajagopalan, A. Annual Operating Costs Minimization in Electrical Distribution Networks via the Optimal Selection and Location of Fixed-Step Capacitor Banks Using a Hybrid Mathematical Formulation. Mathematics 2022, 10, 1600. [Google Scholar] [CrossRef]
- Montoya, O.D.; Gil-González, W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems. Electr. Power Syst. Res. 2020, 187, 106454. [Google Scholar] [CrossRef]
- Herrera-Briñez, M.C.; Montoya, O.D.; Alvarado-Barrios, L.; Chamorro, H.R. The Equivalence between Successive Approximations and Matricial Load Flow Formulations. Appl. Sci. 2021, 11, 2905. [Google Scholar] [CrossRef]
- Shen, T.; Li, Y.; Xiang, J. A Graph-Based Power Flow Method for Balanced Distribution Systems. Energies 2018, 11, 511. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Fu, Z.; Zhang, L. An improved TS algorithm for loss-minimum reconfiguration in large-scale distribution systems. Electr. Power Syst. Res. 2007, 77, 685–694. [Google Scholar] [CrossRef]
- Soroudi, A. Power System Optimization Modeling in GAMS; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Shuaib, Y.M.; Kalavathi, M.S.; Rajan, C.C.A. Optimal capacitor placement in radial distribution system using Gravitational Search Algorithm. Int. J. Electr. Power Energy Syst. 2015, 64, 384–397. [Google Scholar] [CrossRef]
- Abul’Wafa, A.R. Optimal capacitor placement for enhancing voltage stability in distribution systems using analytical algorithm and Fuzzy-Real Coded GA. Int. J. Electr. Power Energy Syst. 2014, 55, 246–252. [Google Scholar] [CrossRef]
- Sultana, S.; Roy, P.K. Optimal capacitor placement in radial distribution systems using teaching learning based optimization. Int. J. Electr. Power Energy Syst. 2014, 54, 387–398. [Google Scholar] [CrossRef]
Solution Methodology | Objective Function | Year | Ref. |
---|---|---|---|
Bacterial foraging algorithm combined with fuzzy logic | Expected annual energy loss costs | 2011 | [23] |
Modified honey bee mating optimization evolutionary algorithm | Minimizing power losses and improving the voltage profile as well as annual investment and operating costs | 2013 | [24] |
Cuckoo search-based algorithm | Annual investment and operating costs | 2013, 2018 | [25,26] |
Artificial bee colony optimization algorithm | Annual investment and operating costs | 2014 | [27] |
Big bang/big crunch algorithm and fuzzy logic | Minimizing power losses, improving the voltage profile, and reducing the grid voltage imbalance | 2016 | [28] |
Flower pollination algorithm | Annual investment and operating costs | 2016, 2018 | [17,19] |
Salp swarm optimization | Power loss minimization and voltage profile improvement | 2019 | [29] |
Recursive power flow evaluations and loss sensitive factors | Power loss minimization and voltage profile improvement | 2020 | [30] |
Chu and Beasley and specialized genetic algorithms | Annual investment and operating costs | 2020, 2021 | [5,18] |
Particle swarm optimization | Annual investment and operating costs | 2022 | [31] |
Bat optimization algorithm | Minimization of power loss | 2022 | [32] |
Modified particle swarm optimization method | Annual investment and operating costs | 2022 | [31] |
Node i | Node j | Rij (Ω) | Xij (Ω) | Pj (kW) | Qj (kvar) | Node i | Node j | Rij (Ω) | Xij (Ω) | Pj (kW) | Qj (kvar) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 0.0922 | 0.0477 | 100 | 60 | 17 | 18 | 0.7320 | 0.5740 | 90 | 40 |
2 | 3 | 0.4930 | 0.2511 | 90 | 40 | 2 | 19 | 0.1640 | 0.1565 | 90 | 40 |
3 | 4 | 0.3660 | 0.1864 | 120 | 80 | 19 | 20 | 1.5042 | 1.3554 | 90 | 40 |
4 | 5 | 0.3811 | 0.1941 | 60 | 30 | 20 | 21 | 0.4095 | 0.4784 | 90 | 40 |
5 | 6 | 0.8190 | 0.7070 | 60 | 20 | 21 | 22 | 0.7089 | 0.9373 | 90 | 40 |
6 | 7 | 0.1872 | 0.6188 | 200 | 100 | 3 | 23 | 0.4512 | 0.3083 | 90 | 50 |
7 | 8 | 1.7114 | 1.2351 | 200 | 100 | 23 | 24 | 0.8980 | 0.7091 | 420 | 200 |
8 | 9 | 1.0300 | 0.7400 | 60 | 20 | 24 | 25 | 0.8960 | 0.7011 | 420 | 200 |
9 | 10 | 1.0400 | 0.7400 | 60 | 20 | 6 | 26 | 0.2030 | 0.1034 | 60 | 25 |
10 | 11 | 0.1966 | 0.0650 | 45 | 30 | 26 | 27 | 0.2842 | 0.1447 | 60 | 25 |
11 | 12 | 0.3744 | 0.1238 | 60 | 35 | 27 | 28 | 1.0590 | 0.9337 | 60 | 20 |
12 | 13 | 1.4680 | 1.1550 | 60 | 35 | 28 | 29 | 0.8042 | 0.7006 | 120 | 70 |
13 | 14 | 0.5416 | 0.7129 | 120 | 80 | 29 | 30 | 0.5075 | 0.2585 | 200 | 600 |
14 | 15 | 0.5910 | 0.5260 | 60 | 10 | 30 | 31 | 0.9744 | 0.9630 | 150 | 70 |
15 | 16 | 0.7463 | 0.5450 | 60 | 20 | 31 | 32 | 0.3105 | 0.3619 | 210 | 100 |
16 | 17 | 1.2860 | 1.7210 | 60 | 20 | 32 | 33 | 0.3410 | 0.5302 | 60 | 40 |
Node i | Node j | Rij (Ω) | Xij (Ω) | Pj (kW) | Qj (kvar) | Node i | Node j | Rij (Ω) | Xij (Ω) | Pj (kW) | Qj (kvar) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 0.0005 | 0.0012 | 0 | 0 | 3 | 36 | 0.0044 | 0.0108 | 26 | 18.55 |
2 | 3 | 0.0005 | 0.0012 | 0 | 0 | 36 | 37 | 0.0640 | 0.1565 | 26 | 18.55 |
3 | 4 | 0.0015 | 0.0036 | 0 | 0 | 37 | 38 | 0.1053 | 0.1230 | 0 | 0 |
4 | 5 | 0.0251 | 0.0294 | 0 | 0 | 38 | 39 | 0.0304 | 0.0355 | 24 | 17 |
5 | 6 | 0.3660 | 0.1864 | 2.6 | 2.2 | 39 | 40 | 0.0018 | 0.0021 | 24 | 17 |
6 | 7 | 0.3810 | 0.1941 | 40.4 | 30 | 40 | 41 | 0.7283 | 0.8509 | 1.2 | 1 |
7 | 8 | 0.0922 | 0.0470 | 75 | 54 | 41 | 42 | 0.3100 | 0.3623 | 0 | 0 |
8 | 9 | 0.0493 | 0.0251 | 30 | 22 | 42 | 43 | 0.0410 | 0.0475 | 6 | 4.3 |
9 | 10 | 0.8190 | 0.2707 | 28 | 19 | 43 | 44 | 0.0092 | 0.0116 | 0 | 0 |
10 | 11 | 0.1872 | 0.0619 | 145 | 104 | 44 | 45 | 0.1089 | 0.1373 | 39.22 | 26.3 |
11 | 12 | 0.7114 | 0.2351 | 145 | 104 | 45 | 46 | 0.0009 | 0.0012 | 39.22 | 26.3 |
12 | 13 | 1.0300 | 0.3400 | 8 | 5 | 4 | 47 | 0.0034 | 0.0084 | 0 | 0 |
13 | 14 | 1.0440 | 0.3450 | 8 | 5.5 | 47 | 48 | 0.0851 | 0.2083 | 79 | 56.4 |
14 | 15 | 1.0580 | 0.3496 | 0 | 0 | 48 | 49 | 0.2898 | 0.7091 | 384.7 | 274.5 |
15 | 16 | 0.1966 | 0.0650 | 45.5 | 30 | 49 | 50 | 0.0822 | 0.2011 | 384.7 | 274.5 |
16 | 17 | 0.3744 | 0.1238 | 60 | 35 | 8 | 51 | 0.0928 | 0.0473 | 40.5 | 28.3 |
17 | 18 | 0.0047 | 0.0016 | 60 | 35 | 51 | 52 | 0.3319 | 0.1114 | 3.6 | 2.7 |
18 | 19 | 0.3276 | 0.1083 | 0 | 0 | 9 | 53 | 0.1740 | 0.0886 | 4.35 | 3.5 |
19 | 20 | 0.2106 | 0.0690 | 1 | 0.6 | 53 | 54 | 0.2030 | 0.1034 | 26.4 | 19 |
20 | 21 | 0.3416 | 0.1129 | 114 | 81 | 54 | 55 | 0.2842 | 0.1447 | 24 | 17.2 |
21 | 22 | 0.0140 | 0.0046 | 5 | 3.5 | 55 | 56 | 0.2813 | 0.1433 | 0 | 0 |
22 | 23 | 0.1591 | 0.0526 | 0 | 0 | 56 | 57 | 1.5900 | 0.5337 | 0 | 0 |
23 | 24 | 0.3460 | 0.1145 | 28 | 20 | 57 | 58 | 0.7837 | 0.2630 | 0 | 0 |
24 | 25 | 0.7488 | 0.2475 | 0 | 0 | 58 | 59 | 0.3042 | 0.1006 | 100 | 72 |
25 | 26 | 0.3089 | 0.1021 | 14 | 10 | 59 | 60 | 0.3861 | 0.1172 | 0 | 0 |
26 | 27 | 0.1732 | 0.0572 | 14 | 10 | 60 | 61 | 0.5075 | 0.2585 | 1244 | 888 |
3 | 28 | 0.0044 | 0.0108 | 26 | 18.6 | 61 | 62 | 0.0974 | 0.0496 | 32 | 23 |
28 | 29 | 0.0640 | 0.1565 | 26 | 18.6 | 62 | 63 | 0.1450 | 0.0738 | 0 | 0 |
29 | 30 | 0.3978 | 0.1315 | 0 | 0 | 63 | 64 | 0.7105 | 0.3619 | 227 | 162 |
30 | 31 | 0.0702 | 0.0232 | 0 | 0 | 64 | 65 | 1.0410 | 0.5302 | 59 | 42 |
31 | 32 | 0.3510 | 0.1160 | 0 | 0 | 11 | 66 | 0.2012 | 0.0611 | 18 | 13 |
32 | 33 | 0.8390 | 0.2816 | 14 | 10 | 66 | 67 | 0.0047 | 0.0014 | 18 | 13 |
33 | 34 | 1.7080 | 0.5646 | 19.5 | 14 | 12 | 68 | 0.7394 | 0.2444 | 28 | 20 |
34 | 35 | 1.4740 | 0.4873 | 6 | 4 | 68 | 69 | 0.0047 | 0.0016 | 28 | 20 |
Node i | Node j | Rij (Ω) | Xij (Ω) | Pj (kW) | Qj (kvar) | Node i | Node j | Rij (Ω) | Xij (Ω) | Pj (kW) | Qj (kvar) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 0.108 | 0.075 | 0 | 0 | 34 | 44 | 1.002 | 0.416 | 35.28 | 35.99 |
2 | 3 | 0.163 | 0.112 | 0 | 0 | 44 | 45 | 0.911 | 0.378 | 35.28 | 35.99 |
3 | 4 | 0.217 | 0.149 | 56 | 57.13 | 45 | 46 | 0.911 | 0.378 | 35.28 | 35.99 |
4 | 5 | 0.108 | 0.074 | 0 | 0 | 46 | 47 | 0.546 | 0.226 | 14 | 14.28 |
5 | 6 | 0.435 | 0.298 | 35.28 | 35.99 | 35 | 48 | 0.637 | 0.264 | 0 | 0 |
6 | 7 | 0.272 | 0.186 | 0 | 0 | 48 | 49 | 0.182 | 0.075 | 0 | 0 |
7 | 8 | 1.197 | 0.820 | 35.28 | 35.99 | 49 | 50 | 0.364 | 0.151 | 36.28 | 37.01 |
8 | 9 | 0.108 | 0.074 | 0 | 0 | 50 | 51 | 0.455 | 0.189 | 56 | 57.13 |
9 | 10 | 0.598 | 0.410 | 0 | 0 | 48 | 52 | 1.366 | 0.567 | 0 | 0 |
10 | 11 | 0.544 | 0.373 | 56 | 57.13 | 52 | 53 | 0.455 | 0.189 | 35.28 | 35.99 |
11 | 12 | 0.544 | 0.373 | 0 | 0 | 53 | 54 | 0.546 | 0.226 | 56 | 57.13 |
12 | 13 | 0.598 | 0.410 | 0 | 0 | 52 | 55 | 0.546 | 0.226 | 56 | 57.13 |
13 | 14 | 0.272 | 0.186 | 35.28 | 35.99 | 49 | 56 | 0.546 | 0.226 | 14 | 14.28 |
14 | 15 | 0.326 | 0.223 | 35.28 | 35.99 | 9 | 57 | 0.273 | 0.113 | 56 | 57.13 |
2 | 16 | 0.728 | 0.302 | 35.28 | 35.99 | 57 | 58 | 0.819 | 0.340 | 0 | 0 |
3 | 17 | 0.455 | 0.189 | 112 | 114.26 | 58 | 59 | 0.182 | 0.075 | 56 | 57.13 |
5 | 18 | 0.820 | 0.340 | 56 | 57.13 | 58 | 60 | 0.546 | 0.226 | 56 | 57.13 |
18 | 19 | 0.637 | 0.264 | 56 | 57.13 | 60 | 61 | 0.728 | 0.302 | 56 | 57.13 |
19 | 20 | 0.455 | 0.189 | 35.28 | 35.99 | 61 | 62 | 1.002 | 0.415 | 56 | 57.13 |
20 | 21 | 0.819 | 0.340 | 35.28 | 35.99 | 60 | 63 | 0.182 | 0.075 | 14 | 14.28 |
21 | 22 | 1.548 | 0.642 | 35.28 | 35.99 | 63 | 64 | 0.728 | 0.302 | 0 | 0 |
19 | 23 | 0.182 | 0.075 | 56 | 57.13 | 64 | 65 | 0.182 | 0.075 | 0 | 0 |
7 | 24 | 0.910 | 0.378 | 35.28 | 35.99 | 65 | 66 | 0.182 | 0.075 | 56 | 57.13 |
8 | 25 | 0.455 | 0.189 | 35.28 | 35.99 | 64 | 67 | 0.455 | 0.189 | 0 | 0 |
25 | 26 | 0.364 | 0.151 | 56 | 57.13 | 67 | 68 | 0.910 | 0.378 | 0 | 0 |
26 | 27 | 0.546 | 0.226 | 0 | 0 | 68 | 69 | 1.092 | 0.453 | 56 | 57.13 |
27 | 28 | 0.273 | 0.113 | 56 | 57.13 | 69 | 70 | 0.455 | 0.189 | 0 | 0 |
28 | 29 | 0.546 | 0.226 | 0 | 0 | 70 | 71 | 0.546 | 0.226 | 35.28 | 35.99 |
29 | 30 | 0.546 | 0.226 | 35.28 | 35.99 | 67 | 72 | 0.182 | 0.075 | 56 | 57.13 |
30 | 31 | 0.273 | 0.113 | 35.28 | 35.99 | 68 | 73 | 1.184 | 0.491 | 0 | 0 |
31 | 32 | 0.182 | 0.075 | 0 | 0 | 73 | 74 | 0.273 | 0.113 | 56 | 57.13 |
32 | 33 | 0.182 | 0.075 | 14 | 14.28 | 73 | 75 | 1.002 | 0.416 | 35.28 | 35.99 |
33 | 34 | 0.819 | 0.340 | 0 | 0 | 70 | 76 | 0.546 | 0.226 | 56 | 57.13 |
34 | 35 | 0.637 | 0.264 | 0 | 0 | 65 | 77 | 0.091 | 0.037 | 14 | 14.28 |
35 | 36 | 0.182 | 0.075 | 35.28 | 35.99 | 10 | 78 | 0.637 | 0.264 | 56 | 57.13 |
26 | 37 | 0.364 | 0.151 | 56 | 57.13 | 67 | 79 | 0.546 | 0.226 | 35.28 | 35.99 |
27 | 38 | 1.002 | 0.416 | 56 | 57.13 | 12 | 80 | 0.728 | 0.302 | 56 | 57.13 |
29 | 39 | 0.546 | 0.226 | 56 | 57.13 | 80 | 81 | 0.364 | 0.151 | 0 | 0 |
32 | 40 | 0.455 | 0.189 | 35.28 | 35.99 | 81 | 82 | 0.091 | 0.037 | 56 | 57.13 |
40 | 41 | 1.002 | 0.416 | 0 | 0 | 81 | 83 | 1.092 | 0.453 | 35.28 | 35.99 |
41 | 42 | 0.273 | 0.113 | 35.28 | 35.99 | 83 | 84 | 1.002 | 0.416 | 14 | 14.28 |
41 | 43 | 0.455 | 0.189 | 35.28 | 35.99 | 13 | 85 | 0.819 | 0.340 | 35.28 | 35.99 |
Option | Qc (kvar) | Cost (USD/kvar-year) | Option | Qc (kvar) | Cost (USD/kvar-year) |
---|---|---|---|---|---|
1 | 150 | 0.500 | 8 | 1200 | 0.170 |
2 | 300 | 0.350 | 9 | 1350 | 0.207 |
3 | 450 | 0.253 | 10 | 1500 | 0.201 |
4 | 600 | 0.220 | 11 | 1650 | 0.193 |
5 | 750 | 0.276 | 12 | 1800 | 0.870 |
6 | 900 | 0.183 | 13 | 1950 | 0.211 |
7 | 1050 | 0.228 | 14 | 2100 | 0.176 |
Method | Size (Node) (Mvar) | Losses (kW) |
---|---|---|
IEEE 33-bus grid | ||
Benc. Case | - | 210.987 |
AM | {0.45(9), 0.80(29), 0.90(30)} | 171.780 |
TSM | {0.85(7), 0.025(29), 0.90(30)} | 144.040 |
FRCGA | {0.475(6), 0.175(8), 0.35(9), 0.025(28), 0.30(29), 0.40(30)} | 141.240 |
FPA | {0.45(13), 0.45(24), 0.90(30)} | 139.075 |
GAMS | {0.30(14), 0.45(24), 1.05(30)} | 139.292 |
MIQC | {0.45(13), 0.45(24), 1.05(30)} | 138.473 |
IEEE 69-bus grid | ||
Benc. Case | - | 225.072 |
AM | {0.90(11), 1.05(29), 0.45(60)} | 163.280 |
TSM | {0.225(19), 0.90(62), 0.225(63)} | 148.910 |
TBLO | {0.60(12), 1.05(61), 0.15(64)} | 146.350 |
FPA | {0.45(11), 0.15(22), 1.35(61)} | 145.860 |
GAMS | {0.45(11), 0.15(27), 1.20(61)} | 145.738 |
MIQC | {0.45(11), 0.15(21), 1.20(61)} | 145.550 |
Method | Size (Node) (Mvar) | Losses (kW) | C. Caps. USD | C. Total USD |
---|---|---|---|---|
GAMS | {0.30(14), 0.45(24), 1.05(30)} | 139.292 | 458.25 | 23,859.313 |
MIQC (sol. 1) | {0.45(13), 0.45(24), 1.05(30)} | 138.473 | 467.10 | 23,747.317 |
MIQC (sol. 2) | {0.45(13), 0.60(24), 0.90(30)} | 138.917 | 410.55 | 23,748.531 |
MIQC (sol. 3) | {0.45(13), 0.45(24), 0.90(30)} | 139.075 | 392.40 | 23,757.083 |
Method | Size (Node) (Mvar) | Losses (kW) | C. Caps. USD | C. Total USD |
---|---|---|---|---|
GAMS | {0.45(11), 0.15(27), 1.20(61)} | 145.738 | 392.85 | 24,876.910 |
MIQC (sol. 1) | {0.45(11), 0.15(21), 1.20(61)} | 145.550 | 392.85 | 24,845.246 |
MIQC (sol. 2) | {0.30(11), 0.30(21), 1.20(61)} | 145.492 | 414.00 | 24,856.573 |
MIQC (sol. 3) | {0.60(11), 0.15(21), 1.20(61)} | 145.614 | 411.00 | 24,874.173 |
MIQC (sol. 4) | {0.45(11), 0.30(21), 1.20(61)} | 145.556 | 422.85 | 24,876.229 |
Without fixed-step capacitor bank | |||
---|---|---|---|
System | Error (%) | ||
IEEE 33-bus system | 30,605.568 | 35,445.909 | 1.865 |
IEEE 69-bus system | 32,186.289 | 37,812.056 | 2.214 |
IEEE 85-bus system (without PV) | 23,119.560 | 27,924.793 | 2.961 |
IEEE 85-bus system (with PV) | 18,309.428 | 21,313.872 | 1.987 |
With fixed-step capacitor bank | |||
System | Error (%) | ||
IEEE 33-bus system | 21,771.320 | 23,747.318 | 0.692 |
IEEE 69-bus system | 22,159.467 | 24,845.247 | 1.169 |
IEEE 85-bus system (without PV) | 14,430.466 | 16,089.331 | 1.063 |
IEEE 85-bus system (with PV) | 9620.335 | 10,574.253 | 0.814 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoya, O.D.; Rivas-Trujillo, E.; Giral-Ramírez, D.A. Selection and Location of Fixed-Step Capacitor Banks in Distribution Grids for Minimization of Annual Operating Costs: A Two-Stage Approach. Computers 2022, 11, 105. https://doi.org/10.3390/computers11070105
Montoya OD, Rivas-Trujillo E, Giral-Ramírez DA. Selection and Location of Fixed-Step Capacitor Banks in Distribution Grids for Minimization of Annual Operating Costs: A Two-Stage Approach. Computers. 2022; 11(7):105. https://doi.org/10.3390/computers11070105
Chicago/Turabian StyleMontoya, Oscar Danilo, Edwin Rivas-Trujillo, and Diego Armando Giral-Ramírez. 2022. "Selection and Location of Fixed-Step Capacitor Banks in Distribution Grids for Minimization of Annual Operating Costs: A Two-Stage Approach" Computers 11, no. 7: 105. https://doi.org/10.3390/computers11070105
APA StyleMontoya, O. D., Rivas-Trujillo, E., & Giral-Ramírez, D. A. (2022). Selection and Location of Fixed-Step Capacitor Banks in Distribution Grids for Minimization of Annual Operating Costs: A Two-Stage Approach. Computers, 11(7), 105. https://doi.org/10.3390/computers11070105