Automatic Evaluation of Neural Network Training Results
Abstract
:1. Introduction
2. Overview of Existing Methods for Detecting Model Training Issues
3. Proposed Model for Automatic Assessment of Network Training
4. Data Collection and Sampling
5. Feature Descriptions of Learning Curves
6. Classifying the State of the Model
- Direct classification of input feature descriptions of learning curves by two independent classifiers.
- Combination of classification results.
- Determination of the model’s state.
7. Results
8. Discussion
- Developing a smart control system for the training process which allows one to change the optimizer’s configuration during model training to influence its behavior.
- Extending the set of models supported by the proposed method.
- Developing an algorithm to identify complexity issues in a network’s architecture for a particular dataset using the proposed approach.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, R.; Shen, X.; Zhang, X. 3D ROC Histogram: A New ROC Analysis Tool Incorporating Information on Instances. IEEE Access 2019, 7, 183396–183404. [Google Scholar] [CrossRef]
- Jalaeian Zaferani, E.; Teshnehlab, M.; Khodadadian, A.; Heitzinger, C.; Vali, M.; Noii, N.; Wick, T. Hyper-Parameter Optimization of Stacked Asymmetric Auto-Encoders for Automatic Personality Traits Perception. Sensors 2022, 22, 6206. [Google Scholar] [CrossRef] [PubMed]
- Yotov, K.; Hadzhikolev, E.; Hadzhikoleva, S.; Cheresharov, S. Finding the Optimal Topology of an Approximating Neural Network. Mathematics 2023, 11, 217. [Google Scholar] [CrossRef]
- Wever, M.; Tornede, A.; Mohr, F.; Hüllermeier, E. AutoML for Multi-Label Classification: Overview and Empirical Evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 3037–3054. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Kaiyong, Z.; Xiaowen, C. AutoML: A survey of the state-of-the-art. Knowl. Based Syst. 2021, 212, 106622. [Google Scholar]
- Kotthoff, L.; Thornton, C.; Hoos, H.; Hutter, F.; Leyton-Brown, K. Auto-WEKA 2.0: Automatic model selection and hyperparameter optimization in WEKA. J. Mach. Learn. Res. 2017. [Google Scholar] [CrossRef] [Green Version]
- Hutter, F.; Kotthoff, L.; Vanschoren, J. Automated Machine Learning: Methods, Systems, Challenges; Springer Nature: Berlin, Germany, 2019. [Google Scholar]
- Celik, B.; Vanschoren, J. Adaptation Strategies for Automated Machine Learning on Evolving Data. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 3067–3078. [Google Scholar] [CrossRef]
- Alsharef, A.; Sonia; Kumar, K.; Iwendi, C. Time Series Data Modeling Using Advanced Machine Learning and AutoML. Sustainability 2022, 14, 15292. [Google Scholar] [CrossRef]
- Emmert-Streib, F.; Dehmer, M. Evaluation of Regression Models: Model Assessment, Model Selection and Generalization Error. Mach. Learn. Knowl. Extr. 2019, 1, 521–551. [Google Scholar] [CrossRef] [Green Version]
- Chetoui, M.; Akhloufi, M.; Yousefi, B.; Bouattane, E. Explainable COVID-19 Detection on Chest X-rays Using an End-to-End Deep Convolutional Neural Network Architecture. Big Data Cogn. Comput. 2021, 5, 73. [Google Scholar] [CrossRef]
- Algehyne, E.; Jibril, M.; Algehainy, N.; Alamri, O.; Alzahrani, A. Fuzzy Neural Network Expert System with an Improved Gini Index Random Forest-Based Feature Importance Measure Algorithm for Early Diagnosis of Breast Cancer in Saudi Arabia. Big Data Cogn. Comput. 2022, 6, 13. [Google Scholar] [CrossRef]
- Dora, S.; Kasabov, N. Spiking Neural Networks for Computational Intelligence: An Overview. Big Data Cogn. Comput. 2021, 5, 67. [Google Scholar] [CrossRef]
- Frank, M.; Drikakis, D.; Charissis, V. Machine-Learning Methods for Computational Science and Engineering. Computation 2020, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.-C.; Hung, K.-C.; Lin, J.-C. Automated Machine Learning System for Defect Detection on Cylindrical Metal Surfaces. Sensors 2022, 22, 9783. [Google Scholar] [CrossRef] [PubMed]
- Ghasemian, A.; Hosseinmardi, H.; Clauset, A. Evaluating Overfit and Underfit in Models of Network Community Structure. IEEE Trans. Knowl. Data Eng. 2020, 32, 1722–1735. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.; Kim, Y.; Lee, E.; Choi, D.; Lee, Y.; Rhee, W. Basic Enhancement Strategies When Using Bayesian Optimization for Hyperparameter Tuning of Deep Neural Networks. IEEE Access 2020, 8, 52588–52608. [Google Scholar] [CrossRef]
- Nallakaruppan, M.; Ramalingam, S.; Somayaji, S.; Prathiba, S. Comparative Analysis of Deep Learning Models Used in Impact Analysis of Coronavirus Chest X-ray Imaging. Biomedicines 2022, 10, 2791. [Google Scholar] [CrossRef]
- Gu, Y.; Wylie, B.K.; Boyte, S.P.; Picotte, J.; Howard, D.M.; Smith, K.; Nelson, K.J. An Optimal Sample Data Usage Strategy to Minimize Overfitting and Underfitting Effects in Regression Tree Models Based on Remotely-Sensed Data. Remote Sens. 2016, 8, 943. [Google Scholar] [CrossRef] [Green Version]
- Domhan, T.; Springenberg, J.T.; Hutter, F. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence Buenos Aires, Buenos Aires, Argentina, 25 July 2015. [Google Scholar]
- Li, Z.; Kamnitsas, K.; Glocker, B. Analyzing Overfitting Under Class Imbalance in Neural Networks for Image Segmentation. IEEE Trans. Med. Imaging 2011, 40, 1065–1077. [Google Scholar] [CrossRef]
- Qian, L.; Hu, L.; Zhao, L.; Wang, T.; Jiang, R. Sequence-Dropout Block for Reducing Overfitting Problem in Image Classification. IEEE Access 2020, 8, 62830–62840. [Google Scholar] [CrossRef]
- Prechelt, L. Early Stopping—But When? In Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science; Montavon, G., Orr, G.B., Müller, K.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7700, pp. 53–67. [Google Scholar]
- Huo, J.; Gao, Y.; Shi, Y.; Yin, H. Cross-Modal Metric Learning for AUC Optimization. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 4844–4856. [Google Scholar] [CrossRef] [PubMed]
- Diaz, G.I.; Fokoue-Nkoutche, A.; Nannicini, G.; Samulowitz, H. An effective algorithm for hyperparameter optimization of neural networks. IBM J. Res. Dev. 2017, 61, 9:1–9:11. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Seo, S.B.; Yoo, N.H.; Shin, G. A Study on Sample Size Sensitivity of Factory Manufacturing Dataset for CNN-Based Defective Product Classification. Computation 2022, 10, 142. [Google Scholar] [CrossRef]
- Utrobin, V.A. Elements of the study of image detection. Trans. NNSTU N. A. R. E. Alekseev 2010, 81, 61–69. [Google Scholar]
- Wang, C.; Baratchi, M.; Bäck, T.; Hoos, H.H.; Limmer, S.; Olhofer, M. Towards Time-Series Feature Engineering in Automated Machine Learning for Multi-Step-Ahead Forecasting. Eng. Proc. 2022, 18, 17. [Google Scholar] [CrossRef]
- Leite, D.; Martins, A., Jr.; Rativa, D.; De Oliveira, J.F.L.; Maciel, A.M.A. An Automated Machine Learning Approach for Real-Time Fault Detection and Diagnosis. Sensors 2022, 22, 6138. [Google Scholar] [CrossRef] [PubMed]
- Pradipta, G.A.; Wardoyo, R.; Musdholifah, A.; Sanjaya, I.N.H. Radius-SMOTE: A New Oversampling Technique of Minority Samples Based on Radius Distance for Learning From Imbalanced Data. IEEE Access 2021, 9, 74763–74777. [Google Scholar] [CrossRef]
- Chen, Y.; Chang, R.; Guo, J. Effects of Data Augmentation Method Borderline-SMOTE on Emotion Recognition of EEG Signals Based on Convolutional Neural Network. IEEE Access 2021, 9, 47491–47502. [Google Scholar] [CrossRef]
- Dablain, D.; Krawczyk, B.; Chawla, N.V. DeepSMOTE: Fusing Deep Learning and SMOTE for Imbalanced Data. IEEE Trans. Neural Netw. Learn. Syst. 2022. [Google Scholar] [CrossRef]
- GhoshRoy, D.; Alvi, P.A.; Santosh, K. Explainable AI to Predict Male Fertility Using Extreme Gradient Boosting Algorithm with SMOTE. Electronics 2023, 12, 15. [Google Scholar] [CrossRef]
- Kumar, P.; Ali, I.; Kim, D.-G.; Byun, S.-J.; Kim, D.-G.; Pu, Y.-G.; Lee, K.-Y. A Study on the Design Procedure of Re-Configurable Convolutional Neural Network Engine for FPGA-Based Applications. Electronics 2022, 11, 3883. [Google Scholar] [CrossRef]
Datasets | Learning Curves’ Cost Functions | Learning Curves’ Accuracy Functions | ||||
---|---|---|---|---|---|---|
Models | Accuracy | Precision | Recall | Accuracy | Precision | Recall |
Decision Tree | 0.734 | 0.733 | 0.734 | 0.791 | 0.795 | 0.791 |
SVC (OvO) | 0.336 | 0.554 | 0.336 | 0.640 | 0.701 | 0.640 |
SVC (OvO, polynomial features) | 0.337 | 0.328 | 0.337 | 0.724 | 0.719 | 0.724 |
SVC (OvA) | 0.354 | 0.392 | 0.408 | 0.782 | 0.806 | 0.796 |
SVC (OvA, polynomial features) | 0.440 | 0.417 | 0.411 | 0.810 | 0.824 | 0.822 |
K-neighbors | 0.612 | 0.615 | 0.612 | 0.769 | 0.770 | 0.769 |
Logistic regression | 0.292 | 0.293 | 0.292 | 0.649 | 0.701 | 0.646 |
Gradient boosting | 0.780 | 0.789 | 0.788 | 0.879 | 0.872 | 0.872 |
Random forest | 0.860 | 0.862 | 0.860 | 0.880 | 0.876 | 0.876 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barinov, R.; Gai, V.; Kuznetsov, G.; Golubenko, V. Automatic Evaluation of Neural Network Training Results. Computers 2023, 12, 26. https://doi.org/10.3390/computers12020026
Barinov R, Gai V, Kuznetsov G, Golubenko V. Automatic Evaluation of Neural Network Training Results. Computers. 2023; 12(2):26. https://doi.org/10.3390/computers12020026
Chicago/Turabian StyleBarinov, Roman, Vasiliy Gai, George Kuznetsov, and Vladimir Golubenko. 2023. "Automatic Evaluation of Neural Network Training Results" Computers 12, no. 2: 26. https://doi.org/10.3390/computers12020026
APA StyleBarinov, R., Gai, V., Kuznetsov, G., & Golubenko, V. (2023). Automatic Evaluation of Neural Network Training Results. Computers, 12(2), 26. https://doi.org/10.3390/computers12020026