Robust Algorithms for the Analysis of Fast-Field-Cycling Nuclear Magnetic Resonance Dispersion Curves
Abstract
:1. Introduction
- The implementation and experimental testing of the MF-UPen algorithm, featuring a novel rule for automatically computing the threshold parameter .
- The implementation and experimental testing of the MF-MUPen algorithm.
- Development of a “dispersion analysis” procedure, enabling the determination of the existence range for estimated parameters.
2. The Parameter Identification Problem
3. The Algorithms
3.1. MF-UPen Algorithm
Algorithm 1 MF-UPen |
3.2. MF-L1 Algorithm
Algorithm 2 MF-L1 |
|
3.3. MF-MUPen Algorithm
Algorithm 3 MF-MUPen |
|
4. Results and Discussion
4.1. Experimental Setting
4.2. Numerical Results from FFC Measures
4.3. Dispersion Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kimmich, R.; Anoardo, E. Field-cycling NMR relaxometry. Prog. Nucl. Magn. Reson. Spectrosc. 2004, 44, 257–320. [Google Scholar] [CrossRef]
- Bortolotti, V.; Brizi, L.; Landi, G.; Testa, C.; Zama, F. Introduction to FFC NMR Theory and Models for Complex and Confined Fluids. In The Environment in a Magnet: Applications of NMR Techniques to Environmental Problems; Royal Society of Chemistry: London, UK, 2024. [Google Scholar] [CrossRef]
- Sebastião, P. 2009. Available online: http://fitteia.org (accessed on 21 May 2024).
- OriginLab Corporation. Origin(Pro); OriginLab Corporation: Northampton, MA, USA, 2024. [Google Scholar]
- Vasilief, I. QtiPlot; QtiPlot: Berlin, Germany, 2024. [Google Scholar]
- MathWorks. Curve Fitting Toolbox User’s Guide; The MathWorks, Inc.: Natick, MA, USA, 2024. [Google Scholar]
- Halle, B.; Jóhannesson, H.; Venu, K. Model-Free Analysis of Stretched Relaxation Dispersions. J. Magn. Reson. 1998, 135, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Engl, H.W.; Hanke, M.; Neubauer, A. Regularization of Inverse Problems; Springer Science & Business Media: Berlin, Germany, 1996; Volume 375. [Google Scholar]
- Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation; SIAM: Philadelphia, PA, USA, 2005. [Google Scholar]
- Ito, K.; Jin, B.; Takeuchi, T. A Regularization Parameter for Nonsmooth Tikhonov Regularization. SIAM J. Sci. Comput. 2011, 33, 1415–1438. [Google Scholar] [CrossRef]
- Bortolotti, V.; Brown, R.J.S.; Fantazzini, P.; Landi, G.; Zama, F. Uniform Penalty Inversion of two-dimensional NMR relaxation data. Inverse Probl. 2016, 33, 19. [Google Scholar] [CrossRef]
- Landi, G.; Spinelli, G.; Zama, F.; Martino, D.C.; Conte, P.; Lo Meo, P.; Bortolotti, V. An automatic L1-based regularization method for the analysis of FFC dispersion profiles with quadrupolar peaks. Appl. Math. Comput. 2023, 444, 127809. [Google Scholar] [CrossRef]
- Bortolotti, V.; Landi, G.; Zama, F. 2DNMR data inversion using locally adapted multi-penalty regularization. Comput. Geosci. 2020, 25, 1215–1228. [Google Scholar] [CrossRef]
- Lo Meo, P.; Terranova, S.; Di Vincenzo, A.; Chillura Martino, D.; Conte, P. Heuristic Algorithm for the Analysis of Fast Field Cycling (FFC) NMR Dispersion Curves. Anal. Chem. 2021, 93, 8553–8558. [Google Scholar] [CrossRef] [PubMed]
- Hansen, P.C. Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank. SIAM J. Sci. Stat. Comput. 1990, 11, 503–518. [Google Scholar] [CrossRef]
- Golub, G.H.; Van Loan, C.F. Matrix Computations; JHU Press: Baltimore, MD, USA, 2013. [Google Scholar]
- Kim, S.J.; Koh, K.; Lustig, M.; Boyd, S.; Gorinevsky, D. An Interior-Point Method for Large-Scale ℓ1-Regularized Least Squares. IEEE J. Sel. Top. Signal Process. 2007, 1, 606–617. [Google Scholar] [CrossRef]
- Beck, A.; Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2009, 2, 183–202. [Google Scholar] [CrossRef]
- Faux, D.A.; Istók, Ö.; Rahaman, A.A.; McDonald, P.J.; McKiernan, E.; Brougham, D.F. Nuclear spin relaxation in aqueous paramagnetic ion solutions. Phys. Rev. E 2023, 107, 054605. [Google Scholar] [CrossRef] [PubMed]
- Kowalewski, J.; Kruk, D.; Parigi, G. NMR relaxation in solution of paramagnetic complexes: Recent theoretical progress for S ≥ 1. Adv. Inorg. Chem. 2005, 57, 41–104. [Google Scholar]
- Conte, P.; Nestle, N. Water dynamics in different biochar fractions. Magn. Reson. Chem. 2015, 53, 726–734. [Google Scholar] [CrossRef]
- De Pasquale, C.; Marsala, V.; Berns, A.E.; Valagussa, M.; Pozzi, A.; Alonzo, G.; Conte, P. Fast field cycling NMR relaxometry characterization of biochars obtained from an industrial thermochemical process. J. Soils Sediments 2012, 12, 1211. [Google Scholar] [CrossRef]
- Smith, R.C. Uncertainty Quantification: Theory, Implementation, and Applications; SIAM: Philadelphia, PA, USA, 2013. [Google Scholar]
Algorithm | Computation Time | ||
---|---|---|---|
MF-UPen | |||
MF-L1 | |||
MF-MUPen |
Algorithm | Computation Time | ||
---|---|---|---|
MF-UPen | |||
MF-L1 | |||
MF-MUPen |
Algorithm | Half-Width | SpecificWeight | ||
---|---|---|---|---|
MF-UPen | ||||
MF-L1 | ||||
MF-MUPen | ||||
Algorithm | Half-Width | SpecificWeight | ||
---|---|---|---|---|
MF-UPen | ||||
MF-L1 | ||||
MF-MUPen | ||||
Sample | Algorithm | R0 Confidence Interval | R0 Mean | Median |
---|---|---|---|---|
Manganese | MF-UPen | [5.240, 9.253] | ||
MF-L1 | [9.251, 12.12] | |||
MF-MUPen | [9.652, 11.38] | |||
Poplar | MF-UPen | [5.363, 5.406] | ||
MF-L1 | [5.370, 5.413] | |||
MF-MUPen | [5.370, 5.416] |
Algorithm | [μs] | Half-Width [μs] | SpecificWeight | |
---|---|---|---|---|
MF-UPen | ||||
MF-L1 | ||||
MF-MUPen | ||||
Algorithm | [μs] | Half-Width [μs] | SpecificWeight | |
---|---|---|---|---|
MF-UPen | ||||
MF-L1 | ||||
MF-MUPen | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bortolotti, V.; Conte, P.; Landi, G.; Lo Meo, P.; Nagmutdinova, A.; Spinelli, G.V.; Zama, F. Robust Algorithms for the Analysis of Fast-Field-Cycling Nuclear Magnetic Resonance Dispersion Curves. Computers 2024, 13, 129. https://doi.org/10.3390/computers13060129
Bortolotti V, Conte P, Landi G, Lo Meo P, Nagmutdinova A, Spinelli GV, Zama F. Robust Algorithms for the Analysis of Fast-Field-Cycling Nuclear Magnetic Resonance Dispersion Curves. Computers. 2024; 13(6):129. https://doi.org/10.3390/computers13060129
Chicago/Turabian StyleBortolotti, Villiam, Pellegrino Conte, Germana Landi, Paolo Lo Meo, Anastasiia Nagmutdinova, Giovanni Vito Spinelli, and Fabiana Zama. 2024. "Robust Algorithms for the Analysis of Fast-Field-Cycling Nuclear Magnetic Resonance Dispersion Curves" Computers 13, no. 6: 129. https://doi.org/10.3390/computers13060129
APA StyleBortolotti, V., Conte, P., Landi, G., Lo Meo, P., Nagmutdinova, A., Spinelli, G. V., & Zama, F. (2024). Robust Algorithms for the Analysis of Fast-Field-Cycling Nuclear Magnetic Resonance Dispersion Curves. Computers, 13(6), 129. https://doi.org/10.3390/computers13060129