A Systematic Literature Review of Machine Unlearning Techniques in Neural Networks
Abstract
:1. Introduction
1.1. Nomenclature
1.2. Overview and Contributions
1.3. General Objective
1.4. Specific Objectives
- Define the categorization framework for machine unlearning techniques applicable to neural networks in regression and classification contexts.
- Identify the foundational principles underlying different machine unlearning techniques.
- Analyze the metrics and methodologies commonly used to assess the efficacy of machine unlearning techniques.
2. Methodology
2.1. Research Questions
- RQ1: How can machine unlearning techniques, for neural networks with regression or classification tasks, be categorized?
- RQ2: What are the foundational principles underlying different machine unlearning techniques?
- RQ3: What metrics and methods are commonly used to evaluate the effectiveness of machine unlearning techniques in different datasets and architectural setups?
2.2. Search for Primary Studies
2.3. Analysis of Primary Results
3. Theoretical Framework
3.1. Definitions
3.1.1. Machine Unlearning
3.1.2. Exact Machine Unlearning
3.1.3. Approximate Machine Unlearning
3.1.4. Differential Privacy
3.1.5. Federated Learning
3.2. Metrics
3.2.1. Accuracy on Forget Set
3.2.2. Accuracy on Retain Set
3.2.3. Error Rate
3.2.4. Relearn Time
3.2.5. Anamnesis Index
3.2.6. Distance
3.2.7. Attacks
3.2.8. Unlearning Cost (Storage and Time Cost)
4. Challenges
4.1. Stochastic
4.2. Streisand Effect
4.3. Data Interconnections
4.4. Uncertainty
- Epistemic uncertainty arises from the model’s limited knowledge about the underlying data distribution. When specific training data points are removed, the model’s uncertainty can increase, leading to instability in its predictions [53,54]. Researchers have introduced methods that measures deviations in model parameters after unlearning compared to a fully retrained model [54].
- Aleatoric uncertainty is related to inherent randomness in the data. The process of unlearning can modify the variance of model parameters, affecting prediction consistency. Recent studies highlight that some unlearning methods based on gradient ascent can amplify aleatoric uncertainty unless suitable regularization techniques are applied [55].
5. Application
5.1. Prevent Backdoor Injection Attack
5.2. Prevent Membership Inference Attacks
5.3. Fast Model Debias
5.4. Enhancing Transfer Learning
5.5. Cost and Time Saving
6. Analysis of Techniques
6.1. Data Based
6.1.1. BadNets
Definition
Metric
6.1.2. Class Clown
Definition
Metric
6.1.3. Fast Yet Effective Machine Unlearning
Definition
Metric
6.1.4. Mnemonic Code
Definition
Metric
Architecture Based
6.2. Architecture Based: Modular Unlearning
6.2.1. SISA Original
Definition
Metric
6.2.2. Adaptive Machine Unlearning
Definition
Metric
6.2.3. No Matter How You Slice It
Definition
Metric
6.2.4. Coded Machine Unlearning
Definition
Metric
6.2.5. DeepObliviate
Definition
Metric
6.2.6. ARCANE
Definition
Metric
6.3. Architecture Based: Gradient Ascent
6.3.1. Amnesiac Machine Unlearning
Definition
Metric
6.3.2. Unrolling SGD
Definition
Metric
6.3.3. BAERASER
Definition
Metric
6.3.4. Forsaken
Definition
Metric
6.4. Architecture Based: Teacher–Student
6.4.1. Bad Teaching
Definition
Metric
6.4.2. Gated Knowledge Transfer
Definition
Metric
6.4.3. Efficient Two-Stage Model
Definition
Metric
6.4.4. Towards Unbounded Machine Unlearning
Definition
Metric
6.4.5. Deep Regression Unlearning
Definition
Metric
6.5. Architecture Based: Scrubbing Weights
6.5.1. Eternal Sunshine
Definition
Metric
6.5.2. Forgetting Outside the Box
Definition
- P is a projection matrix that projects the gradients of the samples to be forgotten onto the orthogonal space to the space spanned by the gradients of all samples to be retained;
- is the matrix whose columns are the gradients of the samples to forget, computed at .
Metric
6.5.3. Mixed Privacy
Definition
- represents the output of the original deep network with the core weights ;
- represents the gradient of the output with respect to the core weights , evaluated at x.
- Training Core Weights :
- Training User Weights :
Metric
6.5.4. Certified Removal
Definition
Metric
6.5.5. The Projective Residual Update
Definition
Metric
6.5.6. Performance Unchanged Model Augmentation (PUMA)
Definition
Metric
6.5.7. Unlearn Features and Labels
Definition
Metric
6.6. Federated Unlearning
6.6.1. FedEraser
Definition
Metric
6.6.2. FU with Knowledge Distillation
Definition
Metric
6.6.3. Pruning
Definition
Metric
6.6.4. Efficient Realization
Definition
Metric
6.6.5. FedRecover
Definition
Metric
6.6.6. SFU
Definition
Metric
6.6.7. KNOT
Definition
Metric
6.6.8. HDUS
Definition
Metric
6.6.9. Erase a Client
Definition
Metric
6.6.10. QUICKDROP
Definition
Metric
7. Discussion of Results
7.1. Data Based
7.2. Architecture Based
7.2.1. Modular Unlearning
7.2.2. Gradient Ascent
7.2.3. Teacher–Student
7.2.4. Scrubbing Weights Approach
7.2.5. Federated Unlearning
7.3. Dataset
7.4. Architecture
7.5. Replicability
7.6. Real-World Applications
7.6.1. Healthcare
7.6.2. Finance
7.6.3. Facial Recognition
7.7. Final Comparison of Machine Unlearning Approaches
8. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Art. 17 GDPR—Right to Erasure (‘Right to Be Forgotten’)—GDPR.eu—Gdpr.eu. 2018. Available online: https://gdpr.eu/article-17-right-to-be-forgotten/ (accessed on 13 July 2024).
- California Consumer Privacy Act (CCPA)—Oag.ca.gov. 2024. Available online: https://oag.ca.gov/privacy/ccpa#heading5d (accessed on 13 July 2024).
- Nast, C. Now That Machines Can Learn, Can They Unlearn?—Wired.com. 2021. Available online: https://www.wired.com/story/machines-can-learn-can-they-unlearn/ (accessed on 13 July 2024).
- Shaik, T.; Tao, X.; Xie, H.; Li, L.; Zhu, X.; Li, Q. Exploring the Landscape of Machine Unlearning: A Comprehensive Survey and Taxonomy. arXiv 2024, arXiv:2305.06360. [Google Scholar]
- Li, C. OpenAI’s GPT-3 Language Model: A Technical Overview—Lambdalabs.com. 2020. Available online: https://lambdalabs.com/blog/demystifying-gpt-3 (accessed on 13 July 2024).
- Kitchenham, B. Procedures for performing systematic reviews. Keele Uk Keele Univ. 2004, 33, 1–26. [Google Scholar]
- Liu, Y.; Ma, S.; Aafer, Y.; Lee, W.C.; Zhai, J.; Wang, W.; Zhang, X. Trojaning Attack on Neural Networks. In Proceedings of the Network and Distributed System Security Symposium, San Diego, CA, USA, 18–21 February 2018. [Google Scholar]
- Felps, D.L.; Schwickerath, A.D.; Williams, J.D.; Vuong, T.N.; Briggs, A.; Hunt, M.; Sakmar, E.; Saranchak, D.D.; Shumaker, T. Class Clown: Data Redaction in Machine Unlearning at Enterprise Scale. arXiv 2020, arXiv:/2012.04699. [Google Scholar]
- Tarun, A.K.; Chundawat, V.S.; Mandal, M.; Kankanhalli, M. Fast Yet Effective Machine Unlearning. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 13046–13055. [Google Scholar] [CrossRef]
- Shibata, T.; Irie, G.; Ikami, D.; Mitsuzumi, Y. Learning with Selective Forgetting. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21; International Joint Conferences on Artificial Intelligence Organization, Montreal, QC, Canada, 19–27 August 2021; Zhou, Z.H., Ed.; pp. 989–996. [Google Scholar] [CrossRef]
- Bourtoule, L.; Chandrasekaran, V.; Choquette-Choo, C.A.; Jia, H.; Travers, A.; Zhang, B.; Lie, D.; Papernot, N. Machine Unlearning. arXiv 2020, arXiv:1912.03817. [Google Scholar]
- Gupta, V.; Jung, C.; Neel, S.; Roth, A.; Sharifi-Malvajerdi, S.; Waites, C. Adaptive Machine Unlearning. arXiv 2021, arXiv:2106.04378. [Google Scholar]
- Koch, K.; Soll, M. No Matter How You Slice It: Machine Unlearning with SISA Comes at the Expense of Minority Classes. In Proceedings of the 2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML), Raleigh, NC, USA, 8–10 February 2023. [Google Scholar]
- Aldaghri, N.; Mahdavifar, H.; Beirami, A. Coded Machine Unlearning. IEEE Access 2021, 9, 88137–88150. [Google Scholar] [CrossRef]
- He, Y.; Meng, G.; Chen, K.; He, J.; Hu, X. DeepObliviate: A Powerful Charm for Erasing Data Residual Memory in Deep Neural Networks. arXiv 2021, arXiv:2105.06209. [Google Scholar]
- Yan, H.; Li, X.; Guo, Z.; Li, H.; Li, F.; Lin, X. ARCANE: An Efficient Architecture for Exact Machine Unlearning. In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22; International Joint Conferences on Artificial Intelligence Organization, Vienna, Austria, 23–29 July 2022; Raedt, L.D., Ed.; pp. 4006–4013. [Google Scholar] [CrossRef]
- Graves, L.; Nagisetty, V.; Ganesh, V. Amnesiac Machine Learning. arXiv 2020, arXiv:2010.10981. [Google Scholar] [CrossRef]
- Thudi, A.; Deza, G.; Chandrasekaran, V.; Papernot, N. Unrolling SGD: Understanding Factors Influencing Machine Unlearning. arXiv 2022, arXiv:2109.13398. [Google Scholar]
- Liu, Y.; Ma, Z.; Liu, X.; Liu, J.; Jiang, Z.; Ma, J.; Yu, P.; Ren, K. Learn to Forget: Machine Unlearning via Neuron Masking. arXiv 2021, arXiv:2003.10933. [Google Scholar]
- Liu, Y.; Fan, M.; Chen, C.; Liu, X.; Ma, Z.; Wang, L.; Ma, J. Backdoor Defense with Machine Unlearning. arXiv 2022, arXiv:2201.09538. [Google Scholar]
- Chundawat, V.S.; Tarun, A.K.; Mandal, M.; Kankanhalli, M. Can Bad Teaching Induce Forgetting? Unlearning in Deep Networks using an Incompetent Teacher. arXiv 2023, arXiv:2205.08096. [Google Scholar]
- Chundawat, V.S.; Tarun, A.K.; Mandal, M.; Kankanhalli, M. Zero-Shot Machine Unlearning. IEEE Trans. Inf. Forensics Secur. 2023, 18, 2345–2354. [Google Scholar] [CrossRef]
- Kim, J.; Woo, S.S. Efficient Two-stage Model Retraining for Machine Unlearning. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, USA, 19–20 June 2022; pp. 4360–4368. [Google Scholar] [CrossRef]
- Kurmanji, M.; Triantafillou, P.; Hayes, J.; Triantafillou, E. Towards Unbounded Machine Unlearning. arXiv 2023, arXiv:2302.09880. [Google Scholar]
- Chen, K.; Wang, Y.; Huang, Y. Lightweight machine unlearning in neural network. arXiv 2021, arXiv:2111.05528. [Google Scholar]
- Tarun, A.K.; Chundawat, V.S.; Mandal, M.; Kankanhalli, M. Deep Regression Unlearning. arXiv 2023, arXiv:2210.08196. [Google Scholar]
- Golatkar, A.; Achille, A.; Soatto, S. Eternal Sunshine of the Spotless Net: Selective Forgetting in Deep Networks. arXiv 2020, arXiv:1911.04933. [Google Scholar]
- Golatkar, A.; Achille, A.; Soatto, S. Forgetting Outside the Box: Scrubbing Deep Networks of Information Accessible from Input-Output Observations. arXiv 2020, arXiv:2003.02960. [Google Scholar]
- Golatkar, A.; Achille, A.; Ravichandran, A.; Polito, M.; Soatto, S. Mixed-Privacy Forgetting in Deep Networks. arXiv 2021, arXiv:2012.13431. [Google Scholar]
- Guo, C.; Goldstein, T.; Hannun, A.; van der Maaten, L. Certified Data Removal from Machine Learning Models. arXiv 2023, arXiv:1911.03030. [Google Scholar]
- Izzo, Z.; Smart, M.A.; Chaudhuri, K.; Zou, J. Approximate Data Deletion from Machine Learning Models. arXiv 2021, arXiv:2002.10077. [Google Scholar]
- Wu, G.; Hashemi, M.; Srinivasa, C. PUMA: Performance Unchanged Model Augmentation for Training Data Removal. arXiv 2022, arXiv:2203.00846. [Google Scholar] [CrossRef]
- Warnecke, A.; Pirch, L.; Wressnegger, C.; Rieck, K. Machine Unlearning of Features and Labels. arXiv 2023, arXiv:2108.11577. [Google Scholar]
- Liu, G.; Ma, X.; Yang, Y.; Wang, C.; Liu, J. FedEraser: Enabling Efficient Client-Level Data Removal from Federated Learning Models. In Proceedings of the 2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS), Tokyo, Japan, 25–28 June 2021; pp. 1–10. [Google Scholar] [CrossRef]
- Wu, C.; Zhu, S.; Mitra, P. Federated Unlearning with Knowledge Distillation. arXiv 2022, arXiv:2201.09441. [Google Scholar]
- Wang, J.; Guo, S.; Xie, X.; Qi, H. Federated Unlearning via Class-Discriminative Pruning. arXiv 2022, arXiv:2110.11794. [Google Scholar]
- Liu, Y.; Xu, L.; Yuan, X.; Wang, C.; Li, B. The Right to be Forgotten in Federated Learning: An Efficient Realization with Rapid Retraining. In Proceedings of the IEEE INFOCOM 2022 - IEEE Conference on Computer Communications, London, UK, 2–5 May 2022. [Google Scholar] [CrossRef]
- Cao, X.; Jia, J.; Zhang, Z.; Gong, N.Z. FedRecover: Recovering from Poisoning Attacks in Federated Learning using Historical Information. arXiv 2022, arXiv:2210.10936. [Google Scholar]
- Li, G.; Shen, L.; Sun, Y.; Hu, Y.; Hu, H.; Tao, D. Subspace based Federated Unlearning. arXiv 2023, arXiv:2302.12448. [Google Scholar]
- Su, N.; Li, B. Asynchronous Federated Unlearning. arXiv 2023, arXiv:2207.05521. [Google Scholar]
- Ye, G.; Chen, T.; Nguyen, Q.V.H.; Yin, H. Heterogeneous Decentralized Machine Unlearning with Seed Model Distillation. arXiv 2023, arXiv:2308.13269. [Google Scholar]
- Halimi, A.; Kadhe, S.; Rawat, A.; Baracaldo, N. Federated Unlearning: How to Efficiently Erase a Client in FL? arXiv 2023, arXiv:2207.05521. [Google Scholar]
- Dhasade, A.; Ding, Y.; Guo, S.; marie Kermarrec, A.; Vos, M.D.; Wu, L. QuickDrop: Efficient Federated Unlearning by Integrated Dataset Distillation. arXiv 2023, arXiv:2311.15603. [Google Scholar]
- Cao, Y.; Yang, J. Towards Making Systems Forget with Machine Unlearning. In Proceedings of the 2015 IEEE Symposium on Security and Privacy, San Jose, CA, USA, 17–21 May 2015; pp. 463–480. [Google Scholar] [CrossRef]
- Sekhari, A.; Acharya, J.; Kamath, G.; Suresh, A.T. Remember What You Want to Forget: Algorithms for Machine Unlearning. arXiv 2021, arXiv:2103.03279. [Google Scholar]
- Dwork, C.; Roth, A. The algorithmic foundations of differential privacy. Found. Trends® Theor. Comput. Sci. 2013, 9, 211–407. [Google Scholar] [CrossRef]
- Bharati, S.; Mondal, M.R.H.; Podder, P.; Prasath, V.S. Federated learning: Applications, challenges and future directions. Int. J. Hybrid Intell. Syst. 2022, 18, 19–35. [Google Scholar] [CrossRef]
- Shao, J.; Lin, T.; Cao, X.; Luo, B. Federated Unlearning: A Perspective of Stability and Fairness. arXiv 2024, arXiv:2402.01276. [Google Scholar]
- Menditto, A.; Patriarca, M.; Magnusson, B. Understanding the meaning of accuracy, trueness and precision. Accredit. Qual. Assur. 2007, 12, 45–47. [Google Scholar] [CrossRef]
- Jansen, S.C.; Martin, B. The Streisand Effect and Censorship Backfire. Int. J. Commun. 2015, 9, 16. [Google Scholar]
- Serrà, J.; Surís, D.; Miron, M.; Karatzoglou, A. Overcoming catastrophic forgetting with hard attention to the task. arXiv 2018, arXiv:1801.01423. [Google Scholar]
- Qu, Y.; Yuan, X.; Ding, M.; Ni, W.; Rakotoarivelo, T. Learn to unlearn: Insights into machine unlearning. IEEE Computer 2024, 57, 79–90. [Google Scholar]
- Wang, R. Redefining Machine Unlearning: A Conformal Prediction-Motivated Approach. arXiv 2025, arXiv:2501.19403. [Google Scholar]
- Li, J.; Wei, Q.; Zhang, C.; Qi, G.; Du, M.; Chen, Y. Single Image Unlearning: Efficient Machine Unlearning in Multimodal Large Language Models. arXiv 2024, arXiv:2405.12523. [Google Scholar]
- Shrivastava, A.; Ahirwal, M.K. Refining of Learning in Human Decision Making Models: A Step Towards Machine Unlearning. In Proceedings of the 2024 International Conference on Integrated Circuits, Communication, and Computing Systems (ICIC3S), Una, India, 8–9 June 2024. [Google Scholar]
- Baumhauer, T.; Schöttle, P.; Zeppelzauer, M. Machine Unlearning: Linear Filtration for Logit-based Classifiers. arXiv 2020, arXiv:2002.02730. [Google Scholar]
- Chen, R.; Yang, J.; Xiong, H.; Bai, J.; Hu, T.; Hao, J.; Feng, Y.; Zhou, J.T.; Wu, J.; Liu, Z. Fast Model Debias with Machine Unlearning. arXiv 2023, arXiv:2310.12560. [Google Scholar]
- Jia, J.; Liu, J.; Ram, P.; Yao, Y.; Liu, G.; Liu, Y.; Sharma, P.; Liu, S. Model Sparsity Can Simplify Machine Unlearning. arXiv 2024, arXiv:2304.04934. [Google Scholar]
- Loog, M.; Viering, T. A Survey of Learning Curves with Bad Behavior: Or How More Data Need Not Lead to Better Performance. arXiv 2022, arXiv:2211.14061. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv 2019, arXiv:1801.04381. [Google Scholar]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. arXiv 2018, arXiv:1608.06993. [Google Scholar]
- Zhou, J.; Li, H.; Liao, X.; Zhang, B.; He, W. A Unified Method to Revoke the Private Data of Patients in Intelligent Healthcare with Audit to Forget. Nat. Commun. 2023, 14, 6255. [Google Scholar] [PubMed]
- Lindstrom, C. Evaluation Metrics for Machine Unlearning. Preprints 2024. [CrossRef]
- Gündoğdu, E.; Unal, A.; Unal, G. A Study Regarding Machine Unlearning on Facial Attribute Data. In Proceedings of the 2024 IEEE 18th International Conference on Automatic Face and Gesture Recognition (FG), Istanbul, Turkiye, 27–31 May 2024. [Google Scholar]
- Zhang, H.; Nakamura, T.; Isohara, T.; Sakurai, K. A Review on Machine Unlearning. Sn Comput. Sci. 2023, 4, 337. [Google Scholar]
- Solanki, R.; Creager, E. Promoting User Data Autonomy During the Dissolution of a Monopolistic Firm. arXiv 2024, arXiv:2411.13546. [Google Scholar]
- Li, G. Theoretically-Grounded Efficient Deep Learning System Design. Doctoral Dissertation, University of Texas Institutional Repository, Lubbock, TX, USA, 2024. [Google Scholar]
Symbol | Description |
---|---|
x | Input data sample |
y | Predicted output |
Data point to be unlearned | |
D | Entire dataset |
Subset of dataset to be unlearned | |
Remaining dataset after unlearning | |
L | Loss function |
Learning rate | |
Parameters | |
Gradient of the loss function | |
H | Hypothesis space |
F | Feature space |
G | Task space |
W | Weights |
b | Bias vector |
ℓ | Layer |
z | Logits or preactivation values |
Training algorithm | |
M | Machine learning model trained on D |
N | Number of samples in the dataset |
Noise matrix | |
U | Unlearning process |
Distribution of model parameters | |
K | Similarity measure |
Unlearned model |
ID | Search String |
---|---|
SS1 | “machine unlearning” AND “neural network” AND (“CLASSIFICATION” OR “REGRESSION”) NOT “generative” NOT “catastrophic” |
SS2 | “machine forgetting” AND “neural network” AND (“CLASSIFICATION” OR “REGRESSION”) NOT “generative” NOT “catastrophic” |
SS3 | “forgetting mechanism” AND “neural network” AND (“CLASSIFICATION” OR “REGRESSION”) NOT “generative” NOT “catastrophic” |
SS4 | “algorithmic forgetting” AND “neural network” AND (“CLASSIFICATION” OR “REGRESSION”) NOT “generative” NOT “catastrophic” |
SS5 | “Data Removal” AND “neural network” AND (“CLASSIFICATION” OR “REGRESSION”) NOT “generative” NOT “catastrophic” |
ID | Title | Authors | Year | Technique |
---|---|---|---|---|
1 | Trojaning Attack on Neural Networks [7] | Liu et al. | 2018 | BadNets 2 |
2 | Class Clown: Data Redaction in Machine Unlearning at Enterprise Scale [8] | Felps et al. | 2020 | Class Clown 2 |
3 | Fast Yet Effective Machine Unlearning [9] | Tarun et al. | 2024 | Fast yet effective machine unlearning 2 |
4 | Learning with Selective Forgetting [10] | Shibata et al. | 2021 | Mnemonic code 2 |
5 | Machine Unlearning [11] | Bourtoule et al. | 2020 | SISA 1 |
6 | Adaptive Machine Unlearning [12] | Gupta et al. | 2021 | Adaptive Machine Unlearning 2 |
7 | No Matter How You Slice It: Machine Unlearning with SISA Comes at the Expense of Minority Classes [13] | Koch et al. | 2023 | No matter how you slice it 2 |
8 | Coded Machine Unlearning [14] | Aldaghri et al. | 2021 | Coded machine unlearning 1 |
9 | DeepObliviate: A Powerful Charm for Erasing Data Residual Memory in Deep Neural Network [15] | He et al. | 2021 | DeepObliviate 2 |
10 | ARCANE: An Efficient Architecture for Exact Machine Unlearning [16] | Yan et al. | 2022 | ARCANE 2 |
11 | Amnesiac Machine Learning [17] | Graves et al. | 2020 | Amnesiac Machine Unlearning 2 |
12 | Unrolling SGD: Understanding Factors Influencing Machine Unlearning [18] | Thudi et al. | 2022 | Unrolling SGD 1 |
13 | Learn to Forget: Machine Unlearning via Neuron Masking [19] | Liu et al. | 2021 | Forsaken 2 |
14 | Backdoor Defense with Machine Unlearning [20] | Liu et al. | 2022 | BAERASER 2 |
15 | Can Bad Teaching Induce Forgetting? [21] | Chundawat et al. | 2023 | Bad teaching 2 |
16 | Zero-Shot Machine Unlearning [22] | Chundawat et al. | 2023 | Gated Knowledge Transfer 2 |
17 | Efficient Two-stage Model Retraining for Machine Unlearning [23] | Kim et al. | 2022 | Efficient two-stage model 2 |
18 | Towards Unbounded Machine Unlearning [24] | Kurmanji et al. | 2023 | Towards Unbounded Machine Unlearning 2 |
19 | Lightweight machine unlearning in neural network [25] | Chen et al. | 2021 | Lightweight machine unlearning 2 |
20 | Deep Regression Unlearning [26] | Tarun et al. | 2023 | Deep Regression Unlearning 2 |
21 | Eternal Sunshine of the Spotless Net: Selective Forgetting in Deep Networks [27] | Golatkar et al. | 2020 | Eternal Sunshine 2 |
22 | Forgetting Outside the Box: Scrubbing Deep Networks of Information Accessible from Input-Output Observation [28] | Golatkar et al. | 2020 | Forgetting outside the box 2 |
23 | Mixed-Privacy Forgetting in Deep Networks [29] | Golatkar et al. | 2021 | Mixed privacy 2 |
24 | Certified Data Removal from Machine Learning Models [30] | Guo et al. | 2023 | Certified Removal 2 |
25 | Approximate Data Deletion from Machine Learning Models [31] | Izzo et al. | 2021 | Projective Residual Update 2 |
26 | PUMA:Performance Unchanged Model Augmentation for Training Data Removal [32] | Wu et al. | 2022 | Performance Unchanged Model Augmentation 2 |
27 | Machine Unlearning of Features and Labels [33] | Warnecke et al. | 2023 | Unlearn Features and labels 2 |
28 | FedEraser: Enabling Efficient Client-Level Data Removal from Federated Learning Model [34] | Liu et al. | 2021 | FedEraser 2 |
29 | Federated Unlearning with Knowledge Distillation [35] | Wu et al. | 2022 | FU with Knowledge distillation 2 |
30 | Federated Unlearning via Class-Discriminative Pruning [36] | Wang et al. | 2022 | Class-Discriminative Pruning 2 |
31 | The Right to be Forgotten in Federated Learning: An Efficient Realization with Rapid Retraining [37] | Liu et al. | 2022 | Efficient Realization with Rapid Retraining 2 |
32 | FedRecover: Recovering from Poisoning Attacks in Federated Learning using Historical Information [38] | Cao et al. | 2022 | FedRecover 2 |
33 | Subspace based Federated Unlearning [39] | Li et al. | 2023 | Subspace-based Unlearning 2 |
34 | Asynchronous Federated Unlearning [40] | Su et al. | 2023 | Asynchronous Federated Unlearning 2 |
35 | Heterogeneous Decentralized Machine Unlearning with Seed Model Distillation [41] | Ye et al. | 2023 | Seed Model Distillation 2 |
36 | Federated Unlearning: How to Efficiently Erase a Client in FL? [42] | Halimi et al. | 2023 | Federated Client-Level Unlearning 2 |
37 | QuickDrop: Efficient Federated Unlearning by Integrated Dataset Distillation [43] | Dhasade et al. | 2023 | Integrated Dataset Distillation 2 |
Symbol | Description |
---|---|
S | Number of shards |
R | Number of slices per shard |
K | Number of unlearning requests |
Fraction of the data used for training | |
Shard i | |
Slice j of shard i | |
G | Encoding matrix |
Dataset block i | |
d | Block index |
Symbol | Description |
---|---|
e, E | Epoch |
b, B | Batch |
s | Sensitive Data |
Learning rate |
Symbol | Description |
---|---|
KL | Kullback–Leibler (KL) divergence |
Random weights | |
JS | Jensen–Shannon divergence |
Predicted probability distribution for the i-th data point |
Symbol | Description |
---|---|
Scrubbed model parameters | |
Hyperparameter controlling forgetting | |
Error in approximating the SGD behavior | |
h | Transformation function |
F | Fisher information matrix (FIM) |
n | Noise |
Inverse of the Hessian matrix | |
Linear user weights | |
Mean square error loss |
ID | Is Fine-Tuning or Retraining Necessary? | Notes |
---|---|---|
1 2,+ | ✓ | Specific details such as the number of epochs or the amount of data required for retraining after applying the trojan trigger were not explicitly mentioned. |
2 2,+ | ✓ | Requires incremental retraining with a few epochs and a small amount of data after applying redaction. |
3 2,+ | ✓ | Requires a repair step involving fine-tuning on a subset of the original retain set to restore accuracy. |
4 1,+ | ✓ | Fine-tuning may suffice for minor adjustments without substantial model reconfiguration. |
ID | Is Fine-Tuning or Retraining Necessary? | Notes |
---|---|---|
5 2,+ | ✓ | Details regarding the extent and methodology of fine-tuning required were not explicitly mentioned. |
6 2,+ | ✓ | Requires fine-tuning with a specific subset of data to address the adaptive nature of the unlearning process. |
7 2,+ | ✓ | Fine-tuning necessary to maintain performance consistency after implementing unlearning techniques. |
8 2,+ | ✓ | Incremental retraining required to ensure the integrity and accuracy of the model post-unlearning. |
9 1,+ | ✓ | - |
10 1,+ | ✓ | - |
ID | Is Fine-Tuning or Retraining Necessary? | Notes |
---|---|---|
11 2,+ | ✓ | Some retraining is usually performed afterward to restore model performance on non-target data. |
12 2,+ | x | - |
13 2,+ | ✓ | - |
14 2,+ | ✓ | It needs some epochs of training using clean data and the identified trigger patterns. |
ID | Is Fine-Tuning or Retraining Necessary? |
---|---|
15 1,+ | ✓ |
16 2,+ | ✓ |
17 1,+ | ✓ |
18 2,+ | ✓ |
19 1,+ | ✓ |
20 2,+ | ✓ |
ID | Is Fine-Tuning or Retraining Necessary? |
---|---|
21 2,+ | x |
22 2,+ | x |
23 2,+ | x |
24 2,+ | x |
25 2,+ | ✓ |
26 2,+ | x |
27 2,+ | x |
ID | Is Fine-Tuning or Retraining Necessary? | Notes |
---|---|---|
28 2,+ | x | - |
29 2,+ | ✓ | Fine-tuning process to integrate the distilled knowledge effectively |
30 1,+ | ✓ | The pruned model is retrained using the non-target categories. |
31 2,+ | ✓ | Adjust the model parameters efficiently based on the FIM updates |
32 2,+ | x | - |
33 2,+ | ✓ | It consists of iteratively applying restricted gradient ascent |
34 2,+ | ✓ | - |
35 2,+ | x | - |
36 2,+ | ✓ | - |
37 1,+ | ✓ | Fine-tuned using the distilled datasets from the non-target classes |
Category | Advantages | Disadvantages | Use Cases |
---|---|---|---|
Data-Based |
|
|
|
Architecture-Based | |||
Modular Unlearning |
|
|
|
Gradient Ascent |
|
|
|
Teacher–Student |
|
|
|
Scrubbing Weight Approach |
|
|
|
Federated Unlearning |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cevallos, I.D.; Benalcázar, M.E.; Valdivieso Caraguay, Á.L.; Zea, J.A.; Barona-López, L.I. A Systematic Literature Review of Machine Unlearning Techniques in Neural Networks. Computers 2025, 14, 150. https://doi.org/10.3390/computers14040150
Cevallos ID, Benalcázar ME, Valdivieso Caraguay ÁL, Zea JA, Barona-López LI. A Systematic Literature Review of Machine Unlearning Techniques in Neural Networks. Computers. 2025; 14(4):150. https://doi.org/10.3390/computers14040150
Chicago/Turabian StyleCevallos, Ivanna Daniela, Marco E. Benalcázar, Ángel Leonardo Valdivieso Caraguay, Jonathan A. Zea, and Lorena Isabel Barona-López. 2025. "A Systematic Literature Review of Machine Unlearning Techniques in Neural Networks" Computers 14, no. 4: 150. https://doi.org/10.3390/computers14040150
APA StyleCevallos, I. D., Benalcázar, M. E., Valdivieso Caraguay, Á. L., Zea, J. A., & Barona-López, L. I. (2025). A Systematic Literature Review of Machine Unlearning Techniques in Neural Networks. Computers, 14(4), 150. https://doi.org/10.3390/computers14040150