Electromagnetic Field Distribution Mapping: A Taxonomy and Comprehensive Review of Computational and Machine Learning Methods
Abstract
1. Introduction
Contribution—Objectives
2. Fundamental Concepts and Background
2.1. Electric Field Distribution Terminology and Map Types
2.1.1. Radio Map and Spectrum Cartography
Feature | Radio Maps | Spectrum Cartography |
---|---|---|
Definition | Static maps of radio signal features | The technique to estimate & construct maps |
Focus | The map itself | The process of mapping |
2.1.2. Radio Environment Map
2.1.3. Electromagnetic Field Exposure Map
Feature | Radio Map | REM (Radio Environment Map) | EMF Exposure Map |
---|---|---|---|
Primary Purpose | Visualize signal characteristics (e.g., RSS, SNR) | Capture spectrum usage and environment context | Assess human exposure to EMF radiation |
Domain | Wireless communications | Wireless communications | Public health, EMF compliance |
Output Type | Heatmap or grid of signal values | Database or map with RF metadata | Spatial exposure map with EMF intensity |
Units/Metric | dBm, RSSI, SNR | SINR, occupancy probability, interference level | V/m, A/m, W/m2 |
Spatial Resolution | Medium to high | Medium to high | High (especially near transmitters) |
Temporal Aspect | May be static or time-averaged | Often dynamic and time-aware | Can be real-time or periodic |
Sources of Data | Sensor measurements, simulation, mobile data | Spectrum sensing, network metadata | EMF meters, modeled or measured values |
Used By | Network planners, engineers | Cognitive radio agents, regulators | Health agencies, municipalities, researchers |
2.2. Outdoor and Indoor Maps
2.2.1. Outdoor Environment
2.2.2. Indoor Environment
2.3. Data Acquisition Methods
2.3.1. In Situ Measurements
2.3.2. Wireless Sensor Networks
2.3.3. Simulation and Model-Based Data—Synthetic Data
2.4. Data Sets
2.5. Related Work
References | Taxonomy Domain | Map Category | Map Construction Method | Dataset Categories |
---|---|---|---|---|
[43] | Wireless Communication | - | MBML | - |
[44] | Wireless Communication | Radio Environment Map | - | - |
[35] | Wireless Communication | Radio Environment Map | MBI + AM | - |
[45] | Wireless Communication | Radio Map | MBI + MBML + AM | X |
[46] | Wireless Communication | Radio Environment Map | MBI + MBML | - |
[9] | Wireless Communication | Radio Map | MBI + MBML + AM | - |
[47] | Wireless Communication | - | AM | - |
Our paper | Wireless Communication | Radio Environment Map | MBI + MBML + AM | X |
+ | Radio Map | |||
Public Health | EMF Exposure Map |
("radio map" OR "radio environment map" OR "REM" OR "spectrum cartography" OR |
"path loss map" OR "electromagnetic exposure map" OR "electromagnetic field map" OR |
"electric field strength map") |
AND |
("mapping" OR "estimation" OR "prediction" OR "machine learning" OR "computational model") |
3. Electric Field Distribution Maps Construction Methods
3.1. Analytical Expressions for Radio Map Construction
3.2. Model-Based Radio Map Estimation
3.3. Model-Free Radio Map Reconstruction Interpolation-Geospatial Based Methods
3.4. Model-Free Radio Map Reconstruction Machine Learning Based Methods
Reference | Taxonomy Domain | Map Category | Construction Method–Models–Tools | Environment | Dismnsion of the Map | Units of Metric |
---|---|---|---|---|---|---|
[49] | Wireless Communication | Radio Map | Analytical expressions for radio map construction | Indoor | 2D | Mean Distance Error in meter |
[50] | RMSE in dB | |||||
[51] | RMSE in dB | |||||
[52] | Outdoor | Mean error in dB |
Reference | Taxonomy Domain | Map Category | Construction Method–Model–Tools | Dataset Acquisition | Environment | Dismnsion of the Map | Units of Metric |
---|---|---|---|---|---|---|---|
[58] | Public Health | Map | Model-free radio map reconstruction interpolation geospatial based methods. | Measurement points | Outdoor | 2D | MAE and MSE in V/m |
[62] | Electromagnetic field exposure maps | Logarithm of sum of absolute differences in V/m | |||||
[63] | RMSE in V/m | ||||||
[64] | RMSE in V/m | ||||||
[65] | Absolute error in V/m | ||||||
[57] | Wireless Communication | Radio environment map | Model-free radio map reconstruction interpolation geospatial based methods. | Indoor | MAE in dB | ||
[59] | Outdoor and Indoor | Relative Mean Absolute Error | |||||
[60] | Outdoor | Mean RMSE in dB | |||||
[61] | - | - | - | Mean error in dBm |
Reference | Taxonomy Domain | Map Category | Construction Method–Models–Tools | Dataset Acquisition | Environment | Dismnsion of the Map | Units of Metric |
---|---|---|---|---|---|---|---|
[67] | Wireless Communication | Radio Map | Model-free radio map reconstruction machine learning based methods. | Measurement points | - | 2D | LNMSE |
log-domain normalized mean square error | |||||||
[69] | spectrum distribution | MSE | |||||
[72] | Radio Map | RMSE | |||||
[74] | Wireless Communication | Radio Map | Model-free radio map reconstruction machine learning based methods. | Measurement points | Indoor | Mean RSSI Difference | |
[83] | Images | RMSE | |||||
[86] | Measurement points | Mean Distance Error, Mean training error | |||||
[87] | - | Map data | Outdoor | RMSE | |||
[68] | Wireless Communication | Radio environment map | Model-free radio map reconstruction machine learning based methods. | DeepREM dataset | Outdoor | RMSE | |
- | |||||||
Images | And | ||||||
- | |||||||
MAE | |||||||
[76] | Radio Map | Images | Outdoor | normalized mean squared error (NMSE) | |||
[79] | - | Measurement points | RMSE | ||||
[80] | Satellite images | RMSE | |||||
[81] | Images | RMSE | |||||
[66] | Wireless Communication | Radio Map | Model-free radio map reconstruction machine learning based methods. | Measurement points | Outdoor | Squared Reconstruction Error | |
[70] | - | Model-free radio map reconstruction machine learning based methods. | Measurement points and #D model of environment | Mean absolute error | |||
[71] | Power Spectrum Map | Images + distribution functions | average image reconstruction error | ||||
[73] | Radio Map | Measurement points | RMSE | ||||
[75] | - | RMSE, MSE, MAE | |||||
[77] | Radio Map | MAPE | |||||
[78] | - | average total hit rate error (AHRE) | |||||
[82] | Public Helath | Radio Environment Map | Model-free radio map reconstruction machine learning based methods. | Measurement points | Outdoor | RMSE | |
[84] | Exposure maps | Images | RMSE and MAPE | ||||
[85] | - | Measurement points | R squared and MSE | ||||
[88] | - | Images | Indoor | - | |||
[89] | Electric Field Strength Map | Measurement points | Outdoor | RMSE | |||
[90] | Electromagnetic Field Exposure Map | Measurement points and Images | structural similarity index (SSIM) | ||||
[91] | Electric Field Strength Map | Measurement points | RMSE | ||||
[92] | EMF Exposure Map | sensor measurement map images | Indoor | - | |||
- | |||||||
Average SSIM | |||||||
[93] | Electric Field Strength Map | Measurement points | Outdoor | RMSE |
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EMF | Electromagnetic Field |
RF | Radio Frequency |
REM | Radio Environment Map |
UAV | Unmanned aerial vehicle |
ANN | Artificial Neural Network |
CNN | Convolutional Neural Network |
DNN | Deep Neural Network |
GAN | Generative Adversarial Network |
DL | Deep Learning |
ML | Machine Learning |
IDW | Inverse Distance Weighting |
SVM | Support Vector Machine |
KNN | k-Nearest Neighbors |
XGBoost | Extreme Gradient Boosting |
SAR | Specific Absorption Rate |
RSSI | Received Signal Strength Indicator |
SNR | Signal-to-Noise Ratio |
NNI | Natural Neighbor Interpolation |
GIS | Geographic Information System |
ICNIRP | International Commission on Non-Ionizing Radiation Protection |
WHO | World Health Organization |
ITU | International Telecommunication Union |
IEEE | Institute of Electrical and Electronics Engineers |
Appendix A. Two-Ray Gound Reflection Model Equations
Appendix B. Egli Model for Radio Propagation
Appendix C. Hata Model Equations
References
- Wu, Y.; Gao, X.; Zhou, S.; Yang, W.; Polyanskiy, Y.; Caire, G. Massive Access for Future Wireless Communication Systems. IEEE Wirel. Commun. 2020, 27, 148–156. [Google Scholar] [CrossRef]
- Attaran, M. The impact of 5G on the evolution of intelligent automation and industry digitization. J. Ambient Intell. Humaniz. Comput. 2023, 14, 5977–5993. [Google Scholar] [CrossRef] [PubMed]
- Verbeek, J.; Oftedal, G.; Feychting, M.; van Rongen, E.; Rosaria Scarfì, M.; Mann, S.; Wong, R.; van Deventer, E. Prioritizing health outcomes when assessing the effects of exposure to radiofrequency electromagnetic fields: A survey among experts. Environ. Int. 2021, 146, 106300. [Google Scholar] [CrossRef]
- Santra, A.; Wang, P.; Shaker, G.; Mysore, B.S.; Dolmans, G.; Chen, Y.; Shariati, N.; Pandharipande, A. Machine Learning-Powered Radio Frequency Sensing: A Review. IEEE Sens. J. 2025, 25, 23164–23183. [Google Scholar] [CrossRef]
- Sarkar, T.; Ji, Z.; Kim, K.; Medouri, A.; Salazar-Palma, M. A survey of various propagation models for mobile communication. IEEE Antennas Propag. Mag. 2003, 45, 51–82. [Google Scholar] [CrossRef]
- Levie, R.; Yapar, C.; Kutyniok, G.; Caire, G. RadioUNet: Fast Radio Map Estimation With Convolutional Neural Networks. IEEE Trans. Wirel. Commun. 2021, 20, 4001–4015. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, R. Radio Map Based Path Planning for Cellular-Connected UAV. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Rafie, I.F.M.; Lim, S.Y.; Chung, M.J.H. Path Loss Prediction in Urban Areas: A Machine Learning Approach. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 809–813. [Google Scholar] [CrossRef]
- Romero, D.; Kim, S.J. Radio Map Estimation: A data-driven approach to spectrum cartography. IEEE Signal Process. Mag. 2022, 39, 53–72. [Google Scholar] [CrossRef]
- Liang, Y.C.; Chen, K.C.; Li, G.Y.; Mahonen, P. Cognitive radio networking and communications: An overview. IEEE Trans. Veh. Technol. 2011, 60, 3386–3407. [Google Scholar] [CrossRef]
- Bennett, N.D.; Croke, B.F.; Guariso, G.; Guillaume, J.H.; Hamilton, S.H.; Jakeman, A.J.; Marsili-Libelli, S.; Newham, L.T.; Norton, J.P.; Perrin, C.; et al. Characterising performance of environmental models. Environ. Model. Softw. 2013, 40, 1–20. [Google Scholar] [CrossRef]
- Frank, J.W. Electromagnetic fields, 5G and health: What about the precautionary principle? J. Epidemiol. Community Health 2021, 75, 562–566. [Google Scholar] [CrossRef]
- Kiouvrekis, Y.; Manios, G.; Tsitsia, V.; Gourzoulidis, G.; Kappas, C. A statistical analysis for RF-EMF exposure levels in sensitive land use: A novel study in Greek primary and secondary education schools. Environ. Res. 2020, 191, 109940. [Google Scholar] [CrossRef]
- Panagiotakopoulos, T.; Kiouvrekis, Y.; Misthos, L.M.; Kappas, C. RF-EMF Exposure Assessments in Greek Schools to Support Ubiquitous IoT-Based Monitoring in Smart Cities. IEEE Access 2023, 11, 7145–7156. [Google Scholar] [CrossRef]
- ICNIRP. Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz). Health Phys. 2020, 118, 483–524. [Google Scholar] [CrossRef]
- Elzanaty, A.; Chiaraviglio, L.; Alouini, M.S. 5G and EMF Exposure: Misinformation, Open Questions, and Potential Solutions. Front. Commun. Netw. 2021, 2, 635716. [Google Scholar] [CrossRef]
- Korkmaz, E.; Aerts, S.; Coesoij, R.; Bhatt, C.R.; Velghe, M.; Colussi, L.; Land, D.; Petroulakis, N.; Spirito, M.; Bolte, J. A comprehensive review of 5G NR RF-EMF exposure assessment technologies: Fundamentals, advancements, challenges, niches, and implications. Environ. Res. 2024, 260, 119524. [Google Scholar] [CrossRef]
- Gajšek, P.; Ravazzani, P.; Grellier, J.; Samaras, T.; Bakos, J.; Thuróczy, G. Review of Studies Concerning Electromagnetic Field (EMF) Exposure Assessment in Europe: Low Frequency Fields (50 Hz–100 kHz). Int. J. Environ. Res. Public Health 2016, 13, 875. [Google Scholar] [CrossRef]
- Veludo, A.F.; Stroobandt, B.; Van Bladel, H.; Sandoval-Diez, N.; Guxens, M.; Joseph, W.; Röösli, M. Exploring RF-EMF levels in Swiss microenvironments: An evaluation of environmental and auto-induced downlink and uplink exposure in the era of 5G. Environ. Res. 2025, 266, 120550. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.K.; Jeon, S.B.; Choi, H.D. EMF Levels in 5G New Radio Environment in Seoul, Korea. IEEE Access 2021, 9, 19716–19722. [Google Scholar] [CrossRef]
- Ramirez-Vazquez, R.; Escobar, I.; Thielens, A.; Arribas, E. Measurements and Analysis of Personal Exposure to Radiofrequency Electromagnetic Fields at Outdoor and Indoor School Buildings: A Case Study at a Spanish School. IEEE Access 2020, 8, 195692–195702. [Google Scholar] [CrossRef]
- Ramirez-Vazquez, R.; Escobar, I.; Arribas, E.; Vandenbosch, G.A.E. Systematic Review of Exposure Studies to Radiofrequency Electromagnetic Fields: Spot Measurements and Mixed Methodologies. Appl. Sci. 2024, 14, 11161. [Google Scholar] [CrossRef]
- Seybold, J.S. Introduction to RF Propagation; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Yun, Z.; Iskander, M.F. Ray Tracing for Radio Propagation Modeling: Principles and Applications. IEEE Access 2015, 3, 1089–1100. [Google Scholar] [CrossRef]
- Bi, S.; Lyu, J.; Ding, Z.; Zhang, R. Engineering Radio Maps for Wireless Resource Management. IEEE Wirel. Commun. 2019, 26, 133–141. [Google Scholar] [CrossRef]
- Romero, D.; Ha, T.N.; Shrestha, R.; Franceschetti, M. Theoretical Analysis of the Radio Map Estimation Problem. Trans. Wirel. Comm. 2024, 23, 13722–13737. [Google Scholar] [CrossRef]
- Bazerque, J.A.; Giannakis, G.B. Distributed spectrum sensing for cognitive radio networks by exploiting sparsity. Trans. Signal Proc. 2010, 58, 1847–1862. [Google Scholar] [CrossRef]
- Yilmaz, H.B.; Tugcu, T.; Alagöz, F.; Bayhan, S. Radio environment map as enabler for practical cognitive radio networks. IEEE Commun. Mag. 2013, 51, 162–169. [Google Scholar] [CrossRef]
- Haykin, S. Cognitive radio: Brain-empowered wireless communications. IEEE J. Sel. Areas Commun. 2005, 23, 201–220. [Google Scholar] [CrossRef]
- Koutlia, K.; Bojović, B.; Lagén, S.; Giupponi, L. Novel radio environment map for the ns-3 NR simulator. In Proceedings of the WNS3 ’21, Virtual, 23–24 June 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 41–48. [Google Scholar] [CrossRef]
- Colombi, D.; Ghasemifard, F.; Joshi, P.; Xu, B.; Paola, C.D.; Törnevik, C. Methods and Practices for In Situ Measurements of RF EMF Exposure From 5G Millimeter Wave Base Stations. IEEE Trans. Electromagn. Compat. 2022, 64, 1986–1993. [Google Scholar] [CrossRef]
- Capriglione, D. In-Situ RF Measurements of EMFs for Human Exposure Assessment Due to Modern Cellular Base Stations. IEEE Instrum. Meas. Mag. 2021, 24, 31–36. [Google Scholar] [CrossRef]
- Wang, S.; Wiart, J. Sensor-Aided EMF Exposure Assessments in an Urban Environment Using Artificial Neural Networks. Int. J. Environ. Res. Public Health 2020, 17, 3052. [Google Scholar] [CrossRef]
- Miclăuş, S.; Petriţa, T. Electromagnetic Field Monitoring by Fixed Stations in Romania: Data Processing Methods and Outcomes. Int. Conf. Knowl.-Based Organ. 2024, 30, 93–98. [Google Scholar] [CrossRef]
- Phillips, C.; Sicker, D.; Grunwald, D. A Survey of Wireless Path Loss Prediction and Coverage Mapping Methods. IEEE Commun. Surv. Tutor. 2013, 15, 255–270. [Google Scholar] [CrossRef]
- Department of Electronic Communications, Republic of Cyprus. EMF Measurements—Electromagnetic Fields Website. 2025. Available online: http://www.emf.mcw.gov.cy/emf/?page=emfmeasurements (accessed on 20 May 2025).
- Agence Nationale des Fréquences (ANFR). ANFR—Agence Nationale des Fréquences. 2025. Available online: https://www.anfr.fr/accueil (accessed on 20 May 2025).
- Bakirtzis, S.; Yapar, C.; Qui, K.; Wassell, I.; Zhang, J. Indoor Radio Map Dataset. IEEE DataPort 2024. [Google Scholar] [CrossRef]
- Yapar, Ç.; Levie, R.; Kutyniok, G.; Caire, G. Dataset of Pathloss and ToA Radio Maps With Localization Application. arXiv 2022, arXiv:2212.11777. [Google Scholar]
- Yapar, Ç.; Levie, R.; Kutyniok, G.; Caire, G. Dataset of Pathloss and ToA Radio Maps With Localization Application. IEEE DataPort 2022. [Google Scholar] [CrossRef]
- Zheng, Y. RSRPSet_urban: Radio map in dense urban. IEEE DataPort 2022. [Google Scholar] [CrossRef]
- Burmeister, F.; Li, Z.; Bizon, I. High-Resolution Radio Environment Map Data Set for Indoor Office Environment. IEEE DataPort 2022. [Google Scholar] [CrossRef]
- Abdulkarim, A.; Faruk, N.; Alozie, E.; Sowande, O.A.; Olayinka, I.F.Y.; Usman, A.D.; Adewole, K.S.; Oloyede, A.A.; Chiroma, H.; Garba, S.; et al. Application of Machine Learning Algorithms to Path Loss Modeling: A Review. In Proceedings of the 2022 5th Information Technology for Education and Development (ITED), Abuja, Nigeria, 1–3 November 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Li, J.; Ding, G.; Zhang, X.; Wu, Q. Recent Advances in Radio Environment Map: A Survey. In Proceedings of the Machine Learning and Intelligent Communications, Weihai, China, 5–6 August 2017; Gu, X., Liu, G., Li, B., Eds.; Springer: Cham, Switzerland, 2018; pp. 247–257. [Google Scholar]
- Feng, B.; Zheng, M.; Liang, W.; Zhang, L. A Recent Survey on Radio Map Estimation Methods for Wireless Networks. Electronics 2025, 14, 1564. [Google Scholar] [CrossRef]
- Dare, O.E.; Okokpujie, K.; Adetiba, E. Radio Environment Map Construction: A Mini-Review. In Proceedings of the 2023 2nd International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS), Abuja, Nigeria, 1–3 November 2023; Volume 1, pp. 1–7. [Google Scholar] [CrossRef]
- Kurt, S.; Tavli, B. Path-Loss Modeling for Wireless Sensor Networks: A review of models and comparative evaluations. IEEE Antennas Propag. Mag. 2017, 59, 18–37. [Google Scholar] [CrossRef]
- Friis, H. A Note on a Simple Transmission Formula. Proc. IRE 1946, 34, 254–256. [Google Scholar] [CrossRef]
- Lee, M.; Han, D. Voronoi Tessellation Based Interpolation Method for Wi-Fi Radio Map Construction. IEEE Commun. Lett. 2012, 16, 404–407. [Google Scholar] [CrossRef]
- Herring, K.T.; Holloway, J.W.; Staelin, D.H.; Bliss, D.W. Path-Loss Characteristics of Urban Wireless Channels. IEEE Trans. Antennas Propag. 2010, 58, 171–177. [Google Scholar] [CrossRef]
- de Souza, R.S.; Lins, R.D. A new propagation model for 2.4 GHz wireless LAN. In Proceedings of the 2008 14th Asia-Pacific Conference on Communications, Akihabara, Japan, 14–16 October 2008; pp. 1–5. [Google Scholar]
- Rizk, K.; Wagen, J.F.; Gardiol, F. Two-dimensional ray-tracing modeling for propagation prediction in microcellular environments. IEEE Trans. Veh. Technol. 1997, 46, 508–518. [Google Scholar] [CrossRef]
- Zhang, S.; Wijesinghe, A.; Ding, Z. RME-GAN: A Learning Framework for Radio Map Estimation Based on Conditional Generative Adversarial Network. IEEE Internet Things J. 2023, 10, 18016–18027. [Google Scholar] [CrossRef]
- Bazerque, J.A.; Mateos, G.; Giannakis, G.B. Group-Lasso on Splines for Spectrum Cartography. IEEE Trans. Signal Process. 2011, 59, 4648–4663. [Google Scholar] [CrossRef]
- Sato, K.; Suto, K.; Inage, K.; Adachi, K.; Fujii, T. Space-Frequency-Interpolated Radio Map. IEEE Trans. Veh. Technol. 2021, 70, 714–725. [Google Scholar] [CrossRef]
- Agarwal, A.; Gangopadhyay, R. Predictive spectrum occupancy probability-based spatio-temporal dynamic channel allocation map for future cognitive wireless networks. Trans. Emerg. Telecommun. Technol. 2018, 29, e3442. [Google Scholar] [CrossRef]
- Denkovski, D.; Atanasovski, V.; Gavrilovska, L.; Riihijärvi, J.; Mähönen, P. Reliability of a radio environment Map: Case of spatial interpolation techniques. In Proceedings of the 2012 7th International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), Stockholm, Sweden, 18–20 June 2012; pp. 248–253. [Google Scholar] [CrossRef]
- Azpurua, M.A.; Dos Ramos Teixeira, K. A comparison of spatial interpolation methods for estimation of average electromagnetic field magnitude. Prog. Electromagn. Res. M 2010, 14, 135–145. [Google Scholar] [CrossRef]
- Angjelicinoski, M.; Atanasovski, V.; Gavrilovska, L. Comparative analysis of spatial interpolation methods for creating radio environment maps. In Proceedings of the 2011 19thTelecommunications Forum (TELFOR) Proceedings of Papers, Belgrade, Serbia, 22–24 November 2011; pp. 334–337. [Google Scholar] [CrossRef]
- Phillips, C.; Ton, M.; Sicker, D.; Grunwald, D. Practical radio environment mapping with geostatistics. In Proceedings of the 2012 IEEE International Symposium on Dynamic Spectrum Access Networks, Bellevue, WA, USA, 16–19 October 2012; pp. 422–433. [Google Scholar] [CrossRef]
- Alaya-Feki, A.B.H.; Jemaa, S.B.; Sayrac, B.; Houze, P.; Moulines, E. Informed spectrum usage in cognitive radio networks: Interference cartography. In Proceedings of the 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, Cannes, France, 15–18 September 2008; pp. 1–5. [Google Scholar] [CrossRef]
- Guillén-Pina, J.; Pérez-Aracil, J.; del Cerro, R.C.; Sánchez-Montero, R.; López-Espí, P.L.; Salcedo-Sanz, S. Efficient design of electromagnetic field exposure maps with multi-method evolutionary ensembles. Environ. Res. 2025, 278, 121636. [Google Scholar] [CrossRef]
- Panagiotakopoulos, T.; Kiouvrekis, Y.; Ploussi, A.; Spyratou, E.; Efstathopoulos, E.P. Comparative Analysis of Interpolation Models for RF-EMF Exposure Mapping in Urban Areas. IEEE Access 2025, 13, 67006–67016. [Google Scholar] [CrossRef]
- Kiouvrekis, Y.; Zikas, S.; Katis, I.; Tsilikas, I.; Filippopoulos, I. Development of electromagnetic pollution maps utilizing Gaussian process spatial models. Sci. Total Environ. 2024, 955, 176907. [Google Scholar] [CrossRef] [PubMed]
- López-Espí, P.; Sánchez-Montero, R.; Guillén-Pina, J.; del Cerro, R.C.; Rojas, J. Optimal design of electromagnetic field exposure maps in large areas. Environ. Impact Assess. Rev. 2024, 106, 107525. [Google Scholar] [CrossRef]
- Shrestha, S.; Fu, X.; Hong, M. Deep Spectrum Cartography: Completing Radio Map Tensors Using Learned Neural Models. IEEE Trans. Signal Process. 2022, 70, 1170–1184. [Google Scholar] [CrossRef]
- Timilsina, S.; Shrestha, S.; Fu, X. Deep Spectrum Cartography Using Quantized Measurements. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Chaves-Villota, A.; Viteri-Mera, C.A. DeepREM: Deep-Learning-Based Radio Environment Map Estimation From Sparse Measurements. IEEE Access 2023, 11, 48697–48714. [Google Scholar] [CrossRef]
- Romero, D.; Kim, S.J.; López-Valcarce, R.; Giannakis, G.B. Spectrum cartography using quantized observations. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, Australia, 19–24 April 2015; pp. 3252–3256. [Google Scholar] [CrossRef]
- Krijestorac, E.; Hanna, S.; Cabric, D. Spatial Signal Strength Prediction using 3D Maps and Deep Learning. In Proceedings of the ICC 2021—IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Han, X.; Xue, L.; Shao, F.; Xu, Y. A Power Spectrum Maps Estimation Algorithm Based on Generative Adversarial Networks for Underlay Cognitive Radio Networks. Sensors 2020, 20, 311. [Google Scholar] [CrossRef]
- Teganya, Y.; Romero, D. Deep Completion Autoencoders for Radio Map Estimation. IEEE Trans. Wirel. Commun. 2022, 21, 1710–1724. [Google Scholar] [CrossRef]
- Shrestha, R.; Ha, T.N.; Viet, P.Q.; Romero, D. Radio Map Estimation in the Real-World: Empirical Validation and Analysis. In Proceedings of the 2023 IEEE Conference on Antenna Measurements and Applications (CAMA), Genoa, Italy, 15–17 November 2023; pp. 169–174. [Google Scholar] [CrossRef]
- Niu, Q.; Nie, Y.; He, S.; Liu, N.; Luo, X. RecNet: A Convolutional Network for Efficient Radiomap Reconstruction. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Popoola, S.I.; Jefia, A.; Atayero, A.A.; Kingsley, O.; Faruk, N.; Oseni, O.F.; Abolade, R.O. Determination of Neural Network Parameters for Path Loss Prediction in Very High Frequency Wireless Channel. IEEE Access 2019, 7, 150462–150483. [Google Scholar] [CrossRef]
- Tan, Z.; Xiao, L.; Tang, X.; Zhao, M.; Li, Y. A FL-Based Radio Map Reconstruction Approach for UAV-Aided Wireless Networks. Electronics 2023, 12, 2817. [Google Scholar] [CrossRef]
- Parera, C.; Liao, Q.; Malanchini, I.; Tatino, C.; Redondi, A.E.C.; Cesana, M. Transfer Learning for Tilt-Dependent Radio Map Prediction. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 829–843. [Google Scholar] [CrossRef]
- Ostlin, E.; Zepernick, H.J.; Suzuki, H. Macrocell Path-Loss Prediction Using Artificial Neural Networks. IEEE Trans. Veh. Technol. 2010, 59, 2735–2747. [Google Scholar] [CrossRef]
- Imai, T.; Kitao, K.; Inomata, M. Radio Propagation Prediction Model Using Convolutional Neural Networks by Deep Learning. In Proceedings of the 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 31 March–5 April 2019; pp. 1–5. [Google Scholar]
- Thrane, J.; Zibar, D.; Christiansen, H.L. Model-Aided Deep Learning Method for Path Loss Prediction in Mobile Communication Systems at 2.6 GHz. IEEE Access 2020, 8, 7925–7936. [Google Scholar] [CrossRef]
- Ratnam, V.V.; Chen, H.; Pawar, S.; Zhang, B.; Zhang, C.J.; Kim, Y.J.; Lee, S.; Cho, M.; Yoon, S.R. FadeNet: Deep Learning-Based mm-Wave Large-Scale Channel Fading Prediction and its Applications. IEEE Access 2021, 9, 3278–3290. [Google Scholar] [CrossRef]
- Kiouvrekis, Y.; Panagiotakopoulos, T.; Nousi, E.; Filippopoulos, I.; Ploussi, A.; Spyratou, E.; Efstathopoulos, E.P. Explainable Machine Learning for Radio Environment Mapping: An Intelligent System for Electric Field Strength Monitoring. IEEE Access 2025, 13, 75100–75118. [Google Scholar] [CrossRef]
- Suga, N.; Maeda, Y.; Sato, K. Indoor Radio Map Construction via Ray Tracing With RGB-D Sensor-Based 3D Reconstruction: Concept and Experiments in WLAN Systems. IEEE Access 2023, 11, 24863–24874. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Wiart, J. ExposNet: A Deep Learning Framework for EMF Exposure Prediction in Complex Urban Environments. arXiv 2025, arXiv:2503.02966. [Google Scholar] [CrossRef]
- Nyakyi, C.P.; Mpeshe, S.C.; Dida, M.A. Optimization of RF-EMF exposure to public in Tanzania using Artificial Neural Network and multi linear regression models. Environ. Chall. 2025, 18, 101066. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Mao, S.; Zhang, J.; Periaswamy, S.C.G.; Patton, J. Indoor Radio Map Construction and Localization With Deep Gaussian Processes. IEEE Internet Things J. 2020, 7, 11238–11249. [Google Scholar] [CrossRef]
- Seretis, A.; Sarris, C.D. Toward Physics-Based Generalizable Convolutional Neural Network Models for Indoor Propagation. IEEE Trans. Antennas Propag. 2022, 70, 4112–4126. [Google Scholar] [CrossRef]
- Kiouvrekis, Y.; Psomadakis, I.; Vavouranakis, K.; Zikas, S.; Katis, I.; Tsilikas, I.; Panagiotakopoulos, T.; Filippopoulos, I. Explainable Machine Learning-Based Electric Field Strength Mapping for Urban Environmental Monitoring: A Case Study in Paris Integrating Geographical Features and Explainable AI. Electronics 2025, 14, 254. [Google Scholar] [CrossRef]
- Mallik, M.; Tesfay, A.A.; Allaert, B.; Kassi, R.; Egea-Lopez, E.; Molina-Garcia-Pardo, J.M.; Wiart, J.; Gaillot, D.P.; Clavier, L. Towards Outdoor Electromagnetic Field Exposure Mapping Generation Using Conditional GANs. Sensors 2022, 22, 9643. [Google Scholar] [CrossRef]
- Kiouvrekis, Y.; Givisis, I.; Panagiotakopoulos, T.; Tsilikas, I.; Ploussi, A.; Spyratou, E.; Efstathopoulos, E.P. A Comparative Analysis of Explainable Artificial Intelligence Models for Electric Field Strength Prediction over Eight European Cities. Sensors 2025, 25, 53. [Google Scholar] [CrossRef]
- Mallik, M.; Kharbech, S.; Mazloum, T.; Wang, S.; Wiart, J.; Gaillot, D.P.; Clavier, L. EME-Net: A U-net-based Indoor EMF Exposure Map Reconstruction Method. In Proceedings of the 2022 16th European Conference on Antennas and Propagation (EuCAP), Madrid, Spain, 27 March–1 April 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Kalatzis, D.; Ploussi, A.; Spyratou, E.; Panagiotakopoulos, T.; Efstathopoulos, E.P.; Kiouvrekis, Y. Explainable AI for Spectral Analysis of Electromagnetic Fields. IEEE Access 2025, 13, 113407–113427. [Google Scholar] [CrossRef]
- Sommer, C.; Joerer, S.; Dressler, F. On the applicability of Two-Ray path loss models for vehicular network simulation. In Proceedings of the 2012 IEEE Vehicular Networking Conference (VNC), Seoul, Republic of Korea, 14–16 November 2012; pp. 64–69. [Google Scholar] [CrossRef]
- Sommer, C.; Dressler, F. Using the Right Two-Ray Model? A Measurement-based Evaluation of PHY Models in VANETs. In Proceedings of the MobiCom 2011, Las Vegas, NV, USA, 19–23 September 2011. [Google Scholar]
- Giordano, E.; Frank, R.; Ghosh, A.; Pau, G.; Gerla, M. Two Ray or not Two Ray this is the price to pay. In Proceedings of the 2009 IEEE 6th International Conference on Mobile Adhoc and Sensor Systems, Macau, China, 12–15 October 2009; pp. 603–608. [Google Scholar]
- Egli, J.J. Radio Propagation above 40 MC over Irregular Terrain. Proc. IRE 1957, 45, 1383–1391. [Google Scholar] [CrossRef]
- Jawhly, T.; Tiwari, R.C. The special case of Egli and Hata model optimization using least-square approximation method. SN Appl. Sci. 2020, 2, 1296. [Google Scholar] [CrossRef]
- Mlinar, T.; Podgrajšek, U.; Batagelj, B. Comparison of Coverage-Prediction Models for Modern Mobile Radio Networks. Electronics 2023, 12, 4554. [Google Scholar] [CrossRef]
- Deme, A.; Dajab, D.D.; Bajoga, B.G.; Mu’azu, M.A.; Choji, D.N. Hata-Okumura Model Computer Analysis for Path Loss Determination at 900MHz for Maiduguri, Nigeria. Math. Theory Model. 2013, 3, 1–9. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiouvrekis, Y.; Panagiotakopoulos, T. Electromagnetic Field Distribution Mapping: A Taxonomy and Comprehensive Review of Computational and Machine Learning Methods. Computers 2025, 14, 373. https://doi.org/10.3390/computers14090373
Kiouvrekis Y, Panagiotakopoulos T. Electromagnetic Field Distribution Mapping: A Taxonomy and Comprehensive Review of Computational and Machine Learning Methods. Computers. 2025; 14(9):373. https://doi.org/10.3390/computers14090373
Chicago/Turabian StyleKiouvrekis, Yiannis, and Theodor Panagiotakopoulos. 2025. "Electromagnetic Field Distribution Mapping: A Taxonomy and Comprehensive Review of Computational and Machine Learning Methods" Computers 14, no. 9: 373. https://doi.org/10.3390/computers14090373
APA StyleKiouvrekis, Y., & Panagiotakopoulos, T. (2025). Electromagnetic Field Distribution Mapping: A Taxonomy and Comprehensive Review of Computational and Machine Learning Methods. Computers, 14(9), 373. https://doi.org/10.3390/computers14090373