Procedural Modeling of Buildings Composed of Arbitrarily-Shaped Floor-Plans: Background, Progress, Contributions and Challenges of a Methodology Oriented to Cultural Heritage
Abstract
:1. Introduction
- chronological compilation of the proposed methodology progress and related works in a single documenting source;
- overview of the methodology contributions that allowed accomplishing other VR/AR works supporting archeology promotion, providing an insight towards procedural modeling’s practical application;
- presentation of an integrated digital environment built up with the support of the proposed methodology, which includes both manually-produced and procedurally-generated virtual models.
2. Background on Settlements’ Virtual Production/Reconstruction
2.1. Non-Procedural Modeling Approaches
2.2. Approaches Relying on or Including Procedural Modeling
3. Procedural Modeling of Buildings Composed of Arbitrarily-Shaped Floor-Plans: Revisiting the Methodology
3.1. Step 1: Data Input
axiom->function(_parameters): {set_of_resulting_symbols},
3.2. Floor-Plan Subdivision Common Approach
3.3. Step 2: Rules’ Moderator
3.4. Step 3: Procedural Modeling Generation Process
3.5. Step 4: Virtual Building Model Outcome
3.6. Bridging Users with the Methodology Through a Gui-Based Software
4. Scientific Contributions and Development Stages of the Procedural Modeling Methodology
4.1. Genesis: Virtual Reconstruction of Roman Buildings In Eras
4.2. Methodology Enhancements: Providing Shape Freedom at the Floor-Plan Level
4.3. Methodology Enhancements: An Experimental Approach Towards Autonomous Building Generation
4.4. Methodology Contributions: Mixar Project and In Situ Virtual Reconstructions Seamlessly Aligned Upon Ruins
4.5. Methodology Contributions: Recovering Lost Heritage in Faithful Virtual Environments Produced with Aerial-Based Photogrammetry
4.6. Methodology Enhancements: Moving Towards Convincing Roofs Generation with the Straight Skeleton Approach
... bpart0->buildingpart(HipGlued,10):{...} ... bpart1->buildingpart(HipGlued,10):{...} ... bpart2->buildingpart(Hip,10):{...} ...
4.7. Computational Performance
5. Conclusions and Future Challenges
Author Contributions
Funding
Conflicts of Interest
References
- De Santis, R.; Gloria, A.; Viglione, S.; Maietta, S.; Nappi, F.; Ambrosio, L.; Ronca, D. 3D laser scanning in conjunction with surface texturing to evaluate shift and reduction of the tibiofemoral contact area after meniscectomy. J. Mech. Behav. Biomed. Mater. 2018, 88, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Brusaporci, S. Handbook of Research on Emerging Digital Tools for Architectural Surveying, Modeling, and Representation; IGI Global: Hershey, PA, USA, 2015. [Google Scholar]
- Achille, C.; Adami, A.; Chiarini, S.; Cremonesi, S.; Fassi, F.; Fregonese, L.; Taffurelli, L. UAV-based photogrammetry and integrated technologies for architectural applications?Methodological strategies for the after-quake survey of vertical structures in Mantua (Italy). Sensors 2015, 15, 15520–15539. [Google Scholar] [CrossRef] [PubMed]
- Gellrich, N.C.; Schramm, A.; Hammer, B.; Rojas, S.; Cufi, D.; Lagrèze, W.; Schmelzeisen, R. Computer-assisted secondary reconstruction of unilateral posttraumatic orbital deformity. Plast. Reconstr. Surg. 2002, 110, 1417–1429. [Google Scholar] [PubMed]
- Tepper, O.M.; Sorice, S.; Hershman, G.N.; Saadeh, P.; Levine, J.P.; Hirsch, D. Use of virtual 3-dimensional surgery in post-traumatic craniomaxillofacial reconstruction. J. Oral Maxillofac. Surg. 2011, 69, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Sing, K.H.; Xie, W. Garden: A mixed reality experience combining virtual reality and 3D reconstruction. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 180–183. [Google Scholar]
- Augusto, I.; Monteiro, D.; Girard-Dias, W.; dos Santos, T.O.; Belmonte, S.L.R.; de Oliveira, J.P.; Mauad, H.; da Silva Pacheco, M.; Lenz, D.; Bittencourt, A.S.; et al. Virtual Reconstruction and Three-Dimensional Printing of Blood Cells as a Tool in Cell Biology Education. PLoS ONE 2016, 11, e0161184. [Google Scholar] [CrossRef] [PubMed]
- Zollikofer, C.P.; de León, M.S.P.; Lieberman, D.E.; Guy, F.; Pilbeam, D.; Likius, A.; Mackaye, H.T.; Vignaud, P.; Brunet, M. Virtual cranial reconstruction of Sahelanthropus tchadensis. Nature 2005, 434, 755. [Google Scholar] [CrossRef]
- Guidi, G.; Russo, M.; Angheleddu, D. 3D survey and virtual reconstruction of archeological sites. Digit. Appl. Archaeol. Cult. Herit. 2014, 1, 55–69. [Google Scholar] [CrossRef]
- Dylla, K.; Frischer, B.; Müller, P.; Ulmer, A.; Haegler, S. Rome Reborn 2.0: A Case Study of Virtual City Reconstruction Using Procedural Modeling Techniques. In Proceedings of the 37th Proceedings of the CAA Conference, Williamsburg, VA, USA, 22–26 March 2010; pp. 62–66. [Google Scholar]
- Magalhães, L.G.; Adão, T.; Peres, E. Reconstructing the Past: Providing an Enhanced Perceptual Experience. In Handbook of Research on Technological Developments for Cultural Heritage and eTourism Applications; IGI Global: Hershey, PA, USA, 2018; pp. 140–172. [Google Scholar]
- Adão, T.; Magalhães, L.; Peres, E. Ontology-Based Procedural Modeling of Traversable Buildings Composed by Arbitrary Shapes, 1st ed.; Springer Briefs in Computer Science; Springer International Publishing: Cham, Switzerland, 2016; Volume 1. [Google Scholar]
- Adão, T.; Magalhães, L.; Bessa, M.; Barreira, J.; Melo, M.; Gonçalves, M.; Sousa, J.; Peres, E. Proposal of an Information System for a Semi-automatic Virtual Reconstruction of Archeological Sites. Procedia Technol. 2012, 5, 566–574. [Google Scholar] [CrossRef]
- Adão, T.; Magalhães, L.; Bessa, M.; Coelho, A.; Sousa, A.; Rodrigues, N.; Rodrigues, R.; Pereira, F.; Moura, J.; Reis, L.P. ERAS—An Ontology-Based Tool for the Expeditious Reconstruction of Virtual Cultural Heritage Sites. In Proceedings of the Actas do 20° Encontro Português de Computação Gráfica, Viana do Castelo, Portugal, 24–26 October 2012. [Google Scholar]
- Adão, T.; Magalhães, L.; Peres, E. Semi-automatic virtual reconstruction of ancient Roman houses. In Proceedings of the 2013 8th Iberian Conference on Information Systems and Technologies (CISTI), Lisboa, Portugal, 19–22 June 2013; pp. 1–6. [Google Scholar]
- Adão, T.; Magalhães, L.; Peres, E.; Pereira, F. Procedural Generation of Traversable Buildings Outlined by Arbitrary Convex Shapes. Procedia Technol. 2014, 16, 310–321. [Google Scholar] [CrossRef]
- Adão, T. Ontology-Based Procedural Modeling of Traversable Buildings Composed by Arbitrary Shapes. Ph.D. Thesis, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal, 2015. [Google Scholar]
- Adão, T.; Batista, R.; Peres, E.; Magalhães, L.G.; António, C. Reconstructing traversable buildings for archeology with ERAS. In Proceedings of the Virtual and Networked Organizations: Emergent Technologies and Tools—ViNOrg ’13, Póvoa de Varzim, Portugal, 20–22 November 2013. [Google Scholar]
- Magalhães, L.G.; Sousa, J.J.; Bento, R.; Adão, T.; Pereira, F.; Filipe, V.; Peres, E. Proposal of an Information System for an Adaptive Mixed Reality System for Archaeological Sites. Procedia Technol. 2014, 16, 499–507. [Google Scholar] [CrossRef]
- Narciso, D.; Pádua, L.; Adão, T.; Peres, E.; Magalhães, L. MixAR Mobile Prototype: Visualizing Virtually Reconstructed Ancient Structures In Situ. Procedia Comput. Sci. 2015, 64, 852–861. [Google Scholar] [CrossRef]
- Pádua, L.; Narciso, D.; Adão, T.; Cunha, A.; Peres, E.; Magalhães, L. Cost-effective and lightweight mobile units for MixAR: A comparative trial among different setups. Procedia Comput. Sci. 2015, 64, 870–878. [Google Scholar] [CrossRef]
- Pádua, L.; Adão, T.; Narciso, D.; Cunha, A.; Magalhães, L.; Peres, E. Towards Modern Cost-effective and Lightweight Augmented Reality Setups. Int. J. Web Portals (IJWP) 2015, 7, 33–59. [Google Scholar] [CrossRef]
- Pádua, L.F.M. ULTRA-light and Low-Cost Mobile Augmented Reality Units. Master’s Thesis, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal, 2015. [Google Scholar]
- Narciso, D.G. Técnicas de tracking sem marcas em aaplicações de realidade mista. Master’s Thesis, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal, 2016. [Google Scholar]
- Adão, T.; Pádua, L.; Hruška, J.; Peres, E.; Sousa, J.J.; Morais, R.; Magalhães, L.G. Bringing together UAS-based land surveying and procedural modeling of buildings to set up enhanced VR environments for cultural heritage. In Proceedings of the EPCGi’2017—24th Portuguese Meeting of Computer Graphics and Interaction, Guimaraes, Portugal, 12–13 October 2017; IEEE Xplore: Guimarães, Portugal, 2017. [Google Scholar]
- Felkel, P.; Obdrzalek, S. Straight skeleton implementation. In Proceedings of the Spring Conference on Computer Graphics, Budmerice, Slovakia, 12–14 May 1998. [Google Scholar]
- Eppstein, D.; Erickson, J. Raising Roofs, Crashing Cycles, and Playing Pool: Applications of a Data Structure for Finding Pairwise Interactions. In Proceedings of the Fourteenth Annual Symposium on Computational Geometry, Minneapolis, MN, USA, 7–10 June 1998; ACM: New York, NY, USA, 1998; pp. 58–67. [Google Scholar]
- Laycock, R.G.; Day, A. Automatically generating large urban environments based on the footprint data of buildings. In Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications, Seattle, WA, USA, 16–20 June 2003; pp. 346–351. [Google Scholar]
- Belle, I. The architecture, engineering and construction industry and blockchain technology. Digit. Cult. 2017, 2017, 279–284. [Google Scholar]
- Bernardes, P. Arqueologia Urbana e Ambientes Virtuais: Um Sistema Para Bracara Augusta. Master’s Thesis, Universidade do Minho, Braga, Portugal, 2002. [Google Scholar]
- Gonçalves, A.J.M. Reconstrução de ambientes históricos utilizando VRML: O caso do Fórum Flaviano de Conimbriga. Master’s Thesis, Universidade de Coimbra, Coimbra, Portugal, 2002. [Google Scholar]
- Da Câmara, A.G.; Murteira, H.; Rodrigues, P. City and spectacle: A vision of pre-earthquake Lisbon. In Proceedings of the 2009 15th International Conference on Virtual Systems and Multimedia, Vienna, Austria, 9–12 September 2009; pp. 239–243. [Google Scholar]
- Matini, M.R.; Ono, K. Accuracy Verification of Manual 3D CG Reconstruction: Case Study of Destroyed Architectural Heritage, Bam Citadel; Digital Heritage; Ioannides, M., Fellner, D., Georgopoulos, A., Hadjimitsis, D.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 432–440. [Google Scholar]
- Andaroodi, E.; Matini, M.R.; Ono, K. Post Disaster Virtual Revival: 3D CG Manual Reconstruction of a World Heritage Site in Danger. In Virtual Reality-Human Computer Interaction; InTech: Vienna, Austria, 2012. [Google Scholar]
- Lebres, F. Reconstrução fidedigna da vila velha no séc. XIII. Master’s Thesis, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal, 2011. [Google Scholar]
- Razuvalova, E.; Nizamutdinov, A. Virtual reconstruction of cultural and historical monuments of the Middle Volga. Procedia Comput. Sci. 2015, 75, 129–136. [Google Scholar] [CrossRef]
- Molinero-Polo, M.; Hernández, C.; Méndez-Rodríguez, D.; Naranjo, T.; Díaz, Y.; Pérez-Ruiz, S.; Acebo, A.; Molins-Ruano, P.; Jurado, F.; Rodríguez, P.; et al. Bringing Egyptology to the classroom: Virtual reconstruction of the TT 209 site. In Proceedings of the 2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV), Madrid, Spain, 24–26 February 2016; pp. 306–310. [Google Scholar]
- Deggim, S.; Kersten, T.; Lindstaedt, M.; Hinrichsen, N. The Return Of The Siegesburg–3D-Reconstruction of a Disappeared and Forgotten Monument. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 209. [Google Scholar] [CrossRef]
- Grossmann, E.; Santos-Victor, J. Least-squares 3D reconstruction from one or more views and geometric clues. Comput. Vis. Image Underst. 2005, 99, 151–174. [Google Scholar] [CrossRef]
- Pollefeys, M.; Van Gool, L.; Akkermans, I.; De Becker, D.; Demuynck, K. A Guided Tour to Virtual Sagalassos. In Proceedings of the 2001 Conference on Virtual Reality, Archeology, and Cultural Heritage, Glyfada, Greece, 28–30 November 2001; ACM: New York, NY, USA, 2001; pp. 213–218. [Google Scholar]
- Agarwal, S.; Furukawa, Y.; Snavely, N.; Simon, I.; Curless, B.; Seitz, S.M.; Szeliski, R. Building Rome in a Day. Commun. ACM 2011, 54, 105–112. [Google Scholar] [CrossRef]
- De Reu, J.; De Smedt, P.; Herremans, D.; Van Meirvenne, M.; Laloo, P.; De Clercq, W. On introducing an image-based 3D reconstruction method in archaeological excavation practice. J. Archaeol. Sci. 2014, 41, 251–262. [Google Scholar] [CrossRef]
- Koutsoudis, A.; Vidmar, B.; Ioannakis, G.; Arnaoutoglou, F.; Pavlidis, G.; Chamzas, C. Multi-image 3D reconstruction data evaluation. J. Cult. Herit. 2014, 15, 73–79. [Google Scholar] [CrossRef]
- Bolognesi, M.; Furini, A.; Russo, V.; Pellegrinelli, A.; Russo, P. Testing The Low-Cost RPAS Potential In 3d Cultural Heritage Reconstruction. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015. [Google Scholar] [CrossRef]
- Dhonju, H.; Xiao, W.; Sarhosis, V.; Mills, J.; Wilkinson, S.; Wang, Z.; Thapa, L.; Panday, U. Feasibility study of low-cost image-based heritage documentation in Nepal. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 237. [Google Scholar] [CrossRef]
- Pierdicca, R. Mapping Chimu’s settlements for conservation purposes using UAV and close range photogrammetry. The virtual reconstruction of Palacio Tschudi, Chan Chan, Peru. Digit. Appl. Archeol. Cult. Herit. 2018, 8, 27–34. [Google Scholar] [CrossRef]
- Lira, J.; López, P.; Rodríguez, A. Detection of Maya’s archaeological sites using high resolution radar images. Int. J. Remote Sens. 2005, 26, 1245–1260. [Google Scholar] [CrossRef]
- Challis, K. Airborne laser altimetry in alluviated landscapes. Archaeol. Prospect. 2006, 13, 103–127. [Google Scholar] [CrossRef]
- Rodrigues, N.C.S. Visualização de superfícies dinâmicas. Master’s Thesis, Universidade Nova de Lisboa, Lisbon, Portugal, 2005. [Google Scholar]
- Allen, P.K.; Troccoli, A.; Smith, B.; Murray, S.; Stamos, I.; Leordeanu, M. New methods for digital modeling of historic sites. IEEE Comput. Graph. Appl. 2003, 23, 32–41. [Google Scholar] [CrossRef]
- Beraldin, S.E.H.J.A.; Gonzo, L.; Whiting, E.; Jemtrud, M.; Valzanoe, V. A Hierarchical 3d Reconstruction Approach for Documenting Complex Heritage Sites. In Proceedings of the XX CIPA International Symposium, Torino, Italy, 26 September–1 October 2005. [Google Scholar]
- Kampel, M.; Mara, H.; Sablatnig, R. Automated investigation of archaeological vessels. In Proceedings of the 14th European Signal Processing Conference, Florence, Italy, 4–8 September 2006; pp. 1–5. [Google Scholar]
- Mohammed Oludare, I.; Pradhan, B. A decade of modern cave surveying with terrestrial laser scanning: A review of sensors, method and application development. Int. J. Speleol. 2016, 45, 8. [Google Scholar] [CrossRef]
- Rodríguez-Gonzálvez, P.; Jiménez Fernández-Palacios, B.; Muñoz-Nieto, N.L.; Arias-Sanchez, P.; Gonzalez-Aguilera, D. Mobile LiDAR system: New possibilities for the documentation and dissemination of large cultural heritage sites. Remote Sens. 2017, 9, 189. [Google Scholar] [CrossRef]
- Remondino, F.; El-Hakim, S.; Girardi, S.; Rizzi, A.; Benedetti, S.; Gonzo, L. 3D Virtual reconstruction and visualization of complex architectures-The 3D-ARCH project. In Proceedings of the 3rd International Workshop, 3D-ARCH 2009, Trento, Italy, 25–28 February 2009. [Google Scholar]
- Xu, Z.; Wu, L.; Shen, Y.; Li, F.; Wang, Q.; Wang, R. Tridimensional Reconstruction Applied to Cultural Heritage with the Use of Camera-Equipped UAV and Terrestrial Laser Scanner. Remote Sens. 2014, 6, 10413–10434. [Google Scholar] [CrossRef]
- Hess, M.; Petrovic, V.; Meyer, D.; Rissolo, D.; Kuester, F. Fusion of multimodal three-dimensional data for comprehensive digital documentation of cultural heritage sites. Digit. Herit. 2015, 2, 595–602. [Google Scholar]
- Figueiredo, M.; Bernardes, J.P.; Rodrigues, J.I.; Gonçalves, C. A Framework Supported by Modeling and Virtual/Augmented Reality for the Preservation and Dynamization of Archeological-Historical Sites. In Handbook of Research on Technological Developments for Cultural Heritage and eTourism Applications; IGI Global: Hershey, PA, USA, 2018; pp. 215–227. [Google Scholar]
- Fernández-Palacios, B.J.; Morabito, D.; Remondino, F. Access to complex reality-based 3D models using virtual reality solutions. J. Cult. Herit. 2017, 23, 40–48. [Google Scholar] [CrossRef]
- Stanco, F.; Gallo, G. (Eds.) Proceedings of ArcheoFOSS: Free, Libre and Open Source Software e Open Format Nei Processi Di Ricerca Archeologica: VIII Edizione, Catania 2013; Archaeopress: Oxford, UK, 2016. [Google Scholar]
- Parish, Y.I.H.; Müller, P. Procedural modeling of cities. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 12–17 August 2001; ACM: New York, NY, USA, 2001; pp. 301–308. [Google Scholar]
- Lindenmayer, A. Mathematical models for cellular interactions in development II. Simple and branching filaments with two-sided inputs. J. Theor. Biol. 1968, 18, 300–315. [Google Scholar] [CrossRef]
- Wonka, P.; Wimmer, M.; Sillion, F.; Ribarsky, W. Instant architecture. ACM Trans. Graph. 2003, 22, 669–677. [Google Scholar] [CrossRef]
- Finkenzeller, D.; Bender, J.; Schmitt, A. Feature-based decomposition of façades. In Proceedings of the Virtual Concept, Biarritz, France, 8–10 November 2005. [Google Scholar]
- Greuter, S.; Parker, J.; Stewart, N.; Leach, G. Real-time Procedural Generation of ‘Pseudo Infinite’ Cities. In Proceedings of the 1st International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia, Melbourne, VIC, Australia, 11–14 February 2003; ACM: New York, NY, USA, 2003. [Google Scholar]
- Dikaiakou, M.; Efthymiou, A.; Chrysanthou, Y. Modelling the Walled City of Nicosia. In Proceedings of the 4th International Conference on Virtual Reality, Archaeology and Intelligent Cultural Heritage, Brighton, UK, 5–7 November 2003; Eurographics Association: Aire-la-Ville, Switzerland, 2003; pp. 61–70. [Google Scholar]
- Müller, P.; Wonka, P.; Haegler, S.; Ulmer, A.; Van Gool, L. Procedural modeling of buildings. ACM Trans. Graph. 2006, 25, 614–623. [Google Scholar] [CrossRef]
- Muller, P.; Vereenooghe, T.; Wonka, P.; Paap, I.; Van Gool, L. Procedural 3D reconstruction of Puuc buildings in Xkipché. In Proceedings of the 7th International conference on Virtual Reality, Archaeology and Intelligent Cultural Heritage, Nicosia, Cyprus, 30 October–4 November 2006; Eurographics Association: Aire-la-Ville, Switzerland, 2006; pp. 139–146. [Google Scholar]
- Besuievsky, G.; Patow, G. Procedural modeling historical buildings for serious games. Virtual Archaeol. Rev. 2013, 4, 160–166. [Google Scholar] [CrossRef]
- Tepavčević, B.; Stojaković, V. Procedural modeling in architecture based on statistical and fuzzy inference. Autom. Constr. 2013, 35, 329–337. [Google Scholar] [CrossRef]
- Lipp, M.; Wonka, P.; Wimmer, M. Interactive Visual Editing of Grammars for Procedural Architecture. ACM Trans. Graph. 2008, 27, 102:1–102:10. [Google Scholar] [CrossRef]
- Carrozzino, M.; Tecchia, F.; Bergamasco, M. Urban procedural modeling for real-time rendering. In Proceedings of the 3rd ISPRS International Workshop 3D-ARCH, Trento, Italy, 25–28 February 2009. [Google Scholar]
- Liu, Y.; Xu, C.; Zhang, Q.; Pan, Y. The Smart Architect: Scalable Ontology-Based Modeling of Ancient Chinese Architectures. Intell. Syst. IEEE 2008, 23, 49–56. [Google Scholar] [CrossRef]
- Li, S.L.; Li, L.; Cao, M.W.; Cao, L.; Jia, W.; Liu, X.P. Rapid Modeling of Chinese Huizhou Traditional Vernacular Houses. IEEE Access 2017, 5, 20668–20683. [Google Scholar] [CrossRef]
- Silva, P.B.; Coelho, A. Procedural Modeling for Realistic Virtual Worlds Development. J. Virtual Worlds Res. 2011, 4. [Google Scholar] [CrossRef]
- Kelly, T.; Wonka, P. Interactive Architectural Modeling with Procedural Extrusions. ACM Trans. Graph. 2011, 30, 14:1–14:15. [Google Scholar] [CrossRef]
- Vanegas, C.A.; Kelly, T.; Weber, B.; Halatsch, J.; Aliaga, D.G.; Müller, P. Procedural generation of parcels in urban modeling. Comput. Graph. Forum 2012, 31, 681–690. [Google Scholar] [CrossRef]
- Barroso, S.; Besuievsky, G.; Patow, G. Visual copy & paste for procedurally modeled buildings by ruleset rewriting. Comput. Graph. 2013, 37, 238–246. [Google Scholar]
- Steinberger, M.; Kenzel, M.; Kainz, B.; Müller, J.; Peter, W.; Schmalstieg, D. Parallel generation of architecture on the GPU. Comput. Graph. Forum 2014, 33, 73–82. [Google Scholar] [CrossRef]
- Steinberger, M.; Kenzel, M.; Kainz, B.; Wonka, P.; Schmalstieg, D. On-the-fly generation and rendering of infinite cities on the GPU. Comput. Graph. Forum 2014, 33, 105–114. [Google Scholar] [CrossRef]
- Ilcík, M.; Musialski, P.; Auzinger, T.; Wimmer, M. Layer-Based Procedural Design of Façades. Comput. Graph. Forum 2015, 34, 205–216. [Google Scholar] [CrossRef]
- Edelsbrunner, J.; Havemann, S.; Sourin, A.; Fellner, D.W. Procedural Modeling of Round Building Geometry. In Proceedings of the 2016 International Conference on Cyberworlds (CW), Chongqing, China, 28–30 September 2016; pp. 81–88. [Google Scholar]
- Koenig, R.; Miao, Y.; Knecht, K.; Buš, P.; Mei-Chih, C. Interactive Urban Synthesis. In Proceedings of the Computer-Aided Architectural Design: Future Trajectories: 17th International Conference, CAAD Futures 2017, Istanbul, Turkey, 10–14 July 2017; Volume 724, p. 23. [Google Scholar]
- Rogla, O.; Pelechano, N.; Patow, G. Procedural Semantic Cities. 2017. Available online: https://pdfs.semanticscholar.org/730e/0f0f364777d3c35f22f3571ab52e0a137694.pdf (accessed on 14 March 2019).
- Jesus, D.; Patow, G.; Coelho, A.; Sousa, A.A. Generalized selections for direct control in procedural buildings. Comput. Graph. 2018, 72, 106–121. [Google Scholar] [CrossRef]
- Stiny, G.; Mitchell, W.J. The Palladian Grammar. Environ. Plan. B Plan. Des. 1978, 5, 5–18. [Google Scholar] [CrossRef]
- Rau-Chaplin, A.; MacKay-Lyons, B.; Spierenburg, P. The LaHave House Project: Towards and Automated Architectural Design Service. In Proceedings of the International Conference on Computer Aided Design (CADEX-96), Palo Alto, CA, USA, 6–8 November 1996; pp. 62–66. [Google Scholar]
- Bradley, B. Towards the Procedural Generation of Urban Building Interiors. Master’s Thesis, University of Hull, Hull, UK, 2005. [Google Scholar]
- Martin, J. Procedural house generation: A method for dynamically generating floor-plans. In Proceedings of the Symposium on Interactive 3D Graphics and Games, Redwood City, CA, USA, 14–17 March 2006. [Google Scholar]
- Hahn, E.; Bose, P.; Whitehead, A. Lazy Generation of Building Interiors in Realtime. In Proceedings of the Canadian Conference on Electrical and Computer Engineering, Ottawa, ON, Canada, 7–10 May 2006; pp. 2441–2444. [Google Scholar]
- Dahl, A.; Rinde, L. Procedural Generation of Indoor Environments. Master’s Thesis, Charmers University of Technology, Gothenburg, Sweden, 2008. [Google Scholar]
- Rodrigues, N.; Dionísio, M.; Gonçalves, A.; Magalhães, L.G.; Moura, J.P.; Chalmers, A. Rule-based Generation of Houses. Comput. Graph. Geom. 2008, 10, 49–65. [Google Scholar]
- RGEU. Regulamento Geral das Edificações Urbanas, Decreto no. 38382. 2008. Available online: http://www.pgdlisboa.pt/leis/lei_mostra_articulado.php?nid=1217&tabela=leis (accessed on 14 March 2019).
- Maciel, M. Vitrúvio—Tratado De Arquitetura; Ist Press: Palo Alto, CA, USA, 2006. [Google Scholar]
- Rodrigues, N.; Magalhães, L.; Moura, J.; Chalmers, A. Reconstruction and generation of virtual heritage sites. Digit. Appl. Archaeol. Cult. Herit. 2014, 1, 92–102. [Google Scholar] [CrossRef]
- Gonçalves, A.; Rodrigues, N.; Hipólito-Correia, V. Conimbriga as paradigm of cultural heritage (virtual) recriation. In Proceedings of the 2017 12th Iberian Conference on Information Systems and Technologies (CISTI), Lisbon, Portugal, 21–24 June 2017; pp. 1–6. [Google Scholar]
- Lopes, R.; Tim, T.; Smelik, R.M.; Jan de Kraker, K.; Bidarra, R. A Constrained Growth Method for Procedural Floor Plan Generation. In Proceedings of the GAMEON’10, Leicester, UK, 17–19 November 2010. [Google Scholar]
- Bruls, M.; Huizing, K.; van Wijk, J. Squarified Treemaps. In Proceedings of the Joint Eurographics and IEEE TCVG Symposium on Visualization, Vienna, Austria, 26–28 May 1999; pp. 33–42. [Google Scholar]
- Marson, F.; Musse, S.R. Automatic real-time generation of floor-plans based on squarified treemaps algorithm. Int. J. Comput. Games Technol. 2010, 2010, 7:1–7:10. [Google Scholar] [CrossRef]
- Mirahmadi, M.; Shami, A. A Novel Algorithm for Real-time Procedural Generation of Building Floor Plans. arXiv 2012, arXiv:1211.5842. [Google Scholar]
- Merrell, P.; Schkufza, E.; Koltun, V. Computer-generated residential building layouts. ACM Trans. Graph. 2010, 29, 181:1–181:12. [Google Scholar] [CrossRef]
- Trescak, T.; Esteva, M.; Rodriguez, I. A Virtual World Grammar for automatic generation of virtual worlds. Vis. Comput. 2010, 26, 521–531. [Google Scholar] [CrossRef]
- Hohmann, B.; Havemann, S.; Krispel, U.; Fellner, D. A GML shape grammar for semantically enriched 3D building models. Comput. Graph. 2010, 34, 322–334. [Google Scholar] [CrossRef]
- Tutenel, T.; Smelik, R.; Lopes, R.; de Kraker, K.; Bidarra, R. Generating Consistent Buildings: A Semantic Approach for Integrating Procedural Techniques. Comput. Intell. AI Games, IEEE Trans. 2011, 3, 274–288. [Google Scholar] [CrossRef]
- Leblanc, L.; Houle, J.; Poulin, P. Component-based Modeling of Complete Buildings. In Proceedings of the Graphics Interface, Waterloo, ON, Canada, 25–27 May 2011; pp. 87–94. [Google Scholar]
- Santos, D.S.; Dionísio, M.; Rodrigues, N.; Pereira, A. Efficient Creation of 3D Models from Building’s Floor Plans. Int. J. Interact. Worlds 2011, 2011, 1–30. [Google Scholar] [CrossRef]
- Arvola Bjelkesten, K. Feasibility of Point Grid Room First Structure Generation: A bottom-up approach. Master’s Thesis, Blekinge Institute of Technology, Karlskrona, Sweden, 2017. [Google Scholar]
- Wang, X.Y.; Yang, Y.; Zhang, K. Customization and generation of floor-plans based on graph transformations. Autom. Constr. 2018, 94, 405–416. [Google Scholar] [CrossRef]
- Gröger, G.; Kolbe, T.H.; Nagel, C.; Häfele, K.H. OGC City Geography Markup Language(CityGML) Encoding Standard; Technical Report; Open Geospatial Consortium, 2012; Available online: https://mediatum.ub.tum.de/doc/1145731/file.pdf (accessed on 14 March 2019).
- Larive, M.; Gaildrat, V. Wall Grammar for Building Generation. In Proceedings of the 4th International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia, Kuala Lumpur, Malaysia, 29 November–2 December 2006; ACM: New York, NY, USA, 2006; pp. 429–437. [Google Scholar]
- Rodrigues, N.; Magalhães, L.G.; Moura, J.P.; Chalmers, A. Automatic reconstruction of virtual heritage sites. In Proceedings of the 9th International Conference on Virtual Reality, Archaeology and Cultural Heritage, Braga, Portugal, 2–5 December 2008; pp. 39–46. [Google Scholar]
- Johnson, B.; Shneiderman, B. Treemaps: A space-filling approach to the visualization of hierarchical information structures. In Proceedings of the Visualization, San Diego, CA, USA, 22–25 October 1991; pp. 284–291. [Google Scholar]
- Correia, V. Conimbriga Ruínas—Museu Monográfico. 2011. Available online: http://www.conimbriga.pt/portugues/ruinas0.html (accessed on 14 March 2019).
- Bontcheva, K.; Cunningham, H.; Tablan, V.; Maynard, D.; Hamza, O. Using GATE as an Environment for Teaching NLP. In Proceedings of the ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing and Computational Linguistics-Volume 1. Association for Computational Linguistics, Philadelphia, PA, USA, 7 June 2002; pp. 54–62. [Google Scholar]
- Baptista, R.; Reis, L.P.; Magalhães, L.; Rodrigues, R.; Coelho, A.; Sousa, A. Extracção de informação de texto formal para a modelação expedita de edifícios monumentais. In Proceedings of the Actas do 20o Encontro Português de Computação Gráfica, Viana do Castelo, Portugal, 24–26 October 2012. [Google Scholar]
- Adão, T.; Pádua, L.; Narciso, D.; Sousa, J.J.; Peres, E.; Agrellos, L.; Magalhães, L. MixAR—A multi-tracking mixed reality system to visualize virtual ancient buildings aligned upon ruins. J. Inf. Technol. Res. (JITR) 2019, 12, 4–32. [Google Scholar]
- Martin, J. Algorithmic Beauty of Buildings Methods for Procedural Building Generation. Computer Science Honors Theses. 2005. Available online: https://digitalcommons.trinity.edu/compsci_honors/4 (accessed on 10 May 2019).
- Rodrigues, N. Rule-Based Generation of Virtual Traversable Architectural-Period Houses. Ph.D. Thesis, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal, 2010. [Google Scholar]
Modeling | Manual | Image-Based | Range Scanning | Procedural | |
---|---|---|---|---|---|
Topic | |||||
Short definition | Traditional handmade modeling through the use of CAD software tools. | 3D estimation supported by the pinhole model, triangulations, and SfM used in photogrammetry pipelines, among others. | Active sensor-based modeling acquiring surfaces’ 3D morphology, (usually) accessed as point clouds. | Collection of semi-automatic processes and techniques with a reduced demand for user interaction. | |
Conservation adequacy | Both well-conserved (digital reproduction) and degraded structures (hypothesis proposal). | Well-conserved structures (e.g., aiming at digital heritage documentation and conservation) or proper photographic documentation prior to advanced deterioration. | Well-conserved structures (e.g., aiming at digital heritage documentation and conservation). | Both well-conserved (digital reproduction) and degraded structures (hypotheses proposal). | |
Possible requirements | Skilled labor, time, and/or numerous human resources; need to understand issues related to geometric construction and morphology modeling. | Additional inputs (single view); proper image sets (multiple views); eventual training on time-consuming surveying techniques; knowledge on specialized software (e.g., photogrammetry); computational power. | Expensive sensors or data access; eventual training on time-consuming surveying techniques; knowledge on specialized software (LIDAR/GIS); computational power; complementary RGB sensor for color acquisition. | Grammars and rules systems that require some isolation level (e.g., graphical tools); computational resources may impact expeditiousness; rules to address specific geometric construction and morphology modeling issues must be supported. | |
Potential for automation | Lowest. | Medium. | Medium. | Highest. |
Building Parts | Rooms’ Range |
---|---|
1 | [3–7] |
2 | [5–9] |
3 | [7–11] |
4 | [9–13] |
5 | [11–15] |
Version | Preliminary Version | Enhanced Version | Final Version | |
---|---|---|---|---|
Topic | ||||
Rules’ system and format | Extensive and complex grammar-based rules following the L-system logical sequence; it also includes several (detachable) restriction rules. | XML4BD, also inspired by L-system (hierarchic organization enables building treemaps defining buildings’ structures). | Ontology-based grammar rules, inspired by L-system; GUI hiding grammar complexity. | |
Restriction rules | Semantic mapping of structures to categories corresponding to general ontology elements (generalization). | Complementary set of default parameters defining building components’ textures and dimensions. | Essentially, the same set of parameters of previous version, but accessible and editable through GUI. | |
Rules’ compiling and pre-testing | None. | XML4BD structure validation, parsing, and fitting into ontology-based classes, growth, and connectivity pre-test. | Adapted from the previous version to deal with the ontology-based grammar. | |
Supported shapes | Rectangles of variable size for different building parts. | Convex delimitations constraining buildings, with an impact on border rooms. | “Fake-concave” delimitations constraining buildings; convexly-arranged constraining walls for inner rooms. | |
Floor plan generation strategy | Rectangular divisions based on the pure treemap approach, considering relative occupation weights. | Rooms’ weights balanced distribution combined with a treemap approach adapted to work with convex shapes that are triangulated to control expansions, through Heron’s formula. | Flagging approach enabling one to consider or discard building parts to support “fake-concave” building delimitations; rooms’ shaping through user-defined grammar parameters. | |
Basic roof types | “Hip” type with a central descending hole (openings for gardens and water collection purposes, typically Roman). | Support to “Flat”, regular “Hip”, “Mansard”, “None” and “Pyramid” types. | Roof type based on the straight skeleton approach. | |
Special structures’ support | Water collection system, peristylium, without garden and columns, derived from the general to the Roman ontology. | Garden and completions: doors and windows frames. | Mainly addressing roofs’ enhancement (flaps’ and edges’ thickening operations). | |
Contributions and related works | Buildings ontology [14]; virtual reconstruction for archeological sites’ approach proposal [13]; textual extraction through natural language processing [115]; coarse generation of ancient Roman houses [15]. | Combination of natural language processing with procedural modeling for ERAS [18]; convex shapes support [16]; contributions for MixAR [20,21,22] and related master theses [23,24]. | Doctoral thesis [17] and book [12], documenting this procedural modeling methodology (including support to non-convex shapes outlining buildings and rooms’ shaping); a combination of this methodology with photogrammetry to set up enhanced VR environments [25]. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adão, T.; Pádua, L.; Marques, P.; Sousa, J.J.; Peres, E.; Magalhães, L. Procedural Modeling of Buildings Composed of Arbitrarily-Shaped Floor-Plans: Background, Progress, Contributions and Challenges of a Methodology Oriented to Cultural Heritage. Computers 2019, 8, 38. https://doi.org/10.3390/computers8020038
Adão T, Pádua L, Marques P, Sousa JJ, Peres E, Magalhães L. Procedural Modeling of Buildings Composed of Arbitrarily-Shaped Floor-Plans: Background, Progress, Contributions and Challenges of a Methodology Oriented to Cultural Heritage. Computers. 2019; 8(2):38. https://doi.org/10.3390/computers8020038
Chicago/Turabian StyleAdão, Telmo, Luís Pádua, Pedro Marques, Joaquim João Sousa, Emanuel Peres, and Luís Magalhães. 2019. "Procedural Modeling of Buildings Composed of Arbitrarily-Shaped Floor-Plans: Background, Progress, Contributions and Challenges of a Methodology Oriented to Cultural Heritage" Computers 8, no. 2: 38. https://doi.org/10.3390/computers8020038
APA StyleAdão, T., Pádua, L., Marques, P., Sousa, J. J., Peres, E., & Magalhães, L. (2019). Procedural Modeling of Buildings Composed of Arbitrarily-Shaped Floor-Plans: Background, Progress, Contributions and Challenges of a Methodology Oriented to Cultural Heritage. Computers, 8(2), 38. https://doi.org/10.3390/computers8020038