Evasion Differential Game of Multiple Pursuers and a Single Evader with Geometric Constraints in ℓ2
Abstract
1. Introduction
2. Statement of the Problem
3. The Main Result
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berkovitz, L.D. A Survey of Differential Games, Mathematical Theory of Control; Academic Press: New York, NY, USA, 1967; pp. 373–385. [Google Scholar]
- Chikrii, A.A. Conflict-Controlled Processes; Kluwer: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Elliot, R.J.; Kalton, N.J. The Existence of Value for Differential Games; American Mathematical Soc.: Providence, RI, USA, 1972. [Google Scholar]
- Fleming, W.H. A note on differential games of prescribed duration. Contrib. Theory Games 1957, 3, 407–416. [Google Scholar]
- Fleming, W.H. The convergence problem for differential games. J. Math. Anal. Appl. 1961, 3, 102–116. [Google Scholar] [CrossRef]
- Friedman, A. Differential Games; Wiley Interscience: New York, NY, USA, 1971. [Google Scholar]
- Hajek, O. Pursuit Games; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Ho, Y.; Bryson, A.; Baron, S. Differential games and optimal pursuit-evasion strategies. IEEE Trans. Autom. Control 1965, 10, 385–389. [Google Scholar] [CrossRef]
- Isaacs, R. Differential Games; John Wiley & Sons: New York, NY, USA, 1965. [Google Scholar]
- Krasovskii, N.N.; Subbotin, A.I. Game-Theoretical Control Problems; Springer: New York, NY, USA, 1988. [Google Scholar]
- Petrosyan, L.A. Differential Games of Pursuit; World Scientific: Singapore, 1993. [Google Scholar]
- Pontryagin, L.S. Selected Works; Nauka: Moscow, Russia, 1988. [Google Scholar]
- Fattorini, H.O. Time-Optimal control of solutions of operational differential equations. SIAM J. Control 1964, 2, 54–59. [Google Scholar]
- Fursikov, A.V. Optimal Control of Distributed Systems, Theory and Applications; Translations of Math. Monographs, 187; American Mathematical Society: Providence, RI, USA, 2000. [Google Scholar]
- Lions, J.L. Contrôle Optimal de Systémes Gouvernées par des Equations aux Dérivées Partielles; Dunod: Paris, France, 1968. [Google Scholar]
- Osipov, Y.S. The theory of differential games in systems with distributed parameters. Dokl Akad Nauk SSSR 1975, 223, 1314–1317. [Google Scholar]
- Avdonin, S.A.; Ivanov, S.A. Families of Exponentials: The Method of Moments in Controllability Problems for Distributed Parameter Systems; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Azamov, A.A.; Ruziboev, M.B. The time-optimal problem for evolutionary partial differential equations. J. Appl. Math. Mech. 2013, 77, 220–224. [Google Scholar] [CrossRef]
- Butkovskiy, A.G. Theory of Optimal Control of Distributed Parameter Systems; Elsevier: New York, NY, USA, 1969. [Google Scholar]
- Chernous’ko, F.L. Bounded controls in distributed-parameter systems. J. Appl. Math. Mech. 1992, 56, 707–723. [Google Scholar] [CrossRef]
- Ibragimov, G.I. A Problem of Optimal Pursuit in Systems with Distributed Parameters. J. Appl. Math. Mech. 2002, 66, 719–724. [Google Scholar] [CrossRef]
- Satimov, N.Y.; Tukhtasinov, M. Game problems on a fixed interval in controlled first-order evolution equations. Math. Notes 2006, 80, 578–589. [Google Scholar] [CrossRef]
- Satimov, N.Y.; Tukhtasinov, M. On Some Game Problems for First-Order Controlled Evolution Equations. Differ. Equ. 2005, 41, 1169–1177. [Google Scholar] [CrossRef]
- Satimov, N.Y.; Tukhtasinov, M. On Game Problems for Second-Order Evolution Equations. Russ. Math. 2007, 51, 49–57. [Google Scholar] [CrossRef]
- Tukhtasinov, M. Some problems in the theory of differential pursuit games in systems with distributed parameters. J. Appl. Math. Mech. 1995, 59, 979–984. [Google Scholar] [CrossRef]
- Tukhtasinov, M.; Mamatov, M.S. On Pursuit Problems in Controlled Distributed Parameters Systems. Math. Notes 2008, 84, 256–262. [Google Scholar] [CrossRef]
- Chernous’ko, F.L. A Problem of Evasion of Several Pursuers. Prikl. Mat. Mekh. 1976, 40, 14–24. [Google Scholar]
- Chernous’ko, F.L.; Zak, V.L. On differential games of evasion from many pursuers. J. Optim. Theory Appl. 1985, 46, 461–470. [Google Scholar] [CrossRef]
- Pshenichnii, B.N. Simple pursuit by several objects. Cybern. Syst. Anal. 1976, 12, 484–485. [Google Scholar] [CrossRef]
- Makkapati, V.R.; Tsiotras, P. Optimal evading strategies and task allocation in multi-player pursuit-evasion problems. Dyn. Games Appl. 2019, 9, 1168–1187. [Google Scholar] [CrossRef]
- Sun, W.; Tsiotras, P.; Lolla, T.; Subramani, D.N.; Lermusiaux, P.F.J. Multiple-pursuer/one-evader pursuit-evasion game in dynamic flowfields. JGCD 2017, 40. [Google Scholar] [CrossRef]
- Ramana, M.V.; Kothari, M. Pursuit-Evasion Games of High Speed Evader. J. Intell. Robot. Syst. 2017, 85, 293–306. [Google Scholar] [CrossRef]
- Ibragimov, G.I.; Ferrara, M.; Ruziboev, M.; Pansera, B.A. Linear evasion differential game of one evader and several pursuers with integral constraints. Int. J. Game Theory 2021, 50, 729–750. [Google Scholar] [CrossRef]
- Tukhtasinov, M.; Ibragimov, G.; Kuchkarova, S.; Mat Hasim, R. Differential Games for an Infinite 2-Systems of Differential Equations. Mathematics 2021, 9, 1467. [Google Scholar] [CrossRef]
- Ruziboev, M.; Mamayusupov, K.; Ibragimov, G.; Khaitmetov, A. On a linear differential game in the Hilbert space ℓ2. arXiv 2023, arXiv:2302.01632. [Google Scholar]
- Ibragimov, G.I.; Allahabi, F.; Kuchkarov, A.S. A pursuit problem in an infinite system of second-order differential equations. Ukr. Math. J. 2014, 65, 1203–1216. [Google Scholar] [CrossRef]
- Ibragimov, G.I. The optimal pursuit problem reduced to an infinite system of differential equation. J. Appl. Math. Mech. 2013, 77, 470–476. [Google Scholar] [CrossRef]
- Ibragimov, G.I. Optimal pursuit time for a differential game in the Hilbert space l2. Sci. Asia 2013, 39S, 25–30. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibragimov, G.; Ruziboev, M.; Zaynabiddinov, I.; Pansera, B.A. Evasion Differential Game of Multiple Pursuers and a Single Evader with Geometric Constraints in ℓ2. Games 2023, 14, 52. https://doi.org/10.3390/g14040052
Ibragimov G, Ruziboev M, Zaynabiddinov I, Pansera BA. Evasion Differential Game of Multiple Pursuers and a Single Evader with Geometric Constraints in ℓ2. Games. 2023; 14(4):52. https://doi.org/10.3390/g14040052
Chicago/Turabian StyleIbragimov, Gafurjan, Marks Ruziboev, Ibroximjon Zaynabiddinov, and Bruno Antonio Pansera. 2023. "Evasion Differential Game of Multiple Pursuers and a Single Evader with Geometric Constraints in ℓ2" Games 14, no. 4: 52. https://doi.org/10.3390/g14040052
APA StyleIbragimov, G., Ruziboev, M., Zaynabiddinov, I., & Pansera, B. A. (2023). Evasion Differential Game of Multiple Pursuers and a Single Evader with Geometric Constraints in ℓ2. Games, 14(4), 52. https://doi.org/10.3390/g14040052