Capping Agent Effect on Pd-Supported Nanoparticles in the Hydrogenation of Furfural
Abstract
:1. Introduction
2. Results
2.1. UV-Visible Characterization
2.2. Infrared (IR) Spectroscopy
2.3. Transmission Electron Microscopy (TEM)
2.4. X-ray Photoelectron Spectroscopy (XPS)
2.5. Catalytic Results
3. Materials and Methods
3.1. Materials
3.2. Catalysts Preparation
3.3. Catalytic Tests
3.4. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Lanzafame, P.; Centi, G.; Perathoner, S. Catalysis for biomass and CO2 use through solar energy: Opening new scenarios for a sustainable and low-carbon chemical production. Chem. Soc. Rev. 2014, 43, 7562–7580. [Google Scholar] [CrossRef]
- Chen, S.; Wojcieszak, R.; Dumeignil, F.; Marceau, E.; Royer, S. How Catalysts and Experimental Conditions Determine the Selective Hydroconversion of Furfural and 5-Hydroxymethylfurfural. Chem. Rev. 2018, 118, 11023–11117. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Barria, C.; Isaacs, M.; Wilson, K.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I. Optimization of ruthenium based catalysts for the aqueous phase hydrogenation of furfural to furfuryl alcohol. Appl. Catal. A Gen. 2018, 563, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.J.; Durndell, L.J.; Isaacs, M.A.; Parlett, C.M.A.; Wilson, K.; Lee, A.F.; Kyriakou, G. Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions. Appl. Catal. B Environ. 2016, 180, 580–585. [Google Scholar] [CrossRef]
- Aldosari, O.F.; Iqbal, S.; Miedziak, P.J.; Brett, G.L.; Jones, D.R.; Liu, X.; Edwards, J.K.; Morgan, D.J.; Knight, D.K.; Hutchings, G.J. Pd-Ru/TiO2 catalyst—An active and selective catalyst for furfural hydrogenation. Catal. Sci. Technol. 2016, 6, 234–242. [Google Scholar] [CrossRef] [Green Version]
- Mariscal, R.; Maireles-Torres, P.; Ojeda, M.; Sádaba, I.; López Granados, M. Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ. Sci. 2016, 9, 1144–1189. [Google Scholar] [CrossRef]
- Liu, L.; Lou, H.; Chen, M. Selective hydrogenation of furfural over Pt based and Pd based bimetallic catalysts supported on modified multiwalled carbon nanotubes (MWNT). Appl. Catal. A Gen. 2018, 550, 1–10. [Google Scholar] [CrossRef]
- Gilkey, M.J.; Panagiotopoulou, P.; Mironenko, A.V.; Jenness, G.R.; Vlachos, D.G.; Xu, B. Mechanistic Insights into Metal Lewis Acid-Mediated Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran. ACS Catal. 2015, 5, 3988–3994. [Google Scholar] [CrossRef]
- O’Driscoll, A.; Leahy, J.J.; Curtin, T. The influence of metal selection on catalyst activity for the liquid phase hydrogenation of furfural to furfuryl alcohol. Catal. Today 2017, 279, 194–201. [Google Scholar] [CrossRef]
- Gupta, K.; Rai, R.K.; Singh, S.K. Metal Catalysts for the Efficient Transformation of Biomass-derived HMF and Furfural to Value Added Chemicals. ChemCatChem 2018, 10, 2326–2349. [Google Scholar] [CrossRef]
- Li, X.; Jia, P.; Wang, T. Furfural: A Promising Platform Compound for Sustainable Production of C4 and C5 Chemicals. ACS Catal. 2016, 6, 7621–7640. [Google Scholar] [CrossRef]
- Giorgianni, G.; Abate, S.; Centi, G.; Perathoner, S.; Van Beuzekom, S.; Soo-Tang, S.H.; Van Der Waal, J.C. Effect of the Solvent in Enhancing the Selectivity to Furan Derivatives in the Catalytic Hydrogenation of Furfural. ACS Sustain. Chem. Eng. 2018, 6, 16235–16247. [Google Scholar]
- Bhogeswararao, S.; Srinivas, D. Catalytic conversion of furfural to industrial chemicals over supported Pt and Pd catalysts. J. Catal. 2015, 327, 65–77. [Google Scholar] [CrossRef]
- Wang, W.; Villa, A.; Kübel, C.; Hahn, H.; Wang, D. Tailoring the 3D Structure of Pd Nanocatalysts Supported on Mesoporous Carbon for Furfural Hydrogenation. ChemNanoMat 2018, 4, 1125–1132. [Google Scholar] [CrossRef]
- Wang, C.; Guo, Z.; Yang, Y.; Chang, J.; Borgna, A. Hydrogenation of furfural as model reaction of bio-oil stabilization under mild conditions using multiwalled carbon nanotube (MWNT)-supported pt catalysts. Ind. Eng. Chem. Res. 2014, 53, 11284–11291. [Google Scholar] [CrossRef]
- Meng, X.; Yang, Y.; Chen, L.; Xu, M.; Zhang, X.; Wei, M. A Control over Hydrogenation Selectivity of Furfural via Tuning Exposed Facet of Ni Catalysts. ACS Catal. 2019, 9, 4226–4235. [Google Scholar] [CrossRef]
- Zhou, X.; Feng, Z.; Guo, W.; Liu, J.; Li, R.; Chen, R.; Huang, J. Hydrogenation and Hydrolysis of Furfural to Furfuryl Alcohol, Cyclopentanone, and Cyclopentanol with a Heterogeneous Copper Catalyst in Water. Ind. Eng. Chem. Res. 2019, 58, 3988–3993. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Q.; Xu, J.; Li, L.; Cui, Y.T.; Lang, R.; Li, L.; Su, Y.; Miao, S.; Sun, H.; et al. Catalytic cascade conversion of furfural to 1,4-pentanediol in a single reactor. Green Chem. 2018, 20, 1770–1776. [Google Scholar] [CrossRef]
- Lam, E.; Luong, J.H.T. Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals. ACS Catal. 2014, 4, 3393–3410. [Google Scholar] [CrossRef]
- Rogers, S.M.; Catlow, C.R.A.; Chan-Thaw, C.E.; Chutia, A.; Jian, N.; Palmer, R.E.; Perdjon, M.; Thetford, A.; Dimitratos, N.; Villa, A.; et al. Tandem Site- and Size-Controlled Pd Nanoparticles for the Directed Hydrogenation of Furfural. ACS Catal. 2017, 7, 2266–2274. [Google Scholar] [CrossRef]
- Huang, R.; Cui, Q.; Yuan, Q.; Wu, H.; Guan, Y.; Wu, P. Total Hydrogenation of Furfural over Pd/Al2O3 and Ru/ZrO2 Mixture under Mild Conditions: Essential Role of Tetrahydrofurfural as an Intermediate and Support Effect. ACS Sustain. Chem. Eng. 2018, 6, 6957–6964. [Google Scholar] [CrossRef]
- Campisi, S.; Schiavoni, M.; Chan-Thaw, C.E.; Villa, A. Untangling the role of the capping agent in nanocatalysis: Recent advances and perspectives. Catalysts 2016, 6, 185. [Google Scholar] [CrossRef] [Green Version]
- Abedini, A.; Bakar, A.A.A.; Larki, F.; Menon, P.S.; Islam, M.S.; Shaari, S. Recent Advances in Shape-Controlled Synthesis of Noble Metal Nanoparticles by Radiolysis Route. Nanoscale Res. Lett. 2016, 11, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, Z.; Li, Y. Removal and utilization of capping agents in nanocatalysis. Chem. Mater. 2014, 26, 72–83. [Google Scholar] [CrossRef]
- Pang, S.H.; Schoenbaum, C.A.; Schwartz, D.K.; Will Medlin, J. Effects of thiol modifiers on the kinetics of furfural hydrogenation over Pd catalysts. ACS Catal. 2014, 4, 3123–3131. [Google Scholar] [CrossRef]
- Campisi, S.; Ferri, D.; Villa, A.; Wang, W.; Wang, D.; Kröcher, O.; Prati, L. Selectivity Control in Palladium-Catalyzed Alcohol Oxidation through Selective Blocking of Active Sites. J. Phys. Chem. C 2016, 120, 14027–14033. [Google Scholar] [CrossRef]
- Rogers, S.M.; Catlow, C.R.A.; Chan-Thaw, C.E.; Gianolio, D.; Gibson, E.K.; Gould, A.L.; Jian, N.; Logsdail, A.J.; Palmer, R.E.; Prati, L.; et al. Tailoring Gold Nanoparticle Characteristics and the Impact on Aqueous-Phase Oxidation of Glycerol. ACS Catal. 2015, 5, 4377–4384. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, W.; Li, Y.; Lefferts, L. Effect of chlorine on performance of Pd catalysts prepared via colloidal immobilization. Catal. Today 2017, 297, 308–315. [Google Scholar] [CrossRef]
- Chowdhury, S.R.; Roy, P.S.; Bhattacharya, S.K. Room temperature synthesis of polyvinyl alcohol stabilized palladium nanoparticles: Solvent effect on shape and electro-catalytic activity. Nano-Struct. Nano-Objects 2018, 14, 11–18. [Google Scholar] [CrossRef]
- Eisa, W.H.; Shabaka, A.A. Ag seeds mediated growth of Au nanoparticles within PVA matrix: An eco-friendly catalyst for degradation of 4-nitrophenol. React. Funct. Polym. 2013, 73, 1510–1516. [Google Scholar] [CrossRef]
- Liu, J.; Ruffini, N.; Pollet, P.; Llopis-Mestre, V.; Dilek, C.; Eckert, C.A.; Liotta, C.L.; Roberts, C.B. More benign synthesis of palladium nanoparticles in dimethyl sulfoxide and their extraction into an organic phase. Ind. Eng. Chem. Res. 2010, 49, 8174–8179. [Google Scholar] [CrossRef]
- Tang, H.; Pan, M.; Jiang, S.; Wan, Z.; Yuan, R. Self-assembling multi-layer Pd nanoparticles onto NafionTM membrane to reduce methanol crossover. Colloids Surfaces A Physicochem. Eng. Asp. 2005, 262, 65–70. [Google Scholar] [CrossRef]
- Hassan, C.M.; Peppas, N.A. Structure and applications of poly (vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv. Polym. Sci. 2000, 153, 37–65. [Google Scholar]
- Luo, L.B.; Yu, S.H.; Qian, H.S.; Zhou, T. Large-scale fabrication of flexible silver/cross-linked poly (vinyl alcohol) coaxial nanocables by a facile solution approach. J. Am. Chem. Soc. 2005, 127, 2822–2823. [Google Scholar] [CrossRef] [PubMed]
- Koczkur, K.M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S.E. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 2015, 44, 17883–17905. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.J.; Wang, M.; Zhang, X.Y.; Wu, J.Y.; Zhang, T. Investigation on the role of the molecular weight of polyvinyl pyrrolidone in the shape control of high yield silver nanospheres and nanowires. Nanoscale Res. Lett. 2014, 9, 17. [Google Scholar] [CrossRef] [Green Version]
- Chan-Thaw, C.E.; Villa, A.; Veith, G.M.; Prati, L. Identifying the Role of N-Heteroatom Location in the Activity of Metal Catalysts for Alcohol Oxidation. ChemCatChem 2015, 7, 1338–1346. [Google Scholar] [CrossRef]
- Xian, J.; Hua, Q.; Jiang, Z.; Ma, Y.; Huang, W. Size-Dependent Interaction of the Poly(N-vinyl-2-pyrrolidone) Capping Ligand with Pd Nanocrystals. Langmuir 2012, 28, 6736–6741. [Google Scholar] [CrossRef]
- Yang, D.Q.; Rochelte, J.F.; Sacher, E. Spectroscopic evidence for π-π interaction between poly(diallyl dimethylammonium) chloride and multiwalled carbon nanotubes. J. Phys. Chem. B 2005, 109, 4481–4484. [Google Scholar] [CrossRef]
- Figueiredo, J.L.; Pereira, M.F.R.; Freitas, M.M.A.; Órfão, J.J.M. Modification of the surface chemistry of activated carbons. Carbon 1999, 37, 1379–1389. [Google Scholar] [CrossRef]
- Walczyk, M.; S̀wiatkowski, A.; Pakuła, M.; Biniak, S. Electrochemical studies of the interaction between a modified activated carbon surface and heavy metal ions. J. Appl. Electrochem. 2005, 35, 123–130. [Google Scholar] [CrossRef]
- Mertens, P.G.N.; Cuypers, F.; Vandezande, P.; Ye, X.; Verpoort, F.; Vankelecom, I.F.J.; De Vos, D.E. Ag0 and Co0 nanocolloids as recyclable quasihomogeneous metal catalysts for the hydrogenation of α, β-unsaturated aldehydes to allylic alcohol fragrances. Appl. Catal. A Gen. 2007, 325, 130–139. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, Q.; Guan, Y.; Wu, P. Facile synthesis of furfuryl ethyl ether in high yield: Via the reductive etherification of furfural in ethanol over Pd/C under mild conditions. Green Chem. 2018, 20, 2110–2117. [Google Scholar] [CrossRef]
- Padovan, D.; Al-Nayili, A.; Hammond, C. Bifunctional Lewis and Brønsted acidic zeolites permit the continuous production of bio-renewable furanic ethers. Green Chem. 2017, 19, 2846–2854. [Google Scholar] [CrossRef]
- Pizzi, R.; van Putten, R.J.; Brust, H.; Perathoner, S.; Centi, G.; van der Waal, J.C. High-throughput screening of heterogeneous catalysts for the conversion of furfural to bio-based fuel components. Catalysts 2015, 5, 2244–2257. [Google Scholar] [CrossRef] [Green Version]
- Rossi, L.M.; Fiorio, J.L.; Garcia, M.A.S.; Ferraz, C.P. The role and fate of capping ligands in colloidally prepared metal nanoparticle catalysts. Dalton Trans. 2018, 47, 5889–5915. [Google Scholar] [CrossRef]
- Villa, A.; Wang, D.; Veith, G.M.; Vindigni, F.; Prati, L. Sol immobilization technique: A delicate balance between activity, selectivity and stability of gold catalysts. Catal. Sci. Technol. 2013, 3, 3036. [Google Scholar] [CrossRef] [Green Version]
- Villa, A.; Wang, D.; Dimitratos, N.; Su, D.; Trevisan, V.; Prati, L. Pd on carbon nanotubes for liquid phase alcohol oxidation. Catal. Today 2010, 150, 8–15. [Google Scholar] [CrossRef] [Green Version]
Catalyst | Content (at %) | O/C | |||
---|---|---|---|---|---|
Pd | O | N | C | ||
C (X40S) | 0 | 9.17 | 0 | 90.82 | 0.10 |
PdPVA/AC | 1.30 | 14.70 | 0 | 84.23 | 0.17 |
PdPVP/C | 0.50 | 9.10 | 2.95 | 87.54 | 0.10 |
PdPDDA/C | 0.76 | 9.70 | 1.86 | 87.84 | 0.11 |
PdPVA/AC used | 0.32 | 45.70 | 0 | 53.98 | 1.10 |
PdPVA/AC used and washed | 0.93 | 18.00 | 0 | 81.07 | 0.22 |
Sample | Pd3d | ||
---|---|---|---|
Pd0 | Pdδ+ | ||
PdPVA/C | BE [eV] | 335.7 | 337.6 |
[%] | 30.9 | 69.1 | |
PdPVP/C | BE [eV] | 335.6 | 337.6 |
[%] | 23.9 | 76.1 | |
PdPDDA/C | BE [eV] | 335.7 | 338.0 |
[%] | 9.4 | 90.6 | |
PdPVA/C used | BE [eV] | 335.4 | 337.3 |
[%] | 72.7 | 27.3 | |
PdPVA/C used and washed | BE [eV] | 335.8 | 337.0 |
[%] | 65.5 | 34.5 |
Sample | C1s | ||||
C=C | C–C | C=O | C–OH/ C–O–C | ||
C (X40S) | BE [eV] | 284.6 | 285.4 | 286.7 | 289.2 |
[%] | 55.4 | 22.7 | 12.9 | 9.0 | |
PdPVA/C | BE [eV] | 284.0 | 285.4 | 286.7 | 289.2 |
[%] | 42.9 | 29.9 | 14.1 | 13.1 | |
PdPVP/C | BE [eV] | 284.6 | 285.9 | 287.9 | 289.9 |
[%] | 54.7 | 32.3 | 9.4 | 3.6 | |
PdPDDA/C | BE [eV] | 284.6 | 285.3 | 286.9 | 289.1 |
[%] | 28.4 | 47.5 | 18.5 | 5.6 | |
PdPVA/C used | BE [eV] | 284.6 | 285.8 | 287.8 | 289.2 |
[%] | 35.0 | 36.2 | 22.5 | 6.3 | |
PdPVA/C used and washed | BE [eV] | 284.6 | 285.5 | 286.6 | 288.8 |
[%] | 33.1 | 31.1 | 23.6 | 12.2 | |
Sample | O1s | ||||
C=O | C–O–C | C–OH | C–OOH | ||
C (X40S) | BE [eV] | 531.1 | 532.7 | 534.0 | 536.5 |
[%] | 30.0 | 41.9 | 22.1 | 6.0 | |
PdPVA/C | BE [eV] | 531.2 | 532.9 | 534.6 | 536.2 |
[%] | 33.8 | 54.8 | 9.1 | 2.3 | |
PdPVP/C | BE [eV] | 531.0 | 532.1 | 533.4 | 534.8 |
[%] | 30.9 | 32.9 | 24.7 | 11.1 | |
PdPDDA/C | BE [eV] | 531.4 | 532.8 | 534.3 | 535.9 |
[%] | 28.1 | 52.5 | 14.2 | 5.2 | |
PdPVA/C used | BE [eV] | - | 532.6 | 533.9 | 535.9 |
[%] | - | 53.1 | 42.4 | 4.5 | |
PdPVA/C used and washed | BE [eV] | 529.8 | 531.0 | 532.4 | 533.6 |
[%] | 42.8 | 27.3 | 17.7 | 12.2 |
Catalyst | T (°C) | Activity (h−1) a | Selectivity (%) b | Carbon Balance (%) | Pd (XPS, at%) | Pd Size (TEM, nm) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
FA | THFA | 2-MF | FA Ether | THFA Ether | Acetal | ||||||
PdPVA/C | 1.30 | 4.2 | |||||||||
25 | 824 | 45.2 | 5.0 | 1.8 | 17.3 | 3.7 | 19.0 | 92.0 | |||
50 | 1775 | 49.6 | 6.0 | 4.4 | 31.0 | 3.3 | 2.7 | 97.0 | |||
75 | 2522 | 46.0 | 1.7 | 5.2 | 32.4 | 4.1 | 4.3 | 93.7 | |||
PdPVP/C | 0.50 | 3.6 | |||||||||
25 | 304 | 64.0 | 6.8 | 2.9 | 19.2 | 5.4 | - | 98.3 | |||
50 | 573 | 56.7 | 7.7 | 5.4 | 19.0 | 3.8 | 2.9 | 95.5 | |||
75 | 2722 | 42.0 | 1.9 | 9.2 | 34.2 | 3.4 | 5.1 | 95.8 | |||
PdPDDA/C | 0.76 | 4.4 | |||||||||
25 | 624 | 52.8 | 10.2 | 4.9 | 23.3 | 5.6 | - | 96.8 | |||
50 | 1422 | 49.0 | 5.7 | 4.6 | 27.4 | 5.2 | 4.6 | 96.5 | |||
75 | 2581 | 44.1 | 4.7 | 4.5 | 32.2 | 2.9 | 3.2 | 91.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alijani, S.; Capelli, S.; Cattaneo, S.; Schiavoni, M.; Evangelisti, C.; Mohammed, K.M.H.; Wells, P.P.; Tessore, F.; Villa, A. Capping Agent Effect on Pd-Supported Nanoparticles in the Hydrogenation of Furfural. Catalysts 2020, 10, 11. https://doi.org/10.3390/catal10010011
Alijani S, Capelli S, Cattaneo S, Schiavoni M, Evangelisti C, Mohammed KMH, Wells PP, Tessore F, Villa A. Capping Agent Effect on Pd-Supported Nanoparticles in the Hydrogenation of Furfural. Catalysts. 2020; 10(1):11. https://doi.org/10.3390/catal10010011
Chicago/Turabian StyleAlijani, Shahram, Sofia Capelli, Stefano Cattaneo, Marco Schiavoni, Claudio Evangelisti, Khaled M. H. Mohammed, Peter P. Wells, Francesca Tessore, and Alberto Villa. 2020. "Capping Agent Effect on Pd-Supported Nanoparticles in the Hydrogenation of Furfural" Catalysts 10, no. 1: 11. https://doi.org/10.3390/catal10010011
APA StyleAlijani, S., Capelli, S., Cattaneo, S., Schiavoni, M., Evangelisti, C., Mohammed, K. M. H., Wells, P. P., Tessore, F., & Villa, A. (2020). Capping Agent Effect on Pd-Supported Nanoparticles in the Hydrogenation of Furfural. Catalysts, 10(1), 11. https://doi.org/10.3390/catal10010011