Mesoporous Silica Nanosheets with Tunable Pore Lengths Supporting Metal Nanoparticles for Enhanced Hydrogenation Reactions
Abstract
:1. Introduction
2. Results and Discussions
3. Experimental Section
3.1. Chemicals
3.2. Synthesis of Mesoporous Silica Nanosheets with Tunable Thickness
3.3. LoadingPd Nanoparticles in Mesoporous Silica Nanosheets with Tunable Thickness
3.4. Catalytic Test
3.5. Materials Characterization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wan, Y.; Zhao, D. On the Controllable Soft-Templating Approach to Mesoporous Silicates. Chem. Rev. 2007, 107, 2821–2860. [Google Scholar] [CrossRef] [PubMed]
- Bayne, L.; Ulijn, R.V.; Halling, P.J. Effect of Pore Size on the Performance of Immobilised Enzymes. Chem. Soc. Rev. 2013, 42, 9000–9010. [Google Scholar] [CrossRef] [PubMed]
- Diaz, U.; Brunel, D.; Corma, A. Catalysis Using Multifunctional Organosiliceous Hybrid Materials. Chem. Soc. Rev. 2013, 42, 4083–4097. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yue, Q.; Deng, Y.H.; Zhao, D.Y. Ordered Mesoporous Materials Based on Interfacial Assembly and Engineering. Adv. Mater. 2013, 25, 5129–5152. [Google Scholar] [CrossRef] [PubMed]
- Prieto, G.; Tuysuz, H.; Duyckaerts, N.; Knossalla, J.; Wang, G.H.; Schuth, F. Hollow Nano- and Microstructures as Catalysts. Chem. Rev. 2016, 116, 14056–14119. [Google Scholar] [CrossRef]
- Li, B.W.; Zeng, H.C. Architecture and Preparation of Hollow Catalytic Devices. Adv. Mater. 2019, 1801104. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Q.F.; Wei, H.M.; Wang, J.Q.; Cho, M.Y.; Cho, H.S.; Terasaki, O.; Wan, Y. Aggregation-Free Gold Nanoparticles in Ordered Mesoporous Carbons: Toward Highly Active and Stable Heterogeneous Catalysts. J. Am. Chem. Soc. 2013, 135, 11849–11860. [Google Scholar] [CrossRef]
- Prieto, G.; Shakeri, M.; de Jong, K.P.; de Jongh, P.E. Quantitative Relationship between Support Porosity and the Stability of Pore-confined Metal Nanoparticles Studied on CuZnO/SiO2 Methanol Synthesis Catalysts. ACS Nano 2014, 8, 2522–2531. [Google Scholar] [CrossRef]
- Parlett, C.M.A.; Bruce, D.W.; Hondow, N.S.; Lee, A.F.; Wilson, K. Support-Enhanced Selective Aerobic Alcohol Oxidation over Pd/Mesoporous Silicas. ACS Catal. 2011, 1, 636–640. [Google Scholar] [CrossRef]
- Yang, Q.H.; Liu, J.; Zhang, L.; Li, C. Functionalized Periodic Mesoporous Organosilicas for Catalysis. J. Mater. Chem. 2009, 19, 1945–1955. [Google Scholar] [CrossRef]
- Yang, H.Q.; Zhang, L.; Zhong, L.; Yang, Q.H.; Li, C. Enhanced Cooperative Activation Effect in the Hydrolytic Kinetic Resolution of Epoxides on [Co(salen)] Catalysts Confined in Nanocages. Angew. Chem. Int. Ed. 2007, 46, 6861–6865. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.J.; Guan, Z.H.; Li, M.R.; Yang, Q.H.; Li, C. Enhancement of the Performance of a Platinum Nanocatalyst Confined within Carbon Nanotubes for Asymmetric Hydrogenation. Angew. Chem. Int. Ed. 2011, 50, 4913–4917. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.B.; Wang, R.W.; Dai, J.Y.; Wang, Y.; Wang, X.; Zhang, Z.T.; Qiu, S.L. Amphiphilic Hollow Porous Shell Encapsulated Au@Pd Bimetal Nanoparticles for Aerobic Oxidation of Alcohols in Water. Chem. Commun. 2015, 51, 14601–14604. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.B.; Dai, J.Y. Encapsulating Mesoporous Metal Nanoparticles: Towards a Highly Active and Stable Nanoreactor for Oxidative Coupling Reactions in Water. Chem. Commun. 2019, 55, 5898–5901. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Wang, H.Y.; Zhao, Q.F.; Klingstedt, M.; Terasaki, O.; Zhao, D.Y. Ordered Mesoporous Pd/Silica-Carbon as a Highly Active Heterogeneous Catalyst for Coupling Reaction of Chlorobenzene in Aqueous Media. J. Am. Chem. Soc. 2009, 131, 4541–4550. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.L.; Fu, R.; Zhang, B.S.; Shi, W.; Chen, S.J.; Wan, Y. An Efficient Reusable Mesoporous Solid-Based Pd Catalyst for Selective C2 Arylation of Indoles in Water. ACS Catal. 2016, 6, 1062–1074. [Google Scholar] [CrossRef]
- Datta, K.K.R.; Reddy, B.V.S.; Ariga, K.; Vinu, A. Gold Nanoparticles Embedded in a Mesoporous Carbon Nitride Stabilizer for Highly Efficient Three-Component Coupling Reaction. Angew. Chem. Int. Ed. 2010, 49, 5961–5965. [Google Scholar] [CrossRef]
- Zhu, J.; Kónya, Z.; Puntes, V.F.; Kiricsi, I.; Miao, C.X.; Ager, J.W.; Alivisatos, A.P.; Somorjai, G.A. Encapsulation of Metal (Au, Ag, Pt) Nanoparticles into the Mesoporous SBA-15 Structure. Langmuir 2003, 19, 4396–4401. [Google Scholar] [CrossRef]
- Ma, C.Y.; Dou, B.J.; Li, J.J.; Cheng, J.; Hu, Q.; Hao, Z.P.; Qiao, S.Z. Catalytic Oxidation of Benzyl Alcohol on Au or Au-Pd Nanoparticles Confined in Mesoporous Silica. Appl. Catal. B 2009, 92, 202–208. [Google Scholar] [CrossRef]
- Shen, D.; Chen, L.; Yang, J.; Zhang, R.; Wei, Y.; Li, X.; Li, W.; Sun, Z.; Zhu, H.; Abdullah, A.M.; et al. Ultradispersed Palladium Nanoparticles in Three-Dimensional Dendritic Mesoporous Silica Nanospheres: Toward Active and Stable Heterogeneous Catalysts. ACS Appl. Mater. Interfaces 2015, 7, 17450–17459. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, J.; Ma, D.; Bao, X.; Klein-Hoffmann, A.; Weinberg, G.; Su, D.; Schlogl, R. Unusual Mesoporous SBA-15 with Parallel Channels Running along the Short Axis. J. Am. Chem. Soc. 2004, 126, 7440–7441. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Ying, J.Y. Generalized Fluorocarbon-Surfactant-Mediated Synthesis of Nanoparticles with Various Mesoporous Structures. Angew. Chem. Int. Ed. 2005, 44, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Sujandi, L.O.; Park, S.E.; Han, D.S.; Han, S.C.; Jin, M.J.; Ohsuna, T. Amino-functionalized SBA-15 Type Mesoporous Silica Having Nanostructured Hexagonal Platelet Morphology. Chem. Commun. 2006, 2006, 4131–4133. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.C.; Lin, H.P.; Chao, M.C.; Mou, C.Y.; Tang, C.Y. Mesoporous Silica Platelets with Perpendicular Nanochannels via a Ternary Surfactant System. Adv. Mater. 2004, 16, 1657–1661. [Google Scholar] [CrossRef]
- Tomczak, M.M.; Glawe, D.D.; Drummy, L.F.; Lawrence, C.G.; Stone, M.O.; Perry, C.C.; Pochan, D.J.; Deming, T.J.; Naik, R.R. Polypeptide-Templated Synthesis of Hexagonal Silica Platelets. J. Am. Chem. Soc. 2005, 127, 12577–12582. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Y.; Tang, C.Y.; Chuang, W.T.; Lee, J.J.; Tsai, Y.L.; Chan, J.C.C.; Lin, C.Y.; Liu, Y.C.; Cheng, S. A Facile Route to Synthesizing Functionalized Mesoporous SBA-15 Materials with Platelet Morphology and Short Mesochannels. Chem. Mater. 2008, 20, 3906–3916. [Google Scholar] [CrossRef]
- Yang, J.; Ling, T.; Wu, W.T.; Liu, H.; Gao, M.R.; Ling, C.; Li, L.; Du, X.W. A Top-Down Strategy Towards Monodisperse Colloidal Lead Sulphide Quantum Dots. Nat. Commun. 2013, 4, 1695. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.F.; Yu, M.L.; Wang, Z.Y.; Liu, Y.; Wang, X.Z.; Zhao, Z.B.; Qiu, J.S. A Top-Down Strategy toward 3D Carbon Nanosheet Frameworks Decorated with Hollow Nanostructures for Superior Lithium Storage. Adv. Funct. Mater. 2016, 26, 7590–7598. [Google Scholar] [CrossRef]
- Liang, F.X.; Shen, K.; Qu, X.Z.; Zhang, C.L.; Wang, Q.; Li, J.L.; Liu, J.G.; Yang, Z.Z. Inorganic Janus Nanosheets. Angew. Chem. Int. Ed. 2011, 50, 2379–2382. [Google Scholar] [CrossRef]
- Liu, X.F.; Cui, X.R.; Liu, Y.D.; Yin, Y.D. Stabilization of Ultrafine Metal Nanocatalysts on Thin Carbon Sheets. Nanoscale 2015, 7, 18320–18326. [Google Scholar] [CrossRef]
- Yan, S.; Zou, H.B.; Chen, S.; Xue, N.; Yang, H.Q. Janus Mesoporous Silica Nanosheets with Perpendicular Mesochannels: Affording Highly Accessible Reaction Interfaces for Enhanced Biphasic Catalysis. Chem. Commun. 2018, 54, 10455–10458. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.B.; Wang, R.W.; Li, X.X.; Wang, X.; Zeng, S.J.; Ding, S.; Lu, L.; Zhang, Z.T.; Qiu, S.L. An Organosilane-directed Growth induced Etching Strategy for Preparing Hollow/Yolk−shell Mesoporous Organosilica Nanospheres with Perpendicular Mesochannels and Amphiphilic Frameworks. J. Mater. Chem. A 2014, 2, 12403–12412. [Google Scholar] [CrossRef]
- Qian, X.; Li, B.; Hu, Y.; Niu, G.; Zhang, D.; Che, R.; Tang, Y.; Su, D.; Asiri, A.; Zhao, D. Exploring Meso-/Microporous Composite Molecular Sieves with Core-Shell Structures. Chem. Eur. J. 2012, 18, 931–939. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chang, C.R.; Huang, Z.Q.; Li, J.; Wu, Z.M.; Ma, Y.Y.; Zhang, Z.Y.; Wang, Y.; Qu, Y.Q. High Catalytic Activity and Chemoselectivity of Sub-nanometric Pd Clusters on Porous Nanorods of CeO2 for Hydrogenation of Nitroarenes. J. Am. Chem. Soc. 2016, 138, 2629–2637. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.L.; Long, Y.; Zhou, X.; Yu, G.Q.; Yang, J.; Yuan, M.; Ma, J.T.; Dong, Z.P. Pd-doped Ni Nanoparticle-Modified N-Doped Carbon Nanocatalyst with High Pd Atom Utilization for the Transfer Hydrogenation of Nitroarenes. Green Chem. 2018, 20, 1121–1130. [Google Scholar] [CrossRef]
- Hu, X.W.; Long, Y.; Fan, M.Y.; Yuan, M.; Zhao, H.; Ma, J.T.; Dong, Z.P. Two-Dimensional Covalent Organic Frameworks as Self-Template Derived Nitrogen-Doped Carbon Nanosheets for Eco-friendly Metal-Free Catalysis. Appl. Catal. B 2019, 244, 25–35. [Google Scholar] [CrossRef]
- Pérez-Mayoral, E.; Matos, I.; Bernardo, M.; Fonseca, I.M. New and Advanced Porous Carbon Materials in Fine Chemical Synthesis. Emerging Precursors of Porous Carbons. Catalysts 2019, 9, 133. [Google Scholar] [CrossRef] [Green Version]
- Zurner, A.; Kirstein, J.; Doblinger, M.; Brauchle, C.; Bein, T. Visualizing Single-molecule Diffusion in Mesoporous Materials. Nature 2007, 450, 705–708. [Google Scholar] [CrossRef]
- Karger, J.; Valiullin, R. Mass Transfer in Mesoporous Materials: The Benefit of Microscopic Diffusion Measurement. Chem. Soc. Rev. 2013, 42, 4172–4197. [Google Scholar] [CrossRef]
Sample | SBET a (m2 g−1) | Vt b (cm3 g−1) | Dp c (nm) |
---|---|---|---|
MSSs-40 | 927.2 | 0.75 | 2.54, 4.2 |
MSSs-75 | 923.9 | 0.68 | 2.68, 4.2 |
MSSs-120 | 1016.1 | 0.66 | 2.53 |
1a, 2h, 99.2% | 1b, 2h, 99.6% | 1c, 2h, 99.8% | 1d, 2h, 98.8% |
1e, 2h, 99.1% | 1f, 3h, 99.9% | 1g, 3h, 99.9% | 1h, 4h, 99.8% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Ding, X.; Zou, H. Mesoporous Silica Nanosheets with Tunable Pore Lengths Supporting Metal Nanoparticles for Enhanced Hydrogenation Reactions. Catalysts 2020, 10, 12. https://doi.org/10.3390/catal10010012
Wang X, Ding X, Zou H. Mesoporous Silica Nanosheets with Tunable Pore Lengths Supporting Metal Nanoparticles for Enhanced Hydrogenation Reactions. Catalysts. 2020; 10(1):12. https://doi.org/10.3390/catal10010012
Chicago/Turabian StyleWang, Xiaohui, Xin Ding, and Houbing Zou. 2020. "Mesoporous Silica Nanosheets with Tunable Pore Lengths Supporting Metal Nanoparticles for Enhanced Hydrogenation Reactions" Catalysts 10, no. 1: 12. https://doi.org/10.3390/catal10010012
APA StyleWang, X., Ding, X., & Zou, H. (2020). Mesoporous Silica Nanosheets with Tunable Pore Lengths Supporting Metal Nanoparticles for Enhanced Hydrogenation Reactions. Catalysts, 10(1), 12. https://doi.org/10.3390/catal10010012