Bioconversion of Sweet Sorghum Residues by Trichoderma citrinoviride C1 Enzymes Cocktail for Effective Bioethanol Production
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Microorganisms
4.2. Waste Biomass of Sweet Sorghum
4.3. Production of the Enzymatic Preparation
4.4. Acidic Pre-Hydrolysis of Sweet Sorghum Biomass
4.5. Optimization of the Enzymatic Hydrolysis of Sweet Sorghum Waste Biomass
4.6. Ethanol Fermentation Process
4.7. Analytical Analyses
4.7.1. Enzyme Activity Assay and Protein Concentration Determination
4.7.2. HPLC Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Aditiya, H.B.; Mahlia, T.M.I.; Chong, W.T.N.; Hadi Sebayang, A.H. Second generation bioethanol production: A critical review. Renew. Sustain. Energy Rev. 2016, 66, 631–653. [Google Scholar] [CrossRef]
- Thanapimmetha, A.; Saisriyoot, M.; Khomlaem, C.; Chisti, Y.; Srinophakun, P. A comparison of methods of ethanol production from sweet sorghum bagasse. Biochem. Eng. J. 2019, 151, 107352. [Google Scholar] [CrossRef]
- Gnansounou, E.; Dauriat, A.; Wyman, C. Refining sweet sorghum to ethanol and sugar: Economic trade-offs in the context of North China. Bioresour. Technol. 2005, 96, 985–1002. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Yesuf, J. Optimization of sugar release from sweet sorghum bagasse following solvation of cellulose and enzymatic hydrolysis using response surface methodology. Biotechnol. Prog. 2013, 30, 367–375. [Google Scholar]
- Matyka, M.; Księżak, J.; Witorożec, A. Wpływ poziomu nawożenia azotem na plonowanie sorga dwubarwnego (Sorghum bicolor (L.) Moench) uprawianego w zróżnicowanych warunkach siedliskowych. Pol. J. Agron. 2017, 29, 28–34. (In Polish) [Google Scholar]
- Mathur, S.; Umakanth, A.V.; Tonapi, V.A.; Sharma, R.; Sharma, M.K. Sweet sorghum as biofuel feedstock: Recent advances and available resources. Biotechnol. Biofuels 2017, 10, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galbe, M.; Zacchi, G. Pretreatment of lignocellulosic materials for efficient bioethanol production. Biofuels Adv. Biochem. Eng. Biotechnol. 2007, 108, 41–65. [Google Scholar]
- Kucharska, K.; Rybarczyk, P.; Hołowacz, I.; Łukajtis, R.; Glinka, M.; Kamiński, M. Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 2018, 23, 2937. [Google Scholar] [CrossRef] [Green Version]
- Jayasekara, S.; Ratnayake, R. Microbial Cellulases: An Overview and Applications; IntechOpen Limited: London, UK, 2019. [Google Scholar]
- Treichel, H.; Oliveira, D.; Mazutti, M.; Di Luccio, M.; Oliveira, J.V. A Review on microbial lipases production. Food Bioprocess Technol. 2010, 3, 182–196. [Google Scholar] [CrossRef]
- Knob, A.; Fortkamp, D.; Prolo, T.; Izidoro, S.C.; Almeida, J.M. Agro-residues as alternative for xylanase production by filamentous fungi. BioResources 2014, 9, 5738–5773. [Google Scholar]
- Farinas, C.S. Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector. Renew. Sustain. Energy Rev. 2015, 52, 179–188. [Google Scholar] [CrossRef]
- Mejias, L.; Cerda, A.; Barrena, R.; Gea, T.; Sanchez, A. Microbial strategies for cellulase and xylanase production through solid-state fermentation of digestate from biowaste. Sustainability 2018, 10, 2433. [Google Scholar] [CrossRef] [Green Version]
- Amin, F.; Bhatti, H.N.; Bilal, M. Recent advances in the production strategies of microbial pectinases—A review. Int. J. Biol. Macromol. 2019, 122, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Manan, M.A.; Webb, C. Modern microbial solid state fermentation technology for future biorefineries for the production of added-value products. Biofuel Res. J. 2017, 4, 730–740. [Google Scholar] [CrossRef] [Green Version]
- Sadh, P.; Duhan, S.; Duhan, J. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioprocess. 2018, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Appiah-Nkansah, N.B.; Li, J.; Rooney, W.; Wang, D. A review of sweet sorghum as a viable renewable bioenergy crop and its techno-economic analysis. Renew. Energy 2019, 143, 1121–1132. [Google Scholar] [CrossRef]
- Piegza, M.; Łaba, W.; Kancelista, A.; Witkowska, D.; Kawa-Rygielska, J. Evaluation of brewer’s spent grain as a substrate for Trichoderma hydrolytic enzymes production and source of majorly fermentable sugars. Acta Sci. Pol. Biotechnol. 2015, 14, 7–32. [Google Scholar]
- Mala, J.G.; Edwinoliver, N.G.; Kamini, N.R.; Puvanakrishnan, R. Mixed substrate solid state fermentation for production and extraction of lipase from Aspergillus niger MTCC 2594. J. Gen. Appl. Microbiol. 2007, 53, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Idris, A.; Pandey, A.; Rao, S.; Sukumaran, R.K. Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover. Bioresour. Technol. 2017, 242, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Juturu, V.; Wu, J. Microbial cellulases: Engineering, production and applications. Renew. Sustain. Energy Rev. 2014, 33, 188–203. [Google Scholar] [CrossRef]
- Amore, A.; Pepe, O.; Ventorino, V.; Birolo, L.; Giangrande, C.; Faraco, V. Industrial waste based compost as a source of novel cellulolytic strains and enzymes. FEMS Microbiol. Lett. 2013, 339, 93–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kachlishvili, E.; Penninckx, M.J.; Tsiklauri, N.; Elisashvili, V. Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidiomycetes under solid-state cultivation. World J. Microbiol. Biotechnol. 2006, 22, 391–397. [Google Scholar] [CrossRef]
- Elisashvili, V.; Kachlishvili, E.; Asatiani, M. Shiitake medicinal mushroom, Lentinus edodes (Higher Basidiomycetes) productivity and lignocellulolytic enzyme profiles during wheat straw and tree leaf bioconversion. Int. J. Med. Mushrooms 2015, 17, 77–86. [Google Scholar] [CrossRef]
- Sarris, D.; Papanikolaou, S. Biotechnological production of ethanol: Biochemistry, processes and technologies. Eng. Life Sci. 2016, 16, 307–329. [Google Scholar] [CrossRef] [Green Version]
- Ellilä, S.; Fonseca, L.; Uchima, C.; Cota, J.; Goldman, G.H.; Saloheimo, M.; Sacon, V.; Siika-aho, M. Development of a low cost cellulose production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol. Biofuels 2017, 10, 30. [Google Scholar] [CrossRef]
- Cunha, F.M.; Badinoa, A.C.; Farinas, C.S. Effect of a novel method for in-house cellulase production on 2G ethanol yields. Biocatal. Agric. Biotechnol. 2017, 9, 224–229. [Google Scholar] [CrossRef]
- Kovacs, K.; Macrelli, S.; Szakacs, G.; Zacchi, G. Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house. Biotechnol. Biofuels 2009, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Qi, B.; Luo, J.; Chen, G.; Chen, X.; Wan, Y. Application of ultrafiltration and nanofiltration for recycling cellulase and concentrating glucose from enzymatic hydrolyzate of steam exploded wheat straw. Bioresour. Technol. 2011, 104, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Mores, W.; Knutsen, J.; Davis, R. Cellulase recovery via membrane filtration. Appl. Biochem. Biotechnol. 2001, 91, 297–309. [Google Scholar] [CrossRef]
- Głąb, L.; Sowiński, J.; Chmielewska, J.; Prask, H.; Furgol, M.; Szlachta, J. Comparison of the energy efficiency of methane and ethanol production from sweet sorghum (Sorghum bicolor (L.) Moench) with a variety of feedstock management technologies. Biomass Bioenergy 2019, 129, 105332. [Google Scholar] [CrossRef]
- Cao, W.; Sun, C.; Liu, R.; Yin, R.; Wu, X. Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibility and ethanol production from sweet sorghum bagasse. Bioresour. Technol. 2012, 111, 215–221. [Google Scholar] [CrossRef]
- Teixeira, V.S.; Azambuja, S.P.H.; Carvalho, P.H.; Costa, F.A.A.; Kitaka, P.R.; Stekelgerb, C.; Andrietta, S.R.; Andrietta, M.G.S.; Goldbeck, R. Robustness and ethanol production of industrial strains of Saccharomyces cerevisiae using different sugarcane bagasse hydrolysates. J. Appl. Biotechnol. 2019, 7, 23–38. [Google Scholar] [CrossRef]
- Ramarajan, R.; Manohar, C.S. Biological pretreatment and bioconversion of agricultural wastes, using ligninolytic and cellulolytic fungal consortia. Bioremediation J. 2017, 21, 89–99. [Google Scholar] [CrossRef]
- Isroi, I.; Millati, R.; Syamsiah, S.; Niklasson, C.; Cahyanto, M.N.; Lundquist, K.; Taherzadeh, M.J. Biological treatment of Lignocelluloses with white-rot fungi and its applications: Review. Bioresources 2011, 6, 5224–5259. [Google Scholar]
- Gibbons, W.; Westby, C.; Dobbs, T. Intermediate-scale, semicontinuous solid-phase fermentation process for production of fuel ethanol from sweet sorghum. Appl. Environ. Microbiol. 1986, 51, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Day, D. Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisisna sugar mills. J. Ind. Microbiol. Biotechnol. 2011, 38, 803–807. [Google Scholar] [CrossRef]
- Salvi, D.; Aita, G.; Robert, D.; Bazan, V. Ethanol production from sorghum by dilute ammonia pretreatment. J. Ind. Microbiol. Biotechnol. 2009, 36, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Saddler, J.; Liu, R.; Lin, L.; Deng, S.; Zhang, Y.; Yang, G.; Xiao, H.; Li, Y. Evaluation of steam pretreatment on sweet sorghum bagasse for enzymatic hydrolysis and bioethanol production. Carbohydr. Polym. 2011, 86, 1542–1548. [Google Scholar] [CrossRef]
- Cotana, F.; Cavalaglio, G.; Gelosia, M.; Coccia, V.; Petrozzi, A.; Ingles, D.; Pompili, E. A comparison between SHF and SSSF processes from cardoon for ethanol production. Ind. Crops Prod. 2015, 69, 424–432. [Google Scholar] [CrossRef]
- Liu, R.; Li, J.; Shen, J. Refining bioethanol from stalk juice of sweet sorghum by immobilized yeast fermentation. Renew. Energy 2008, 33, 1130–1135. [Google Scholar] [CrossRef]
- Laopaiboon, L.; Nuanpeng, S.; Srinophakun, P.; Klanrit, P.; Laopaiboon, P. Ethanol production from sweet sorghum juice using very high gravity technology: Effects of carbon and nitrogen supplementations. Bioresour. Technol. 2009, 100, 4176–4182. [Google Scholar] [CrossRef] [PubMed]
- Witkowska, D.; Wróblewska, A.; Jurgielewicz, W. Degradation of cellulose and lignocellulose by Trichoderma reesei M7-1 hydrolases. Pol. J. Food Nutr. Sci. 1997, 6, 57–62. [Google Scholar]
- Miller, G.L. Use dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar]
Units | CMCases | Xylanases | |
---|---|---|---|
Enzymatic activity of post-culture liquid | [U mL−1] | 2.37 | 6.52 |
Enzymatic activity of concentrated preparation | [U mL−1] | 8.99 | 21.26 |
Total activity of post-culture liquid | [U] | 1898 | 5216 |
Total activity of concentrated preparation | [U] | 1798 | 4252 |
Specific activity of post-culture liquid | [U mg−1] | 0.51 | 1.41 |
Specific activity of concentrated preparation | [U mg−1] | 0.80 | 1.88 |
Recovery | [%] | 94.75 | 81.52 |
Purification factor | 1.56 | 1.33 |
Run | Independent Variables | Ethanol Yield [% of Theoretical] | Ethanol Yield [mL kg d.m.−1] | ||||||
---|---|---|---|---|---|---|---|---|---|
X1 Substrate [%] | X2 T [°C] | X3 pH | C1 | CTec2 | C1 | CTec2 | |||
Actual Value | Predicted Value | Actual Value | Predicted Value | ||||||
1 | 15 | 42 | 5.0 | 12.92 | 1.12 | 40.207 | 58.802 | 3.524 | 35.805 |
2 | 27 | 42 | 5.0 | 36.59 | 48.88 | 114.330 | 114.873 | 154.927 | 154.706 |
3 | 15 | 58 | 5.0 | 33.92 | 56.34 | 107.143 | 110.452 | 149.679 | 161.515 |
4 | 27 | 58 | 5.0 | 37.66 | 72.00 | 109.795 | 95.051 | 150.409 | 129.742 |
5 | 15 | 50 | 4.5 | 38.64 | 72.79 | 112.524 | 100.001 | 147.050 | 135.455 |
6 | 27 | 50 | 4.5 | 44.65 | 71.62 | 117.809 | 120.336 | 158.930 | 179.019 |
7 | 15 | 50 | 5.5 | 50.01 | 70.49 | 109.384 | 100.001 | 149.623 | 135.455 |
8 | 27 | 50 | 5.5 | 48.15 | 70.96 | 108.663 | 120.336 | 159.866 | 179.019 |
9 | 21 | 42 | 4.5 | 52.02 | 65.36 | 112.795 | 97.196 | 134.699 | 95.256 |
10 | 21 | 58 | 4.5 | 45.69 | 73.16 | 111.358 | 113.110 | 143.835 | 145.628 |
11 | 21 | 42 | 5.5 | 41.90 | 37.94 | 100.735 | 97.196 | 87.874 | 95.256 |
12 | 21 | 58 | 5.5 | 46.32 | 48.16 | 103.428 | 113.110 | 138.590 | 145.628 |
13 | 21 | 50 | 5.0 | 48.77 | 75.97 | 114.625 | 120.527 | 164.651 | 157.237 |
14 | 21 | 50 | 5.0 | 53.66 | 76.00 | 116.779 | 120.527 | 165.354 | 157.237 |
15 | 21 | 50 | 5.0 | 55.65 | 69.25 | 122.472 | 120.527 | 155.183 | 157.237 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kancelista, A.; Chmielewska, J.; Korzeniowski, P.; Łaba, W. Bioconversion of Sweet Sorghum Residues by Trichoderma citrinoviride C1 Enzymes Cocktail for Effective Bioethanol Production. Catalysts 2020, 10, 1292. https://doi.org/10.3390/catal10111292
Kancelista A, Chmielewska J, Korzeniowski P, Łaba W. Bioconversion of Sweet Sorghum Residues by Trichoderma citrinoviride C1 Enzymes Cocktail for Effective Bioethanol Production. Catalysts. 2020; 10(11):1292. https://doi.org/10.3390/catal10111292
Chicago/Turabian StyleKancelista, Anna, Joanna Chmielewska, Paweł Korzeniowski, and Wojciech Łaba. 2020. "Bioconversion of Sweet Sorghum Residues by Trichoderma citrinoviride C1 Enzymes Cocktail for Effective Bioethanol Production" Catalysts 10, no. 11: 1292. https://doi.org/10.3390/catal10111292
APA StyleKancelista, A., Chmielewska, J., Korzeniowski, P., & Łaba, W. (2020). Bioconversion of Sweet Sorghum Residues by Trichoderma citrinoviride C1 Enzymes Cocktail for Effective Bioethanol Production. Catalysts, 10(11), 1292. https://doi.org/10.3390/catal10111292