Surface Modification of Catalysts via Atomic Layer Deposition for Pollutants Elimination
Abstract
1. Introduction
2. Conformal Coating
2.1. Applications in Photocatalytic Degradation of Organic Pollutants
2.2. Applications in Removal of Air Pollutants
3. Uniform Particle Deposition
4. Area-Selective Deposition
5. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khin, M.M.; Nair, A.S.; Babu, V.J.; Murugan, R.; Ramakrishna, S. A review on nanomaterials for environmental remediation. Energy Environ. Sci. 2012, 5, 8075–8109. [Google Scholar] [CrossRef]
- Bolisetty, S.; Peydayesh, M.; Mezzenga, R. Sustainable technologies for water purification from heavy metals: Review and analysis. Chem. Soc. Rev. 2019, 48, 463–487. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Iocozzia, J.; Wang, Y.; Cui, X.; Chen, Y.; Zhao, S.; Li, Z.; Lin, Z. Noble metal-metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci. 2017, 10, 402–434. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Zhao, G.; Chen, C.; Chai, Z.; Alsaedi, A.; Hayat, T.; Wang, X. Metal-organic framework-based materials: Superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 2018, 47, 2322–2356. [Google Scholar]
- Werber, J.R.; Osuji, C.O.; Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 2016, 1, 16018. [Google Scholar] [CrossRef]
- Ye, B.; Kim, S.-I.; Lee, M.; Ezazi, M.; Kim, H.-D.; Kwon, G.; Lee, D.H. Synthesis of oxygen functionalized carbon nanotubes and their application for selective catalytic reduction of NOx with NH3. RSC Adv. 2020, 10, 16700–16708. [Google Scholar] [CrossRef]
- Caruso, R.A.; Antonietti, M. Sol−Gel Nanocoating: An Approach to the Preparation of Structured Materials. Chem. Mater. 2001, 13, 3272–3282. [Google Scholar] [CrossRef]
- Yu, J.; Pan, Y.; Wang, C.; Lai, Z. ZIF-8 membranes with improved reproducibility fabricated from sputter-coated ZnO/alumina supports. Chem. Eng. Sci. 2016, 141, 119–124. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, B.; Zou, X.; Cheng, H.-M. Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures. Chem. Rev. 2018, 118, 6091–6133. [Google Scholar] [CrossRef]
- George, S.M. Atomic layer deposition: An overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef]
- Weimer, A.W. Particle atomic layer deposition. J. Nanopart. Res. 2019, 21, 1–42. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Liu, W.; Luo, Q.; Yin, R.; Wang, B.; Weissenrieder, J.; Soldemo, M.; Yan, H.; Lin, Y.; Sun, Z.; et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nat. Cell Biol. 2019, 565, 631–635. [Google Scholar] [CrossRef]
- Wang, X.; Jin, B.; Jin, Y.; Wu, T.; Ma, L.; Liang, X. Supported Single Fe Atoms Prepared via Atomic Layer Deposition for Catalytic Reactions. ACS Appl. Nano Mater. 2020, 3, 2867–2874. [Google Scholar] [CrossRef]
- Li, N.; Tian, Y.; Zhao, J.; Zhang, J.; Zuo, W.; Kong, L.; Cui, H. Z-scheme 2D/3D g-C3N4@ZnO with enhanced photocatalytic activity for cephalexin oxidation under solar light. Chem. Eng. J. 2018, 352, 412–422. [Google Scholar] [CrossRef]
- Duan, H.; You, R.; Xu, S.; Li, Z.; Qian, K.; Cao, T.; Huang, W.; Bao, X. Pentacoordinated Al3+—Stabilized Active Pd Structures on Al2O3—Coated Palladium Catalysts for Methane Combustion. Angew. Chem. Int. Ed. 2019, 58, 12043–12048. [Google Scholar] [CrossRef]
- Jackson, D.H.K.; Schwartz, M.M.; Ngo, C.; Facteau, D.; Pylypenko, S.; Marshall, C.L.; Dameron, A.A. Hydrocarbon catalyzed-selective catalytic reduction catalysts using core-shell atomic layer deposited CeO2 and ZrO2. J. Vac. Sci. Technol. A 2019, 37, 020919. [Google Scholar] [CrossRef]
- Richey, N.E.; De Paula, C.; Bent, S.F. Understanding chemical and physical mechanisms in atomic layer deposition. J. Chem. Phys. 2020, 152, 040902. [Google Scholar] [CrossRef]
- Hagen, D.; Pemble, M.E.; Karppinen, M. Atomic layer deposition of metals: Precursors and film growth. Appl. Phys. Rev. 2019, 6, 041309. [Google Scholar] [CrossRef]
- Cao, K.; Cai, J.; Shan, B.; Chen, R. Surface functionalization on nanoparticles via atomic layer deposition. Sci. Bull. 2020, 65, 678–688. [Google Scholar] [CrossRef]
- Sobel, N.; Hess, C. Nanoscale Structuring of Surfaces by Using Atomic Layer Deposition. Angew. Chem. Int. Ed. 2015, 54, 15014–15021. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, G.; Prakash, J.; Zheng, Y.; Sun, S. Rational Design of Novel Catalysts with Atomic Layer Deposition for the Reduction of Carbon Dioxide. Adv. Energy Mater. 2019, 9, 1900889. [Google Scholar] [CrossRef]
- Yang, H.; Chen, Y.; Qin, Y. Application of atomic layer deposition in fabricating high-efficiency electrocatalysts. Chin. J. Catal. 2020, 41, 227–241. [Google Scholar] [CrossRef]
- Zhang, B.; Qin, Y. Interface Tailoring of Heterogeneous Catalysts by Atomic Layer Deposition. ACS Catal. 2018, 8, 10064–10081. [Google Scholar] [CrossRef]
- O’Neill, B.J.; Jackson, D.H.K.; Lee, J.; Canlas, C.; Stair, P.C.; Marshall, C.L.; Elam, J.W.; Kuech, T.F.; Dumesic, J.A.; Huber, G.W. Catalyst Design with Atomic Layer Deposition. ACS Catal. 2015, 5, 1804–1825. [Google Scholar] [CrossRef]
- Lu, J.; Elam, J.W.; Stair, P.C. Atomic layer deposition—Sequential self-limiting surface reactions for advanced catalyst “bottom-up” synthesis. Surf. Sci. Rep. 2016, 71, 410–472. [Google Scholar] [CrossRef]
- Brinkmann, K.O.; Gahlmann, T.; Riedl, T. Atomic Layer Deposition of Functional Layers in Planar Perovskite Solar Cells. Sol. RRL 2019, 4, 1900332. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, K.; Sun, X. Addressing Interfacial Issues in Liquid-Based and Solid-State Batteries by Atomic and Molecular Layer Deposition. Joule 2018, 2, 2583–2604. [Google Scholar] [CrossRef]
- Azizpour, H.; Talebi, M.; Tichelaar, F.; Sotudeh-Gharebagh, R.; Guo, J.; Van Ommen, J.R.; Mostoufi, N. Effective coating of titania nanoparticles with alumina via atomic layer deposition. Appl. Surf. Sci. 2017, 426, 480–496. [Google Scholar] [CrossRef]
- Jang, E.; Kim, D.W.; Hong, S.H.; Park, Y.M.; Park, T.J. Visible light-driven g-C3N4@ZnO heterojunction photocatalyst synthesized via atomic layer deposition with a specially designed rotary reactor. Appl. Surf. Sci. 2019, 487, 206–210. [Google Scholar] [CrossRef]
- Cao, M.; Wang, P.; Ao, Y.; Wang, C.; Hou, J.; Qian, J. Visible light activated photocatalytic degradation of tetracycline by a magnetically separable composite photocatalyst: Graphene oxide/magnetite/cerium-doped titania. J. Colloid Interface Sci. 2016, 467, 129–139. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Ko, W.C.; Kang, S.; Kim, S.M.; Jeong, Y.K. Surface passivation of highly stable TiO2/V2O5 photocatalyst by atomic layer deposited-Al2O3. Appl. Surf. Sci. 2020, 507, 145128. [Google Scholar] [CrossRef]
- Shenouda, S.; Hussien, M.S.; Parditka, B.; Csík, A.; Takats, V.; Erdelyi, Z. Novel amorphous Al-rich Al2O3 ultra-thin films as active photocatalysts for water treatment from some textile dyes. Ceram. Int. 2020, 46, 7922–7929. [Google Scholar] [CrossRef]
- Jang, E.; Kim, W.J.; Kim, D.W.; Hong, S.H.; Ali, I.; Park, Y.M.; Park, T.J. Atomic layer deposition with rotary reactor for uniform hetero-junction photocatalyst, g-C3N4@TiO2 core–shell structures. RSC Adv. 2019, 9, 33180–33186. [Google Scholar] [CrossRef]
- Trochowski, M.; Kobielusz, M.; Mróz, K.; Surówka, M.; Hämäläinen, J.; Iivonen, T.; Leskelä, M.; Macyk, W. How insignificant modifications of photocatalysts can significantly change their photocatalytic activity. J. Mater. Chem. A 2019, 7, 25142–25154. [Google Scholar] [CrossRef]
- Cheng, H.-E.; Lin, C.-Y.; Hsu, C.-M. Fabrication of SnO2-TiO2 core-shell nanopillar-array films for enhanced photocatalytic activity. Appl. Surf. Sci. 2017, 396, 393–399. [Google Scholar] [CrossRef]
- Yang, H.; Zhai, L.; Li, K.; Liu, X.; Deng, B.; Xu, W. A highly efficient nano-graphite-doped TiO2 photocatalyst with a unique sea-island structure for visible-light degradation. Catal. Sci. Technol. 2020, 10, 1161–1170. [Google Scholar] [CrossRef]
- Birnal, P.; De Lucas, M.C.M.; Pochard, I.; Domenichini, B.; Imhoff, L. Photocatalytic properties of atomic layer deposited TiO2 inverse opals and planar films for the degradation of dyes. Appl. Surf. Sci. 2020, 512, 145693. [Google Scholar] [CrossRef]
- Wang, H.; Ma, F.; Sun, Y.-S.; Zhou, L.; Zeng, D.-J.; Qin, Y.; Xu, Y.-K.; Chen, Y.; Xu, K.-W.; Ma, D.-Y. Band bending and valence band shifting of sub-monolayer TiO2 functionalized SnO2 nanowires. J. Mater. Sci. Mater. Electron. 2019, 31, 637–643. [Google Scholar] [CrossRef]
- Wan, G.; Peng, X.; Zeng, M.; Yu, L.; Wang, K.; Li, X.; Wang, G. The Preparation of Au@TiO2 Yolk–Shell Nanostructure and its Applications for Degradation and Detection of Methylene Blue. Nanoscale Res. Lett. 2017, 12, 535. [Google Scholar] [CrossRef]
- Huang, S.-H.; Wang, C.-C.; Liao, S.-Y.; Gan, J.-Y.; Perng, T.-P. CNT/TiO2 core-shell structures prepared by atomic layer deposition and characterization of their photocatalytic properties. Thin Solid Films 2016, 616, 151–159. [Google Scholar] [CrossRef]
- Marchetti, F.; Laidani, N.B.; Scarpa, M.; Gottardi, G.; Moser, E. Graphene films decorated with TiO2 grown by atomic layer deposition: Characterization and photocatalytic activity study under UV–visible light. Appl. Surf. Sci. 2019, 470, 484–495. [Google Scholar] [CrossRef]
- Xu, H.; Han, F.; Xia, C.; Wang, S.; Ramachandran, R.M.; Detavernier, C.; Wei, M.; Lin, L.; Zhuiykov, S. Wafer-Scale Fabrication of Sub-10 nm TiO2-Ga2O3 n-p Heterojunctions with Efficient Photocatalytic Activity by Atomic Layer Deposition. Nanoscale Res. Lett. 2019, 14, 163. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.-Q.; Zhao, X.-R.; Chen, J.; Zhang, W.; Li, M.; Zhu, L.; Zhang, X.-J.; Wu, D.; Li, A.-D. TiOxNy Modified TiO2 Powders Prepared by Plasma Enhanced Atomic Layer Deposition for Highly Visible Light Photocatalysis. Sci. Rep. 2018, 8, 12131. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Ahn, C.; Park, J.; Jeon, S. 3D nanostructured N-doped TiO2 photocatalysts with enhanced visible absorption. Nanoscale 2018, 10, 9747–9751. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Han, C.; Shao, C.; Yang, S.; Li, X.; Li, B.; Li, X.; Ma, J.; Liu, Y. ZnO/ZnFe2O4 Janus Hollow Nanofibers with Magnetic Separability for Photocatalytic Degradation of Water-Soluble Organic Dyes. ACS Appl. Nano Mater. 2019, 2, 4879–4890. [Google Scholar] [CrossRef]
- Zhu, J.; Shao, C.; Li, X.; Han, C.; Yang, S.; Ma, J.; Li, X.; Liu, Y. Immobilization of ZnO/polyaniline heterojunction on electrospun polyacrylonitrile nanofibers and enhanced photocatalytic activity. Mater. Chem. Phys. 2018, 214, 507–515. [Google Scholar] [CrossRef]
- Park, K.-H.; Han, G.D.; Kim, B.J.; Kang, E.H.; Park, J.S.; Shim, J.H.; Park, H.-D. Effects of atomic layer deposition conditions on the formation of thin ZnO films and their photocatalytic characteristics. Ceram. Int. 2019, 45, 18823–18830. [Google Scholar] [CrossRef]
- Gu, C.; Xiong, S.; Zhong, Z.; Wang, Y.; Xing, W. A promising carbon fiber-based photocatalyst with hierarchical structure for dye degradation. RSC Adv. 2017, 7, 22234–22242. [Google Scholar] [CrossRef]
- Bakos, L.P.; Justh, N.; Costa, U.C.M.D.S.B.D.; László, K.; Lábár, J.L.; Igricz, T.; Varga-Josepovits, K.; Pasierb, P.; Faärm, E.; Ritala, M.; et al. Photocatalytic and Gas Sensitive Multiwalled Carbon Nanotube/TiO2-ZnO and ZnO-TiO2 Composites Prepared by Atomic Layer Deposition. Nanomaterials 2020, 10, 252. [Google Scholar] [CrossRef]
- Feng, J.; Xiong, S.; Wang, Y. Atomic layer deposition of hybrid metal oxides on carbon nanotube membranes for photodegradation of dyes. Compos. Commun. 2019, 12, 39–46. [Google Scholar] [CrossRef]
- Wang, X.; Jin, Y.; Liang, X. Significant photocatalytic performance enhancement of TiO2 by CeO2 atomic layer deposition. Nanotechnology 2017, 28, 505709. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Patel, R.L.; Liang, X. Significant improvement in TiO2 photocatalytic activity through controllable ZrO2 deposition. RSC Adv. 2018, 8, 25829–25834. [Google Scholar] [CrossRef]
- Lee, J.K.; Kim, Y.-K.; Choi, B.J.; Chung, T.-M.; Han, J.H. SnO-decorated TiO2 nanoparticle with enhanced photocatalytic performance for methylene blue degradation. Appl. Surf. Sci. 2019, 480, 1089–1092. [Google Scholar] [CrossRef]
- Shin, S.C.; Park, B.K.; Chung, T.-M.; Han, J.H. Highly efficient photocatalytic methylene blue degradation over Sn(O,S)/TiO2 photocatalyst fabricated via powder atomic layer deposition of SnO and subsequent sulfurization. Mater. Lett. 2020, 272, 127868. [Google Scholar] [CrossRef]
- You, J.; Guo, Y. Atomic layer deposition of fcc-FePt nanoparticles on g-C3N4 for magnetically recyclable photocatalysts with enhanced photocatalytic performance. Ceram. Int. 2019, 45, 2451–2456. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, W.; Zhao, L. BaZrO3/Au and BaZrO3/Au-Pd hetero-structures: The characteristics and mechanism for their photocatalytic performance. Ceram. Int. 2019, 45, 23808–23814. [Google Scholar] [CrossRef]
- Scott, T.; Zhao, H.; Deng, W.; Feng, X.; Li, Y. Photocatalytic degradation of phenol in water under simulated sunlight by an ultrathin MgO coated Ag/TiO2 nanocomposite. Chemosphere 2019, 216, 1–8. [Google Scholar] [CrossRef]
- Merenda, A.; Weber, M.; Bechelany, M.; Allioux, F.-M.; Hyde, L.; Kong, L.; Dumée, L.F. Fabrication of Pd-TiO2 nanotube photoactive junctions via Atomic Layer Deposition for persistent pesticide pollutants degradation. Appl. Surf. Sci. 2019, 483, 219–230. [Google Scholar] [CrossRef]
- Liang, X.; Weimer, A.W. Photoactivity passivation of TiO2 nanoparticles using molecular layer deposited (MLD) polymer films. J. Nanopart. Res. 2009, 12, 135–142. [Google Scholar] [CrossRef]
- Ye, L.; Kropp, J.A.; Gougousi, T. In situ infrared spectroscopy study of the surface reactions during the atomic layer deposition of TiO2 on GaAs (100) surfaces. Appl. Surf. Sci. 2017, 422, 666–674. [Google Scholar] [CrossRef]
- Wang, X.; Donovan, A.R.; Patel, R.L.; Shi, H.; Liang, X. Adsorption of metal and metalloid ions onto nanoporous microparticles functionalized by atomic layer deposition. J. Environ. Chem. Eng. 2016, 4, 3767–3774. [Google Scholar] [CrossRef]
- Xiang, Q.; Yu, J.; Jaroniec, M. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 2012, 41, 782–796. [Google Scholar] [CrossRef] [PubMed]
- Berger, T.; Regmi, C.; Schäfer, A.; Richards, B. Photocatalytic degradation of organic dye via atomic layer deposited TiO2 on ceramic membranes in single-pass flow-through operation. J. Membr. Sci. 2020, 604, 118015. [Google Scholar] [CrossRef]
- Li, D.; Yan, X.; Lin, C.; Huang, S.; Tian, Z.R.; He, B.; Yang, Q.; Yu, B.; He, X.; Li, J.; et al. Synthesis of ZnO/Si Hierarchical Nanowire Arrays for Photocatalyst Application. Nanoscale Res. Lett. 2017, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Markovic, M.K.; Peter, R.; Badovinac, I.J.; Šarić, I.; Perčić, M.; Radičić, R.; Marković, D.; Knez, M.; Ambrožić, G. ‘Sandwich’-like hybrid ZnO thin films produced by a combination of atomic layer deposition and wet-chemistry using a mercapto silane as single organic precursor. Nanotechnology 2020, 31, 185603. [Google Scholar] [CrossRef]
- Di Mauro, A.; Cantarella, M.; Nicotra, G.; Privitera, V.; Impellizzeri, G. Low temperature atomic layer deposition of ZnO: Applications in photocatalysis. Appl. Catal. B Environ. 2016, 196, 68–76. [Google Scholar] [CrossRef]
- Liu, R.; Peng, M.; Zhang, H.; Wan, X.; Shen, M. Atomic layer deposition of ZnO on graphene for thin film transistor. Mater. Sci. Semicond. Process. 2016, 56, 324–328. [Google Scholar] [CrossRef]
- Walter, T.N.; Lee, S.; Zhang, X.; Chubarov, M.; Redwing, J.M.; Jackson, T.N.; Mohney, S.E. Atomic layer deposition of ZnO on MoS2 and WSe2. Appl. Surf. Sci. 2019, 480, 43–51. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, J.; Yu, L.; Kovarik, L.; Zhang, X.; Hoffman, A.S.; Gallo, A.; Bare, S.R.; Sokaras, D.; Kroll, T.; et al. Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nat. Catal. 2019, 2, 149–156. [Google Scholar] [CrossRef]
- Qiao, B.; Wang, A.; Yang, X.; Allard, L.F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641. [Google Scholar] [CrossRef]
- Mao, X.; Foucher, A.; Stach, E.A.; Gorte, R.J. A Study of Support Effects for CH4 and CO Oxidation over Pd Catalysts on ALD-Modified Al2O3. Catal. Lett. 2019, 149, 905–915. [Google Scholar] [CrossRef]
- Monai, M.; Montini, T.; Melchionna, M.; Duchoň, T.; Kúš, P.; Chen, C.; Tsud, N.; Nasi, L.; Prince, K.C.; Veltruská, K.; et al. The effect of sulfur dioxide on the activity of hierarchical Pd-based catalysts in methane combustion. Appl. Catal. B Environ. 2017, 202, 72–83. [Google Scholar] [CrossRef]
- Onn, T.M.; Monai, M.; Dai, S.; Fonda, E.; Montini, T.; Pan, X.; Graham, G.W.; Fornasiero, P.; Gorte, R.J. Smart Pd Catalyst with Improved Thermal Stability Supported on High-Surface-Area LaFeO3Prepared by Atomic Layer Deposition. J. Am. Chem. Soc. 2018, 140, 4841–4848. [Google Scholar] [CrossRef] [PubMed]
- Onn, T.M.; Dai, S.; Chen, J.; Pan, X.; Graham, G.W.; Gorte, R.J. High-Surface Area Ceria-Zirconia Films Prepared by Atomic Layer Deposition. Catal. Lett. 2017, 147, 1464–1470. [Google Scholar] [CrossRef]
- Cao, K.; Liu, X.; Zhu, Q.; Shan, B.; Chen, R. Atomically Controllable Pd@Pt Core-Shell Nanoparticles towards Preferential Oxidation of CO in Hydrogen Reactions Modulated by Platinum Shell Thickness. ChemCatChem 2015, 8, 326–330. [Google Scholar] [CrossRef]
- Piumetti, M.; Bensaid, S.; Russo, N.; Fino, D. Nanostructured ceria-based catalysts for soot combustion: Investigations on the surface sensitivity. Appl. Catal. B Environ. 2015, 165, 742–751. [Google Scholar] [CrossRef]
- Machida, M.; Murata, Y.; Kishikawa, K.; Zhang, D.; Ikeue, K. On the Reasons for High Activity of CeO2 Catalyst for Soot Oxidation. Chem. Mater. 2008, 20, 4489–4494. [Google Scholar] [CrossRef]
- Ivanova, T.V.; Toivonen, J.; Maydannik, P.; Kääriäinen, T.; Sillanpää, M.; Homola, T.; Cameron, D.C. Atomic layer deposition of cerium oxide for potential use in diesel soot combustion. J. Vac. Sci. Technol. A 2016, 34, 031506. [Google Scholar] [CrossRef]
- Ivanova, T.V.; Homola, T.; Bryukvin, A.; Cameron, D.C. Catalytic Performance of Ag2O and Ag Doped CeO2 Prepared by Atomic Layer Deposition for Diesel Soot Oxidation. Coatings 2018, 8, 237. [Google Scholar] [CrossRef]
- O’Neill, B.J.; Jackson, D.H.K.; Crisci, A.J.; Farberow, C.A.; Shi, F.; Alba-Rubio, A.C.; Lu, J.; Dietrich, P.J.; Gu, X.; Marshall, C.L.; et al. Stabilization of Copper Catalysts for Liquid-Phase Reactions by Atomic Layer Deposition. Angew. Chem. Int. Ed. 2013, 52, 13808–13812. [Google Scholar] [CrossRef]
- Wang, X.; Hu, W.; Deng, B.; Liang, X. Selective hydrogenation of citral over supported Pt catalysts: Insight into support effects. J. Nanopart. Res. 2017, 19, 56. [Google Scholar] [CrossRef]
- Ye, X.; Wang, H.; Lin, Y.; Liu, X.; Cao, L.; Gu, J.; Lu, J. Insight of the stability and activity of platinum single atoms on ceria. Nano Res. 2019, 12, 1401–1409. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, G.; Gauquelin, N.; Chen, N.; Zhou, J.; Yang, S.; Chen, W.; Meng, X.; Geng, D.; Banis, M.N.; et al. Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition. Sci. Rep. 2013, 3, 1775. [Google Scholar] [CrossRef]
- Chen, B.-R.; Crosby, L.; George, C.; Kennedy, R.M.; Schweitzer, N.M.; Wen, J.; Van Duyne, R.P.; Stair, P.C.; Poeppelmeier, K.R.; Marks, L.D.; et al. Morphology and CO Oxidation Activity of Pd Nanoparticles on SrTiO3Nanopolyhedra. ACS Catal. 2018, 8, 4751–4760. [Google Scholar] [CrossRef]
- Wang, X.; Jin, B.; He, X.; White, T.A.; Liang, X. Highly Active and Stable Fe/SiO2 Catalyst Synthesized by Atomic Layer Deposition for CO Oxidation. Catal. Lett. 2020, 150, 3296–3303. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, H.; Wu, T.; Liu, Y.; Liang, X. Synthesis of Highly Dispersed and Highly Stable Supported Au–Pt Bimetallic Catalysts by a Two-Step Method. Catal. Lett. 2016, 146, 2606–2613. [Google Scholar] [CrossRef]
- Shang, Z.; Liang, X. “Core–Shell” Nanostructured Supported Size-Selective Catalysts with High Catalytic Activity. Nano Lett. 2016, 17, 104–109. [Google Scholar] [CrossRef]
- Tang, W.; Lu, X.; Liu, F.; Du, S.; Weng, J.; Hoang, S.; Wang, S.; Nam, C.-Y.; Gao, P.-X. Ceria-based nanoflake arrays integrated on 3D cordierite honeycombs for efficient low-temperature diesel oxidation catalyst. Appl. Catal. B Environ. 2019, 245, 623–634. [Google Scholar] [CrossRef]
- Hoang, S.; Lu, X.; Tang, W.; Wang, S.; Du, S.; Nam, C.-Y.; Ding, Y.; Vinluan, R.D.; Zheng, J.; Gao, P.-X. High performance diesel oxidation catalysts using ultra-low Pt loading on titania nanowire array integrated cordierite honeycombs. Catal. Today 2019, 320, 2–10. [Google Scholar] [CrossRef]
- Liang, X.; Zhou, Y.; Li, J.; Weimer, A.W. Reaction mechanism studies for platinum nanoparticle growth by atomic layer deposition. J. Nanopart. Res. 2011, 13, 3781–3788. [Google Scholar] [CrossRef]
- Han, S.W.; Kim, D.H.; Jeong, M.-G.; Park, K.J.; Kim, Y.D. CO oxidation catalyzed by NiO supported on mesoporous Al2O3 at room temperature. Chem. Eng. J. 2016, 283, 992–998. [Google Scholar] [CrossRef]
- Jeong, M.-G.; Park, E.J.; Jeong, B.; Kim, D.H.; Kim, Y.D. Toluene combustion over NiO nanoparticles on mesoporous SiO2 prepared by atomic layer deposition. Chem. Eng. J. 2014, 237, 62–69. [Google Scholar] [CrossRef]
- Fang, M.; Ho, J.C. Area-Selective Atomic Layer Deposition: Conformal Coating, Subnanometer Thickness Control, and Smart Positioning. ACS Nano 2015, 9, 8651–8654. [Google Scholar] [CrossRef] [PubMed]
- Canlas, C.P.; Lu, J.; Ray, N.A.; Grosso-Giordano, N.A.; Lee, S.; Elam, J.W.; Winans, R.E.; Van Duyne, R.P.; Stair, P.C.; Notestein, J.M. Shape-selective sieving layers on an oxide catalyst surface. Nat. Chem. 2012, 4, 1030–1036. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Gu, X.-K.; Zheng, X.; Pan, H.; Zhu, J.; Chen, S.; Cao, L.; Li, W.-X.; Lu, J. Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity. Sci. Adv. 2019, 5, eaat6413. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, Y.; Liang, X. Hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over supported Pt–Co bimetallic catalysts under mild conditions. Green Chem. 2018, 20, 2894–2902. [Google Scholar] [CrossRef]
- Wang, X.; He, Y.; Liu, Y.; Park, J.; Liang, X. Atomic layer deposited Pt-Co bimetallic catalysts for selective hydrogenation of α, β-unsaturated aldehydes to unsaturated alcohols. J. Catal. 2018, 366, 61–69. [Google Scholar] [CrossRef]
- Wang, H.; Luo, Q.Q.; Liu, W.; Lin, Y.; Guan, Q.; Zheng, X.; Pan, H.; Zhu, J.; Sun, Z.; Wei, S.; et al. Quasi Pd1Ni single-atom surface alloy catalyst enables hydrogenation of nitriles to secondary amines. Nat. Commun. 2019, 10, 4998–4999. [Google Scholar] [CrossRef]
- Lu, J.; Low, K.-B.; Lei, Y.; Libera, J.A.; Nicholls, A.; Stair, P.C.; Elam, J.W. Toward atomically-precise synthesis of supported bimetallic nanoparticles using atomic layer deposition. Nat. Commun. 2014, 5, 3264. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Yao, Q.; Yan, H.; Li, J.; Lu, J. Precisely Applying TiO2 Overcoat on Supported Au Catalysts Using Atomic Layer Deposition for Understanding the Reaction Mechanism and Improved Activity in CO Oxidation. J. Phys. Chem. C 2015, 120, 478–486. [Google Scholar] [CrossRef]
- Wang, C.; Yao, Q.; Cao, L.; Li, J.; Chen, S.; Lu, J. Precise Tailoring of Ir-FeOx Interfaces for Improved Catalytic Performance in Preferential Oxidation of Carbon Monoxide in Hydrogen. J. Phys. Chem. C 2019, 123, 29262–29270. [Google Scholar] [CrossRef]
- Yao, Q.; Wang, C.; Wang, H.; Yan, H.; Lu, J. Revisiting the Au Particle Size Effect on TiO2-Coated Au/TiO2 Catalysts in CO Oxidation Reaction. J. Phys. Chem. C 2016, 120, 9174–9183. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, Q.; Lang, Y.; Cao, K.; Chu, S.; Shan, B.; Chen, R. Oxide-Nanotrap-Anchored Platinum Nanoparticles with High Activity and Sintering Resistance by Area-Selective Atomic Layer Deposition. Angew. Chem. Int. Ed. 2017, 56, 1648–1652. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Li, K.; Zhang, Z.; Hu, X.; Tian, H.; Zhang, Y.; Yang, X. MnO2–Graphene-oxide-scroll–TiO2 composite catalyst for low-temperature NH3-SCR of NO with good steam and SO2 resistance obtained by low-temperature carbon-coating and selective atomic layer deposition. Catal. Sci. Technol. 2019, 9, 1602–1608. [Google Scholar] [CrossRef]
- Lv, P.; Zhao, C.; Lee, W.J.; Huo, S.; Kwon, S.-H.; Fang, J.; Yang, Y. Less is more: Enhancement of photocatalytic activity of g-C3N4 nanosheets by site-selective atomic layer deposition of TiO2. Appl. Surf. Sci. 2019, 494, 508–518. [Google Scholar] [CrossRef]
Entry | ALD | Number of Cycles | Catalyst | Pollutant | Light | kapp (min−1) 1 | Reference |
---|---|---|---|---|---|---|---|
1 | Al2O3 | 10 | TiO2/V2O5/Al2O3 | RhB | UV light | - | [31] |
2 | Al2O3 | (−8 nm) | Al-rich Al2O3 ultra-thin film | RB5 | UV light | 0.163 | [32] |
3 | TiO2 | 5 | g-C3N4@TiO2 | RhB | Visible light | 0.00324 | [33] |
4 | TiO2 | 30 | 30TiO2@P25 | 2,4-D | λ >320 nm | 5.0 | [34] |
5 | SnO2, TiO2 | 1000, 200 | SnO2@TiO2 nanopillar-array | MB | UV light | - | [35] |
6 | TiO2 | 1000 | C-TiO2-390 | MB | Visible light | 0.0917 | [36] |
7 | TiO2 | 250 | TiO2 inverse opals | MB | UV light | 0.00415 | [37] |
8 | TiO2 | 10 | SnO2/TiO2 core shell nanowires | MO | UV light | 0.00147 | [38] |
9 | TiO2 | 80 | Au-80@TiO2 | MB | UV light | - | [39] |
10 | TiO2 | 400 | CNT/TiO2 | MB | UV light | 0.0101 | [40] |
11 | TiO2 | 1125 | TiO2/Graphene | Methyl red | UV-vis light | 0.0064 | [41] |
12 | TiO2, Ga2O3 | −(6.5 nm, 8.0 nm) | TiO2-Ga2O3 | MO | UV light | - | [42] |
13 | TiN | 100 | TiO2@100TiN | MO | Visible light | 0.027 | [43] |
14 | TiN | (−10 nm) | 3D N-doped TiO2 | MB | Solar light | - | [44] |
15 | ZnO | 100 | g-C3N4@ZnO | cephalexin | Solar light | 0.0735 | [14] |
16 | ZnO | 300 | ZnO/ZFO-2 JHNFs | MB | Visible light | 0.0187 | [45] |
17 | ZnO | 5 | g-C3N4@ZnO | MB | Visible light | 0.0263 | [29] |
18 | ZnO | 400 | PAN@PANI@ZnO nanofibers | MB | UV light | 0.040 | [46] |
19 | ZnO | 400 | ZnO/glass | MB | UV light | 0.0037 | [47] |
20 | ZnO | 300 | Pt@ZnO NRs/CFs | MO | UV light | - | [48] |
21 | ZnO | 120 | CNT-ZnO | MO | UV light | 0.0026 | [49] |
22 | ZnO, TiO2 | 30, 30 | ZnO-TiO2/CNT membrane | MB | UV light | 0.0203 | [50] |
23 | CeO2 | 40 | CeO2/TiO2 | MB | UV light | 0.079 | [51] |
24 | ZrO2 | 45 | ZrO2/TiO2 | MB | UV light | 0.127 | [52] |
25 | SnO | 236 | SnO/TiO2 | MB | UV-vis light | 0.010 | [53] |
26 | SnO | (−3 nm) | Sn (O,S)/TiO2 | MB | Visible light | 0.114 | [54] |
27 | Fe, Pt | 30, 30 | g-C3N4/FePt-2 | RhB | Visible light | 0.0891 | [55] |
28 | Pd | 10 | BaZrO3/Au-Pd | RhB | UV light | 0.0408 | [56] |
29 | Fe | 2 | Fe/TiO2 | MB | UV light | 0.155 | [13] |
30 | MgO | 5 | 5_MgO@Ag_TiO2 | phenol | Solar light | - | [57] |
31 | Pd | 50 | Pd-TiO2 | 2,4-D | UV-vis light | - | [58] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhao, Z.; Zhang, C.; Li, Q.; Liang, X. Surface Modification of Catalysts via Atomic Layer Deposition for Pollutants Elimination. Catalysts 2020, 10, 1298. https://doi.org/10.3390/catal10111298
Wang X, Zhao Z, Zhang C, Li Q, Liang X. Surface Modification of Catalysts via Atomic Layer Deposition for Pollutants Elimination. Catalysts. 2020; 10(11):1298. https://doi.org/10.3390/catal10111298
Chicago/Turabian StyleWang, Xiaofeng, Zhe Zhao, Chengcheng Zhang, Qingbo Li, and Xinhua Liang. 2020. "Surface Modification of Catalysts via Atomic Layer Deposition for Pollutants Elimination" Catalysts 10, no. 11: 1298. https://doi.org/10.3390/catal10111298
APA StyleWang, X., Zhao, Z., Zhang, C., Li, Q., & Liang, X. (2020). Surface Modification of Catalysts via Atomic Layer Deposition for Pollutants Elimination. Catalysts, 10(11), 1298. https://doi.org/10.3390/catal10111298