Ring-Opening of Epoxides with Amines for Synthesis of β-Amino Alcohols in a Continuous-Flow Biocatalysis System
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Reaction Media and Catalyst
2.2. Effect of Reaction Temperature
2.3. Effect of Residence Time
2.4. Effect of Substrate Ratio
2.5. The Effect of Enzyme Reusability on the Reaction
2.6. The Effect of Aromatic Amine Structure on the Reaction
3. Materials and Methods
3.1. Materials
3.2. Experimental Setup and Experiment Conditions
3.3. Analytical Methods
3.3.1. Thin-Layer Chromatography (TLC)
3.3.2. Nuclear Magnetic Resonance (NMR)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mohebbi, M.; Salehi, P.; Bararjanian, M.; Ebrahimi, S.N. Noscapine-derived β-amino alcohols as new organocatalysts for enantioselective addition of diethylzinc to aldehydes. J. Iran. Chem. Soc. 2017, 15, 47–53. [Google Scholar] [CrossRef]
- Castejón, P.; Moyano, A.; Pericàs, M.A.; Riera, A. Access to stereodefined β-hydroxy-γ-amino acids. Enantioselective synthesis of fully protected cyclohexylstatine. Tetrahedron 1996, 52, 7063–7086. [Google Scholar] [CrossRef]
- Alonso, D.A.; Guijarro, D.; Pinho, P.; Temme, O.; Andersson, P.G. (1S,3R,4R)-2-azanorbornylmethanol, an efficient ligand for ruthenium-catalyzed asymmetric transfer hydrogenation of ketones. J. Org. Chem. 1998, 63, 2749–2751. [Google Scholar] [CrossRef] [PubMed]
- Ager, D.J.; Prakash, I.; Schaad, D.R. 1,2-Amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis. Chem. Rev. 1996, 96, 835–875. [Google Scholar] [CrossRef] [PubMed]
- Nicolaou, K.C.; Boddy, C.N. Atropselective macrocyclization of diaryl ether ring systems: Application to the synthesis of vancomycin model systems. J. Am. Chem. Soc. 2002, 124, 10451–10455. [Google Scholar] [CrossRef] [PubMed]
- Deyrup, J.A.; Moye, C.L. 1,2,3-Oxathiazolidines—A new heterocyclic system. J. Org. Chem. 1969, 34, 175–179. [Google Scholar] [CrossRef]
- Yamada, S.; Ohkura, T.; Uchida, S.; Inabe, K.; Iwatani, Y.; Kimura, R.; Hoshino, T.; Kaburagi, T. A sustained increase in β-adrenoceptors during long-term therapy with metoprolol and bisoprolol in patients with heart failure from idiopathic dilated cardiomyopathy. Life Sci. 1996, 58, 1737–1744. [Google Scholar] [CrossRef]
- Khirani, S.; Dabaj, I.; Amaddeo, A.; Olmo Arroyo, J.; Ropers, J.; Tirolien, S.; Coudert, V.; Estournet, B.; Fauroux, B.; Quijano-Roy, S. Effect of Salbutamol on Respiratory Muscle Strength in Spinal Muscular Atrophy. Pediatr. Neurol. 2017, 73, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Meng, L.; Zhang, Q.; Wei, L. Synthesis and evaluation of febrifugine analogues as potential antimalarial agents. Bioorg. Med. Chem. Lett. 2006, 16, 1854–1858. [Google Scholar] [CrossRef]
- Stahlberg, J.; Henriksson, H.; Divne, C.; Isaksson, R.; Pettersson, G.; Johansson, G.; Jones, T.A. Structural basis for enantiomer binding and separation of a common beta-blocker: Crystal structure of cellobiohydrolase Cel7A with bound (S)-propranolol at 1.9 A resolution. J. Mol. Biol. 2001, 305, 79–93. [Google Scholar] [CrossRef]
- Tayade, K.N.; Wang, L.; Shang, S.; Dai, W.; Mishra, M.; Gao, S. Zirconium triflate grafted on SBA-15 as a highly efficient solid acid catalyst for ring opening of epoxides by amines and alcohols. Chin. J. Catal. 2017, 38, 758–766. [Google Scholar] [CrossRef]
- Natongchai, W.; Khan, R.; Alsalme, A.; Shaikh, R. YCl3-Catalyzed Highly Selective Ring Opening of Epoxides by Amines at Room Temperature and under Solvent-Free Conditions. Catalysts 2017, 7, 340. [Google Scholar] [CrossRef] [Green Version]
- Prathap, K.J.; Wu, Q.; Olsson, R.T.; Diner, P. Catalytic Reductions and Tandem Reactions of Nitro Compounds Using in Situ Prepared Nickel Boride Catalyst in Nanocellulose Solution. Org. Lett. 2017, 19, 4746–4749. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.; Hajiashrafi, T.; Heydari, A.; Azhdari Tehrani, A. Terbium-organic framework as heterogeneous Lewis acid catalyst for β-aminoalcohol synthesis: Efficient, reusable and green catalytic method. Appl. Organomet. Chem. 2017, 31, e3866. [Google Scholar] [CrossRef]
- Tan, N.; Yin, S.; Li, Y.; Qiu, R.; Meng, Z.; Song, X.; Luo, S.; Au, C.-T.; Wong, W.-Y. Synthesis and structure of an air-stable organobismuth triflate complex and its use as a high-efficiency catalyst for the ring opening of epoxides in aqueous media with aromatic amines. J. Organomet. Chem. 2011, 696, 1579–1583. [Google Scholar] [CrossRef]
- Ollevier, T.; Lavie-Compin, G. An efficient method for the ring opening of epoxides with aromatic amines catalyzed by bismuth trichloride. Catal. Lett. 2002, 43, 7891–7893. [Google Scholar] [CrossRef]
- Venkat Narsaiah, A.; Reddy, B.V.S.; Premalatha, K.; Reddy, S.S.; Yadav, J.S. Bismuth(III)-Catalyzed Hydrolysis of Epoxides and Aziridines: An Efficient Synthesis of vic-diols and β-Amino Alcohols. Catal. Lett. 2009, 131, 480–484. [Google Scholar] [CrossRef]
- Bansal, S.; Kumar, Y.; Pippal, P.; Das, D.K.; Pramanik, P.; Singh, P.P. An efficient method for regioselective ring opening of epoxides by amines under microwave irradiation using Bi(NO3)3·5H2O as a catalyst. New J. Chem. 2017, 41, 2668–2671. [Google Scholar] [CrossRef]
- Torrelo, G.; Hanefeld, U.; Hollmann, F. Biocatalysis. Catal. Lett. 2014, 145, 309–345. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Brady, D. Broadening the Scope of Biocatalysis in Sustainable Organic Synthesis. ChemSusChem 2019, 12, 2859–2881. [Google Scholar] [CrossRef]
- Woodley, J.M. New frontiers in biocatalysis for sustainable synthesis. Curr. Opin. Green Sustain. Chem. 2020, 21, 22–26. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Woodley, J.M. Role of Biocatalysis in Sustainable Chemistry. Chem. Rev. 2018, 118, 801–838. [Google Scholar] [CrossRef] [PubMed]
- Sonawane, Y.A.; Phadtare, S.B.; Borse, B.N.; Jagtap, A.R.; Shankarling, G.S. Synthesis of diphenylamine-based novel fluorescent styryl colorants by Knoevenagel condensation using a conventional method, biocatalyst, and deep eutectic solvent. Org. Lett. 2010, 12, 1456–1459. [Google Scholar] [CrossRef] [PubMed]
- Reetz, M.T. Lipases as practical biocatalysts. Curr. Opin. Chem. Biol. 2002, 6, 145–150. [Google Scholar] [CrossRef]
- Dhake, K.P.; Qureshi, Z.S.; Singhal, R.S.; Bhanage, B.M. Candida antarctica lipase B-catalyzed synthesis of acetamides using [BMIm(PF6)] as a reaction medium. Tetrahedron Lett. 2009, 50, 2811–2814. [Google Scholar] [CrossRef]
- Jaeger, K.-E.; Eggert, T. Lipases for biotechnology. Curr. Opin. Biotechnol. 2002, 13, 390–397. [Google Scholar] [CrossRef]
- Du, L.-H.; Long, R.-J.; Xue, M.; Chen, P.-F.; Yang, M.-J.; Luo, X.-P. Continuous-Flow Synthesis of β-Amino Acid Esters by Lipase-Catalyzed Michael Addition of Aromatic Amines. Catalysts 2020, 10, 432. [Google Scholar] [CrossRef]
- Arsa, S.; Theerakulkait, C. Preparation, aroma characteristics and volatile compounds of flavorings from enzymatic hydrolyzed rice bran protein concentrate. J. Sci. Food Agric. 2018, 98, 4479–4487. [Google Scholar] [CrossRef]
- Borude, V.S.; Shah, R.V.; Shukla, S.R. Synthesis of β-amino alcohol derivatives from phenols in presence of phase transfer catalyst and lipase biocatalyst. Curr. Chem. Lett. 2013, 2, 1–12. [Google Scholar] [CrossRef]
- Gupta, P.; Bhatia, S.; Dhawan, A.; Balwani, S.; Sharma, S.; Brahma, R.; Singh, R.; Ghosh, B.; Parmar, V.S.; Prasad, A.K. Selective biocatalytic aminolysis of (+/−)-epichlorohydrin: Synthesis and ICAM-1 inhibitory activity of (S)-(+)-3-arylamino-1-chloropropan-2-ols. Bioorg. Med. Chem. 2011, 19, 2263–2268. [Google Scholar] [CrossRef]
- Planchestainer, M.; Contente, M.L.; Cassidy, J.; Molinari, F.; Tamborini, L.; Paradisi, F. Continuous flow biocatalysis: Production and in-line purification of amines by immobilised transaminase from Halomonas elongata. Green Chem. 2017, 19, 372–375. [Google Scholar] [CrossRef]
- Iemhoff, A.; Sherwood, J.; McElroy, C.R.; Hunt, A.J. Towards sustainable kinetic resolution, a combination of bio-catalysis, flow chemistry and bio-based solvents. Green Chem. 2018, 20, 136–140. [Google Scholar] [CrossRef] [Green Version]
- Valikhani, D.; Srivastava, P.L.; Allemann, R.K.; Wirth, T. Immobilised Enzymes for Sesquiterpene Synthesis in Batch and Flow Systems. ChemCatChem 2020, 12, 2194–2197. [Google Scholar] [CrossRef]
- Britton, J.; Majumdar, S.; Weiss, G.A. Continuous flow biocatalysis. Chem. Soc. Rev. 2018, 47, 5891–5918. [Google Scholar] [CrossRef]
- Van der Helm, M.P.; Bracco, P.; Busch, H.; Szymańska, K.; Jarzębski, A.B.; Hanefeld, U. Hydroxynitrile lyases covalently immobilized in continuous flow microreactors. Catal. Sci. Technol. 2019, 9, 1189–1200. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Ettelaie, R.; Yan, T.; Zhang, S.; Cheng, F.; Binks, B.P.; Yang, H. Ionic Liquid Droplet Microreactor for Catalysis Reactions Not at Equilibrium. J. Am. Chem. Soc. 2017, 139, 17387–17396. [Google Scholar] [CrossRef] [PubMed]
- Du, L.H.; Dong, Z.; Long, R.J.; Chen, P.F.; Xue, M.; Luo, X.P. The convenient Michael addition of imidazoles to acrylates catalyzed by Lipozyme TL IM from Thermomyces lanuginosus in a continuous flow microreactor. Org. Biomol. Chem. 2019, 17, 807–812. [Google Scholar] [CrossRef]
- Fang, J.; Ke, M.; Huang, G.; Tao, Y.; Cheng, D.; Chen, F.-E. The Chapman rearrangement in a continuous-flow microreactor. RSC Adv. 2019, 9, 9270–9280. [Google Scholar] [CrossRef] [Green Version]
- Arcus, V.L.; van der Kamp, M.W.; Pudney, C.R.; Mulholland, A.J. Enzyme evolution and the temperature dependence of enzyme catalysis. Curr. Opin. Struct. Biol. 2020, 65, 96–101. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Hu, C.; Cao, Q.; Yang, X.; Zhao, M. Preparation of Diacylglycerol-Enriched Oil from Free Fatty Acids Using Lecitase Ultra-Catalyzed Esterification. J. Am. Oil Chem. Soc. 2011, 88, 1557–1565. [Google Scholar] [CrossRef]
Entry | Solvent | Log p | Catalysts | Yield b (%) | |
---|---|---|---|---|---|
3 | 4 | ||||
1 | Methanol | −0.76 | None | n.d. | n.d. |
2 | Methanol | −0.76 | Lipozyme TL IM | 85.2 ± 1.2 | 3.1 ± 1.1 |
3 | Ethanol | −0.24 | Lipozyme TL IM | 80.1 ± 1.6 | 2.9 ± 1.2 |
4 | Acetonitrile | −0.33 | Lipozyme TL IM | 78.8 ± 2.1 | 1.8 ± 1.5 |
5 | Toluene | 2.5 | Lipozyme TL IM | 76.2 ± 0.8 | 2.3 ± 1.6 |
6 | n-Hexane | 3.94 | Lipozyme TL IM | 71.5 ± 1.5 | 1.7 ± 1.2 |
7 | Methanol | −0.76 | Subtilisin | n.d. | n.d. |
8 | Ethanol | −0.24 | Subtilisin | n.d. | n.d. |
Entry | Amine | Epoxide | Major Product | Yield b (%) | ee (%) | |
---|---|---|---|---|---|---|
3 | 4 | |||||
1 | 91.3 ± 1.5 | 3.2 ± 0.9 | 1 | |||
2 | 73.2 ± 1.9 | 4.2 ± 1.1 | ≤1 | |||
3 | 82.5 ± 0.9 | 3.5 ± 0.6 | ≤1 | |||
4 | 88.6 ± 2.1 | 4.1 ± 0.5 | ≤1 | |||
5 | 92.7 ± 1.7 | 3.5 ± 0.6 | ≤1 | |||
6 | 70.2 ± 1.5 | 3.1 ± 1.1 | ≤1 | |||
7 | 87.5 ± 2.0 | 4.1 ± 0.8 | 1 | |||
8 | 71.4 ± 1.2 | 0 | ≤1 | |||
9 | 81.5 ± 1.2 | 4.7 ± 0.9 | ≤1 | |||
10 | 89.8 ± 1.5 | 3.9 ± 1.2 | ≤1 | |||
11 | 93.8 ± 2.8 | 3.2 ± 0.7 | ≤1 | |||
12 | 76.5 ± 1.6 | 5.1 ± 1.1 | ≤1 | |||
13 | 77.8 ± 2.9 | n.a. | 1 | |||
14 | 65.0 ± 1.5 | n.a. | ≤1 | |||
15 | 68.5 ± 1.1 | n.a. | ≤1 | |||
16 | 71.5 ± 1.6 | n.a. | ≤1 | |||
17 | 75.6 ± 1.8 | n.a. | ≤1 | |||
18 | 66.3 ± 0.5 | n.a. | ≤1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, L.-H.; Xue, M.; Yang, M.-J.; Pan, Y.; Zheng, L.-Y.; Ou, Z.-M.; Luo, X.-P. Ring-Opening of Epoxides with Amines for Synthesis of β-Amino Alcohols in a Continuous-Flow Biocatalysis System. Catalysts 2020, 10, 1419. https://doi.org/10.3390/catal10121419
Du L-H, Xue M, Yang M-J, Pan Y, Zheng L-Y, Ou Z-M, Luo X-P. Ring-Opening of Epoxides with Amines for Synthesis of β-Amino Alcohols in a Continuous-Flow Biocatalysis System. Catalysts. 2020; 10(12):1419. https://doi.org/10.3390/catal10121419
Chicago/Turabian StyleDu, Li-Hua, Miao Xue, Meng-Jie Yang, Yue Pan, Ling-Yan Zheng, Zhi-Min Ou, and Xi-Ping Luo. 2020. "Ring-Opening of Epoxides with Amines for Synthesis of β-Amino Alcohols in a Continuous-Flow Biocatalysis System" Catalysts 10, no. 12: 1419. https://doi.org/10.3390/catal10121419