Biomass Pyrolysis Technology by Catalytic Fast Pyrolysis, Catalytic Co-Pyrolysis and Microwave-Assisted Pyrolysis: A Review
Abstract
:1. Introduction
2. Catalysts in Catalytic Fast Pyrolysis
2.1. Traditional Zeolite Catalysts
2.2. Metal Modified Zeolite Catalysts
2.3. Other Metal Catalysts
2.4. Deactivation and Regeneration of Zeolite Catalyst
3. Catalytic Co-Pyrolysis
3.1. Co-Reactants in CCP
3.2. Mechanism of Catalyst in CCP
4. Microwave-Assisted Pyrolysis Technology
5. Conclusions
Funding
Conflicts of Interest
References
- Apak, S.; Atay, E.; Tuncer, G. Renewable hydrogen energy and energy efficiency in Turkey in the 21st century. Int. J. Hydrogen Energy 2017, 42, 2446–2452. [Google Scholar] [CrossRef]
- Gollakota, A.R.K.; Reddy, M.; Subramanyam, M.D.; Kishore, N. A review on the upgradation techniques of pyrolysis oil. Renew. Sustain. Energy Rev. 2016, 58, 1543–1568. [Google Scholar] [CrossRef]
- Uzoejinwa, B.B.; He, X.; Wang, S.; Abomohra, A.E.-F.; Hu, Y.; Wang, Q. Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide. Energy Convers. Manag. 2018, 163, 468–492. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, H.; Liu, C.; Xiao, R. Comparison of Acids and Sulfates for Producing Levoglucosan and Levoglucosenone by Selective Catalytic Fast Pyrolysis of Cellulose Using Py-GC/MS. Energy Fuels 2016, 30, 8369–8376. [Google Scholar] [CrossRef]
- Lu, Q.; Ye, X.-N.; Zhang, Z.-B.; Cui, M.-S.; Guo, H.-Q.; Qi, W.; Dong, C.-Q.; Yang, Y.-P. Catalytic Fast Pyrolysis of Bagasse Using Activated Carbon Catalyst to Selectively Produce 4-Ethyl Phenol. Energy Fuels 2016, 30, 10618–10626. [Google Scholar] [CrossRef]
- Yang, S.I.; Wu, M.S.; Wu, C.Y. Application of biomass fast pyrolysis part I: Pyrolysis characteristics and products. Energy 2014, 66, 162–171. [Google Scholar] [CrossRef]
- Al Arni, S. Comparison of slow and fast pyrolysis for converting biomass into fuel. Renew. Energy 2018, 124, 197–201. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Fan, L.; Dai, L.; Duan, D.; Liu, Y.; Ruan, R.; Zhao, Y.; Yu, Z.; Hu, Y. Fast microwave-assisted catalytic co-pyrolysis of straw stalk and soapstock for bio-oil production. J. Anal. Appl. Pyrolysis 2017, 124, 35–41. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Liu, C.; Ma, W.; Yan, B.; Zhang, J. Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts: A critical review. Renew. Sustain. Energy Rev. 2017, 71, 296–308. [Google Scholar] [CrossRef]
- Dabros, T.M.H.; Stummann, M.Z.; Hoj, M.; Jensen, P.A.; Grunwaldt, J.-D.; Gabrielsen, J.; Mortensen, P.M.; Jensen, A.D. Transportation fuels from biomass fast pyrolysis, catalytic hydrodeoxygenation, and catalytic fast hydropyrolysis. Prog. Energy Combust. Sci. 2018, 68, 268–309. [Google Scholar] [CrossRef]
- Chandler, D.S.; Resende, F.L.P. Comparison between Catalytic Fast Pyrolysis and Catalytic Fast Hydropyrolysis for the Production of Liquid Fuels in a Fluidized Bed Reactor. Energy Fuels 2019, 33, 3199–3209. [Google Scholar] [CrossRef]
- Rahman, M.M.; Liu, R.; Cai, J. Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil—A review. Fuel Process. Technol. 2018, 180, 32–46. [Google Scholar] [CrossRef]
- Galadima, A.; Muraza, O. In Situ Fast Pyrolysis of Biomass with Zeolite Catalysts for Bioaromatics/Gasoline Production: A Review. Energy Convers. Manag. 2015, 105, 338–354. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, L.; Dai, L.; Yu, Z.; Liu, Y.; Ruan, R.; Fu, G.; Zhou, Y.; Fan, L.; Duan, D.; et al. Microwave-assisted catalytic co-pyrolysis of soybean straw and soapstock for bio-oil production using SiC ceramic foam catalyst. J. Anal. Appl. Pyrolysis 2018, 133, 76–81. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, W.; Li, B.; Xie, G. Microwave-Assisted Pyrolysis of Biomass for Bio-Oil Production: A Review of the Operation Parameters. J. Energy Resour. Technol. Trans. ASME 2018, 140. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Lei, H.; Chen, S.; Wu, J. Catalytic co-pyrolysis of lignocellulosic biomass with polymers: A critical review. Green Chem. 2016, 18, 4145–4169. [Google Scholar] [CrossRef]
- Du, Z.; Hu, B.; Ma, X.; Cheng, Y.; Liu, Y.; Lin, X.; Wan, Y.; Lei, H.; Chen, P.; Ruan, R. Catalytic pyrolysis of microalgae and their three major components: Carbohydrates, proteins, and lipids. Bioresour. Technol. 2013, 130, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Vichaphund, S.; Sricharoenchaikul, V.; Atong, D. Selective aromatic formation from catalytic fast pyrolysis of Jatropha residues using ZSM-5 prepared by microwave-assisted synthesis. J. Anal. Appl. Pyrolysis 2019, 141. [Google Scholar] [CrossRef]
- Dai, L.; Wang, Y.; Liu, Y.; Ruan, R.; Duan, D.; Zhao, Y.; Yu, Z.; Jiang, L. Catalytic fast pyrolysis of torrefied corn cob to aromatic hydrocarbons over Ni-modified hierarchical ZSM-5 catalyst. Bioresour. Technol. 2019, 272, 407–414. [Google Scholar] [CrossRef]
- Lazaridis, P.A.; Fotopoulos, A.P.; Karakoulia, S.A.; Triantafyllidis, K.S. Catalytic Fast Pyrolysis of Kraft Lignin with Conventional, Mesoporous and Nanosized ZSM-5 Zeolite for the Production of Alkyl-Phenols and Aromatics. Front. Chem. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Paysepar, H.; Rao, K.T.V.; Yuan, Z.; Shui, H.; Xu, C. Improving activity of ZSM-5 zeolite catalyst for the production of monomeric aromatics/phenolics from hydrolysis lignin via catalytic fast pyrolysis. Appl. Catal. A Gen. 2018, 563, 154–162. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, J.; Zhong, Z.; Zhang, Y.; Song, M.; Wang, X.; Ding, K.; Ruan, R. Conversion of poultry litter into bio-oil by microwave-assisted catalytic fast pyrolysis using microwave absorbent and hierarchical ZSM-5/MCM-41 catalyst. J. Anal. Appl. Pyrolysis 2018, 130, 233–240. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, X.; Chen, L.; Zhao, B.; Yang, S.; Xie, X. Comparision of catalytic fast pyrolysis of biomass to aromatic hydrocarbons over ZSM-5 and Fe/ZSM-5 catalysts. J. Anal. Appl. Pyrolysis 2016, 121, 342–346. [Google Scholar] [CrossRef]
- Rahman, M.M.; Chai, M.; Sarker, M.; Nishu; Liu, R. Catalytic pyrolysis of pinewood over ZSM-5 and CaO for aromatic hydrocarbon: Analytical Py-GC/MS study. J. Energy Inst. 2020, 93, 425–435. [Google Scholar] [CrossRef]
- Wang, J.-X.; Cao, J.-P.; Zhao, X.-Y.; Liu, S.-N.; Huang, X.; Liu, T.-L.; Wei, X.-Y. Comprehensive research of in situ upgrading of sawdust fast pyrolysis vapors over HZSM-5 catalyst for producing renewable light aromatics. J. Energy Inst. 2020, 93, 15–24. [Google Scholar] [CrossRef]
- Xue, X.; Liu, Y.; Wu, L.; Pan, X.; Liang, J.; Sun, Y. Catalytic fast pyrolysis of maize straw with a core-shell ZSM-5@SBA-15 catalyst for producing phenols and hydrocarbons. Bioresour. Technol. 2019, 289. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Kumar, J.; Bhaskar, T. Catalytic pyrolysis of soda lignin over zeolites using pyrolysis gas chromatography-mass spectrometry. Bioresour. Technol. 2019, 291. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, Z.; Yao, Q.; Zhang, Y.; Fu, Y. Catalytic fast pyrolysis of corn cob in ammonia with Ga/HZSM-5 catalyst for selective production of acetonitrile. Bioresour. Technol. 2019, 290. [Google Scholar] [CrossRef]
- Xu, L.; Yao, O.; Zhang, Y.; Fu, Y. Integrated Production of Aromatic Amines and N-Doped Carbon from Lignin via ex Situ Catalytic Fast Pyrolysis in the Presence of Ammonia over Zeolites. ACS Sustain. Chem. Eng. 2017, 5, 2960–2969. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, M.; Shao, J.; Yang, H.; Zeng, K.; Chen, Y.; Luo, J.; Agblevor, F.A.; Chen, H. The conversion of biomass to light olefins on Fe-modified ZSM-5 catalyst: Effect of pyrolysis parameters. Sci. Total Environ. 2018, 628–629, 350–357. [Google Scholar] [CrossRef]
- Wise, H.G.; Dichiara, A.B.; Resende, F.L.P. Ex-situ catalytic fast pyrolysis of Beetle-killed lodgepole pine in a novel ablative reactor. Fuel 2019, 241, 933–940. [Google Scholar] [CrossRef]
- Zhang, Z.; Cheng, H.; Chen, H.; Chen, K.; Lu, X.; Ouyang, P.; Fu, J. Enhancement in the aromatic yield from the catalytic fast pyrolysis of rice straw over hexadecyl trimethyl ammonium bromide modified hierarchical HZSM-5. Bioresour. Technol. 2018, 256, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Hertzog, J.; Carre, V.; Jia, L.; Mackay, C.L.; Pinard, L.; Dufour, A.; Masek, O.; Aubriet, F. Catalytic Fast Pyrolysis of Biomass over Microporous and Hierarchical Zeolites: Characterization of Heavy Products. ACS Sustain. Chem. Eng. 2018, 6, 4717–4728. [Google Scholar] [CrossRef]
- Hernando, H.; Fermoso, J.; Ochoa-Hernandez, C.; Opanasenko, M.; Pizarro, P.; Coronado, J.M.; Cejka, J.; Serrano, D.P. Performance of MCM-22 zeolite for the catalytic fast-pyrolysis of acid-washed wheat straw. Catal. Today 2018, 304, 30–38. [Google Scholar] [CrossRef]
- Bi, Y.; Lei, X.; Xu, G.; Chen, H.; Hu, J. Catalytic Fast Pyrolysis of Kraft Lignin over Hierarchical HZSM-5 and H beta Zeolites. Catalysts 2018, 18, 82. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Zhou, M.-X.; Li, W.-T.; Wang, X.; Cui, M.-S.; Yang, Y.-P. Catalytic fast pyrolysis of biomass with noble metal-like catalysts to produce high-grade bio-oil: Analytical Py-GC/MS study. Catal. Today 2018, 302, 169–179. [Google Scholar] [CrossRef]
- Yang, M.; Shao, J.; Yang, Z.; Yang, H.; Wang, X.; Wu, Z.; Chen, H. Conversion of lignin into light olefins and aromatics over Fe/ZSM-5 catalytic fast pyrolysis: Significance of Fe contents and temperature. J. Anal. Appl. Pyrolysis 2019, 137, 259–265. [Google Scholar] [CrossRef]
- Hernando, H.; Moreno, I.; Fermoso, J.; Ochoa-Hernandez, C.; Pizarro, P.; Coronado, J.M.; Cejka, J.; Serrano, D.P. Biomass catalytic fast pyrolysis over hierarchical ZSM-5 and Beta zeolites modified with Mg and Zn oxides. Biomass Convers. Biorefinery 2017, 7, 289–304. [Google Scholar] [CrossRef]
- Saracoglu, E.; Uzun, B.B.; Apaydin-Varol, E. Upgrading of fast pyrolysis bio-oil over Fe modified ZSM-5 catalyst to enhance the formation of phenolic compounds. Int. J. Hydrogen Energy 2017, 42, 21476–21486. [Google Scholar] [CrossRef]
- Che, Q.; Yang, M.; Wang, X.; Chen, X.; Chen, W.; Yang, Q.; Yang, H.; Chen, H. Aromatics production with metal oxides and ZSM-5 as catalysts in catalytic pyrolysis of wood sawdust. Fuel Process. Technol. 2019, 188, 146–152. [Google Scholar] [CrossRef]
- Che, Q.; Yang, M.; Wang, X.; Yang, Q.; Williams, L.R.; Yang, H.; Zou, J.; Zeng, K.; Zhu, Y.; Chen, Y.; et al. Influence of physicochemical properties of metal modified ZSM-5 catalyst on benzene, toluene and xylene production from biomass catalytic pyrolysis. Bioresour. Technol. 2019, 278, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Cheng, H.; Zhou, F.; Chen, K.; Qiao, K.; Lu, X.; Ouyang, P.; Fu, J. Catalytic fast pyrolysis of rice straw to aromatic compounds over hierarchical HZSM-5 produced by alkali treatment and metal-modification. J. Anal. Appl. Pyrolysis 2018, 131, 76–84. [Google Scholar] [CrossRef]
- Liang, J.; Morgan, H.M., Jr.; Liu, Y.; Shi, A.; Lei, H.; Mao, H.; Bu, Q. Enhancement of bio-oil yield and selectivity and kinetic study of catalytic pyrolysis of rice straw over transition metal modified ZSM-5 catalyst. J. Anal. Appl. Pyrolysis 2017, 128, 324–334. [Google Scholar] [CrossRef]
- Gu, B.; Cao, J.-P.; Wei, F.; Zhao, X.-Y.; Ren, X.-Y.; Zhu, C.; Guo, Z.-X.; Bai, J.; Shen, W.-Z.; Wei, X.-Y. Nitrogen migration mechanism and formation of aromatics during catalytic fast pyrolysis of sewage sludge over metal-loaded HZSM-5. Fuel 2019, 244, 151–158. [Google Scholar] [CrossRef]
- Mullen, C.A.; Boateng, A.A. Production of Aromatic Hydrocarbons via Catalytic Pyrolysis of Biomass over Fe-Modified HZSM-5 Zeolites. ACS Sustain. Chem. Eng. 2015, 3, 1623–1631. [Google Scholar] [CrossRef]
- Cai, Y.; Fan, Y.; Li, X.; Chen, L.; Wang, J. Preparation of refined bio-oil by catalytic transformation of vapors derived from vacuum pyrolysis of rape straw over modified HZSM-5. Energy 2016, 102, 95–105. [Google Scholar] [CrossRef]
- Lu, Q.; Guo, H.-Q.; Zhou, M.-X.; Cui, M.-S.; Dong, C.-Q.; Yang, Y.-P. Selective preparation of monocyclic aromatic hydrocarbons from catalytic cracking of biomass fast pyrolysis vapors over Mo2N/HZSM-5 catalyst. Fuel Process. Technol. 2018, 173, 134–142. [Google Scholar] [CrossRef]
- Lu, Q.; Wang, Z.-x.; Guo, H.-q.; Li, K.; Zhang, Z.-X.; Cui, M.-S.; Yang, Y.-P. Selective preparation of monocyclic aromatic hydrocarbons from ex-situ catalytic fast pyrolysis of pine over Ti(SO4)2–Mo2N/HZSM-5 catalyst. Fuel 2019, 243, 88–96. [Google Scholar] [CrossRef]
- Wang, J.; Zhong, Z.; Ding, K.; Deng, A.; Hao, N.; Meng, X.; Ben, H.; Ruan, R.; Ragauskas, A.J. Catalytic fast pyrolysis of bamboo sawdust via a two-step bench scale bubbling fluidized bed/fixed bed reactor: Study on synergistic effect of alkali metal oxides and HZSM-5. Energy Convers. Manag. 2018, 176, 287–298. [Google Scholar] [CrossRef]
- Qi, X.; Fan, W. Selective Production of Aromatics by Catalytic Fast Pyrolysis of Furan with In Situ Dehydrogenation of Propane. ACS Catalysis 2019, 9, 2626–2632. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, Z.; Hu, B.; Deng, J.; Yao, Q.; Zhang, X.; Liu, X.; Fu, Y.; Lu, Q. Direct conversion of cellulose and raw biomass to acetonitrile by catalytic fast pyrolysis in ammonia. Green Chem. 2019, 21, 812–820. [Google Scholar] [CrossRef]
- Tan, Y.L.; Abdullah, A.Z.; Hameed, B.H. Product distribution of the thermal and catalytic fast pyrolysis of karanja (Pongamia pinnata) fruit hulls over a reusable silica-alumina catalyst. Fuel 2019, 245, 89–95. [Google Scholar] [CrossRef]
- Kar, T.; Keles, S. Characterisation of bio-oil and its sub-fractions from catalytic fast pyrolysis of biomass mixture. Waste Manag. Res. 2019, 37, 674–685. [Google Scholar] [CrossRef] [PubMed]
- Gautam, R.; Vinu, R. Non-catalytic fast pyrolysis and catalytic fast pyrolysis of Nannochloropsis oculata using Co-Mo/gamma-Al2O3 catalyst for valuable chemicals. Algal Res. Biomass Biofuels Bioprod. 2018, 34, 12–24. [Google Scholar] [CrossRef]
- Zhang, B.; Zhong, Z.; Li, T.; Xue, Z.; Ruan, R. Bio-oil production from sequential two-step microwave-assisted catalytic fast pyrolysis of water hyacinth using Ce-doped gamma-Al2O3/ZrO2 composite mesoporous catalyst. J. Anal. Appl. Pyrolysis 2018, 132, 143–150. [Google Scholar] [CrossRef]
- Navarro, R.M.; Guil-Lopez, R.; Fierro, J.L.G.; Mota, N.; Jimenez, S.; Pizarro, P.; Coronado, J.M.; Serrano, D.P. Catalytic fast pyrolysis of biomass over Mg-Al mixed oxides derived from hydrotalcite-like precursors: Influence of Mg/Al ratio. J. Anal. Appl. Pyrolysis 2018, 134, 362–370. [Google Scholar] [CrossRef]
- Wang, W.; Shi, Y.; Cui, Y.; Li, X. Catalytic fast pyrolysis of cellulose for increasing contents of furans and aromatics in biofuel production. J. Anal. Appl. Pyrolysis 2018, 131, 93–100. [Google Scholar] [CrossRef]
- Dong, C.-Q.; Zhang, Z.-F.; Lu, Q.; Yang, Y.-P. Characteristics and mechanism study of analytical fast pyrolysis of poplar wood. Energy Convers. Manag. 2012, 57, 49–59. [Google Scholar] [CrossRef]
- Wu, L.; Khalil, F.; Smith, G.M.; Yilmaz, B.; McGuire, R., Jr. Effect of solvent on the impregnation of contaminant nickel for laboratory deactivation of FCC catalysts. Microporous Mesoporous Mater. 2015, 207, 195–199. [Google Scholar] [CrossRef]
- Qiao, Q.; Wang, R.; Gou, M.; Yang, X. Catalytic performance of boron and aluminium incorporated ZSM-5 zeolites for isomerization of styrene oxide to phenylacetaldehyde. Microporous Mesoporous Mater. 2014, 195, 250–257. [Google Scholar] [CrossRef]
- Stanton, A.R.; Iisa, K.; Mukarakate, C.; Nimlos, M.R. Role of Biopolymers in the Deactivation of ZSM-5 during Catalytic Fast Pyrolysis of Biomass. ACS Sustain. Chem. Eng. 2018, 6, 10030–10038. [Google Scholar] [CrossRef]
- Zheng, J.-L.; Kong, Y.-P. Spray combustion properties of fast pyrolysis bio-oil produced from rice husk. Energy Convers. Manag. 2010, 51, 182–188. [Google Scholar] [CrossRef]
- Mihalcik, D.J.; Mullen, C.A.; Boateng, A.A. Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components. J. Anal. Appl. Pyrolysis 2011, 92, 224–232. [Google Scholar] [CrossRef]
- Guisnet, M.; Costa, L.; Ribeiro, F.R. Prevention of zeolite deactivation by coking. J. Mol. Catal. A Chem. 2009, 305, 69–83. [Google Scholar] [CrossRef]
- Olsbye, U.; Svelle, S.; Bjorgen, M.; Beato, P.; Janssens, T.V.W.; Joensen, F.; Bordiga, S.; Lillerud, K.P. Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity. Angew. Chem. Int. Ed. 2012, 51, 5810–5831. [Google Scholar] [CrossRef]
- Wang, Y.; Mourant, D.; Hu, X.; Zhang, S.; Lievens, C.; Li, C.-Z. Formation of coke during the pyrolysis of bio-oil. Fuel 2013, 108, 439–444. [Google Scholar] [CrossRef]
- Garcia-Perez, M.; Wang, S.; Shen, J.; Rhodes, M.; Lee, W.J.; Li, C.-Z. Effects of temperature on the formation of lignin-derived oligomers during the fast pyrolysis of Mallee woody biomass. Energy Fuels 2008, 22, 2022–2032. [Google Scholar] [CrossRef]
- Ma, Z.; Ghosh, A.; Asthana, N.; van Bokhoven, J. Visualization of Structural Changes During Deactivation and Regeneration of FAU Zeolite for Catalytic Fast Pyrolysis of Lignin Using NMR and Electron Microscopy Techniques. ChemCatChem 2018, 10, 4431–4437. [Google Scholar] [CrossRef]
- Jong, S.-J.; Pradhan, A.R.; Wu, J.-F.; Tsai, T.-C.; Liu, S.-B. On the Regeneration of Coked H-ZSM-5 Catalysts. J. Catal. 1998, 174, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Eschenbacher, A.; Jensen, P.A.; Henriksen, U.B.; Ahrenfeldt, J.; Ndoni, S.; Li, C.; Duus, J.O.; Mentzel, U.V.; Jensen, A.D. Catalytic deoxygenation of vapors obtained from ablative fast pyrolysis of wheat straw using mesoporous HZSM-5. Fuel Process. Technol. 2019, 194. [Google Scholar] [CrossRef]
- Griffin, M.B.; Iisa, K.; Wang, H.; Dutta, A.; Orton, K.A.; French, R.J.; Santosa, D.M.; Wilson, N.; Christensen, E.; Nash, C.; et al. Driving towards cost-competitive biofuels through catalytic fast pyrolysis by rethinking catalyst selection and reactor configuration. Energy Environ. Sci. 2018, 11, 2904–2918. [Google Scholar] [CrossRef]
- Jae, J.; Coolman, R.; Mountziaris, T.J.; Huber, G.W. Catalytic fast pyrolysis of lignocellulosic biomass in a process development unit with continual catalyst addition and removal. Chem. Eng. Sci. 2014, 108, 33–46. [Google Scholar] [CrossRef]
- Ye, X.-N.; Lu, Q.; Wang, X.; Guo, H.-Q.; Cui, M.-S.; Dong, C.-Q.; Yang, Y.-P. Catalytic Fast Pyrolysis of Cellulose and Biomass to Selectively Produce Levoglucosenone Using Activated Carbon Catalyst. ACS Sustain. Chem. Eng. 2017, 5, 10815–10825. [Google Scholar] [CrossRef]
- Carlson, T.R.; Cheng, Y.-T.; Jae, J.; Huber, G.W. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. Energy Environ. Sci. 2011, 4, 145–161. [Google Scholar] [CrossRef] [Green Version]
- Yildiz, G.; Lathouwers, T.; Toraman, H.E.; van Geem, K.M.; Marin, G.B.; Ronsse, F.; van Duren, R.; Kersten, S.R.A.; Prins, W. Catalytic Fast Pyrolysis of Pine Wood: Effect of Successive Catalyst Regeneration. Energy Fuels 2014, 28, 4560–4572. [Google Scholar] [CrossRef]
- Yung, M.M.; Starace, A.K.; Griffin, M.B.; Wells, J.D.; Patalano, R.E.; Smith, K.R.; Schaidle, J.A. Restoring ZSM-5 performance for catalytic fast pyrolysis of biomass: Effect of regeneration temperature. Catal. Today 2019, 323, 76–85. [Google Scholar] [CrossRef]
- Paasikallio, V.; Lindfors, C.; Lehto, J.; Oasmaa, A.; Reinikainen, M. Short Vapour Residence Time Catalytic Pyrolysis of Spruce Sawdust in a Bubbling Fluidized-Bed Reactor with HZSM-5 Catalysts. Top. Catal. 2013, 56, 800–812. [Google Scholar] [CrossRef]
- Ma, Z.; van Bokhoven, J.A. Deactivation and Regeneration of H-USY Zeolite during Lignin Catalytic Fast Pyrolysis. ChemCatChem 2012, 4, 2036–2044. [Google Scholar] [CrossRef]
- Kalogiannis, K.G.; Stefanidis, S.D.; Lappas, A.A. Catalyst deactivation, ash accumulation and bio-oil deoxygenation during ex situ catalytic fast pyrolysis of biomass in a cascade thermal-catalytic reactor system. Fuel Process. Technol. 2019, 186, 99–109. [Google Scholar] [CrossRef]
- Zhang, B.; Zhong, Z.; Chen, P.; Ruan, R. Microwave-assisted catalytic fast co-pyrolysis of Ageratina adenophora and kerogen with CaO and ZSM-5. J. Anal. Appl. Pyrolysis 2017, 127, 246–257. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, X.; Zeng, Z.; Dai, L.; Zhang, S.; Jiang, L.; Wu, Q.; Yang, X.; Liu, Y.; Zhang, B.; et al. Catalytic co-pyrolysis of Alternanthera philoxeroides and peanut soapstock via a new continuous fast microwave pyrolysis system. Waste Manag. 2019, 88, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wang, Y.; Jiang, L.; Yang, Q.; Ke, L.; Peng, Y.; Yang, S.; Dai, L.; Liu, Y.; Ruan, R. Microwave-assisted catalytic upgrading of co-pyrolysis vapor using HZSM-5 and MCM-41 for bio-oil production: Co-feeding of soapstock and straw in a downdraft reactor. Bioresour. Technol. 2020, 299. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Xia, Z.; Wang, S.; Abomohra, A.E.-F.; Cai, N.; Hu, Y.; Yuan, C.; Qian, L.; Liu, L.; Liu, X.; et al. A study on catalytic co-pyrolysis of cellulose with seaweeds polysaccharides over ZSM-5: Towards high-quality biofuel production. J. Anal. Appl. Pyrolysis 2018, 134, 526–535. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Q.; Duan, D.; Ruan, R.; Liu, Y.; Dai, L.; Zhou, Y.; Zhao, Y.; Zhang, S.; Zeng, Z.; et al. Ex-Situ Catalytic Upgrading of Vapors from Fast Microwave-Assisted Co-Pyrolysis of Chromolaena odorata and Soybean Soapstock. Bioresour. Technol. 2018, 261, 306–312. [Google Scholar] [CrossRef]
- Yu, D.; Hui, H.; Li, S. Two-step catalytic co-pyrolysis of walnut shell and LDPE for aromatic-rich oil. Energy Convers. Manag. 2019, 198. [Google Scholar] [CrossRef]
- Chattopadhyay, J.; Pathak, T.S.; Srivastava, R.; Singh, A.C. Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis. Energy 2016, 103, 513–521. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, J.; Wang, X.; Wang, R.; Wang, K.; Pang, S.; Zhong, Z.; Sun, Y.; Ruan, R.; Ragauskas, A.J. Converting polycarbonate and polystyrene plastic wastes intoaromatic hydrocarbons via catalytic fast co-pyrolysis. J. Hazard. Mater. 2020, 386. [Google Scholar] [CrossRef]
- Tang, F.; Yu, Z.; Li, Y.; Chen, L.; Ma, X. Catalytic co-pyrolysis behaviors, product characteristics and kinetics of rural solid waste and Chlorella vulgaris. Bioresour. Technol. 2020, 299. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, L.; Fan, L.; Duan, D.; Liu, Y.; Ruan, R.; Yu, Z.; Liu, Y.; Jiang, L. Microwave-assisted catalytic fast co-pyrolysis of bamboo sawdust and waste tire for bio-oil production. J. Anal. Appl. Pyrolysis 2017, 123, 224–228. [Google Scholar] [CrossRef]
- Xue, Y.; Kelkar, A.; Bai, X. Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer. Fuel 2016, 166, 227–236. [Google Scholar] [CrossRef]
- Fan, L.; Chen, P.; Zhang, Y.; Liu, S.; Liu, Y.; Wang, Y.; Dai, L.; Ruan, R. Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality. Bioresour. Technol. 2017, 225, 199–205. [Google Scholar] [CrossRef]
- Ding, K.; He, A.; Zhong, D.; Fan, L.; Liu, S.; Wang, Y.; Liu, Y.; Chen, P.; Lei, H.; Ruan, R. Improving hydrocarbon yield via catalytic fast co-pyrolysis of biomass and plastic over ceria and HZSM-5: An analytical pyrolyzer analysis. Bioresour. Technol. 2018, 268, 1–8. [Google Scholar] [CrossRef]
- Morgan, H.M., Jr.; Liang, J.; Chen, K.; Yan, L.; Wang, K.; Mao, H.; Bu, Q. Bio-oil production via catalytic microwave co-pyrolysis of lignin and low density polyethylene using zinc modified lignin-based char as a catalyst. J. Anal. Appl. Pyrolysis 2018, 133, 107–116. [Google Scholar] [CrossRef]
- Ryu, H.W.; Tsang, Y.F.; Lee, H.W.; Jae, J.; Jung, S.-C.; Lam, S.S.; Park, E.D.; Park, Y.-K. Catalytic co-pyrolysis of cellulose and linear low-density polyethylene over MgO-impregnated catalysts with different acid-base properties. Chem. Eng. J. 2019, 373, 375–381. [Google Scholar] [CrossRef]
- Hassan, H.; Lim, J.K.; Hameed, B.H. Catalytic co-pyrolysis of sugarcane bagasse and waste high-density polyethylene over faujasite-type zeolite. Bioresour. Technol. 2019, 284, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Mullen, C.A.; Dorado, C.; Boateng, A.A. Catalytic co-pyrolysis of switchgrass and polyethylene over HZSM-5: Catalyst deactivation and coke formation. J. Anal. Appl. Pyrolysis 2018, 129, 195–203. [Google Scholar] [CrossRef]
- Duan, D.; Wang, Y.; Dai, L.; Ruan, R.; Zhao, Y.; Fan, L.; Tayier, M.; Liu, Y. Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating. Bioresour. Technol. 2017, 241, 207–213. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Duan, D.; Ruan, R.; Fan, L.; Zhou, Y.; Dai, L.; Lv, J.; Liu, Y. Fast microwave-assisted ex-catalytic co-pyrolysis of bamboo and polypropylene for bio-oil production. Bioresour. Technol. 2018, 249, 69–75. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Lee, H.W.; Choi, S.J.; Jeon, J.-K.; Park, S.H.; Jung, S.-C.; Kim, S.C.; Park, Y.-K. Catalytic co-pyrolysis of polypropylene and Laminaria japonica over zeolitic materials. Int. J. Hydrogen Energy 2017, 42, 18434–18441. [Google Scholar] [CrossRef]
- Suriapparao, D.V.; Vinu, R.; Shukla, A.; Haldar, S. Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residues and waste plastics combined with catalytic upgradation. Bioresour. Technol. 2020, 302. [Google Scholar] [CrossRef]
- Lee, H.W.; Kim, Y.-M.; Jae, J.; Jeon, J.-K.; Jung, S.-C.; Kim, S.C.; Park, Y.-K. Production of aromatic hydrocarbons via catalytic co-pyrolysis of torrefied cellulose and polypropylene. Energy Convers. Manag. 2016, 129, 81–88. [Google Scholar] [CrossRef]
- Zhang, H.; Xiao, R.; Nie, J.; Jin, B.; Shao, S.; Xiao, G. Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor. Bioresour. Technol. 2015, 192, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, J.; Zhou, G.; Feng, Y.; Wang, Y.; Yu, G.; Deng, S.; Huang, J.; Wang, B. Enhancing the production of renewable petrochemicals by co-feeding of biomass with plastics in catalytic fast pyrolysis with ZSM-5 zeolites. Appl. Catal. A Gen. 2014, 481, 173–182. [Google Scholar] [CrossRef]
- Sanahuja-Parejo, O.; Veses, A.; Lopez, J.M.; Murillo, R.; Soledad Callen, M.; Garcia, T. Ca-based Catalysts for the Production of High-Quality Bio-Oils from the Catalytic Co-Pyrolysis of Grape Seeds and Waste Tyres. Catalysts 2019, 19, 992. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhong, Z.; Ding, K.; Li, M.; Hao, N.; Meng, X.; Ruan, R.; Ragauskas, A.J. Catalytic fast co-pyrolysis of bamboo sawdust and waste tire using a tandem reactor with cascade bubbling fluidized bed and fixed bed system. Energy Convers. Manag. 2019, 180, 60–71. [Google Scholar] [CrossRef]
- Ding, K.; Zhong, Z.; Wang, J.; Zhang, B.; Fan, L.; Liu, S.; Wang, Y.; Liu, Y.; Zhong, D.; Chen, P.; et al. Improving hydrocarbon yield from catalytic fast co-pyrolysis of hemicellulose and plastic in the dual-catalyst bed of CaO and HZSM-5. Bioresour. Technol. 2018, 261, 86–92. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, H.; Zhu, L.; Zhu, X.; Qian, M.; Yadavalli, G.; Wu, J.; Chen, S. Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics. Bioresour. Technol. 2016, 220, 233–238. [Google Scholar] [CrossRef]
- Garba, M.U.; Inalegwu, A.; Musa, U.; Aboje, A.A.; Kovo, A.S.; Adeniyi, D.O. Thermogravimetric characteristic and kinetic of catalytic co-pyrolysis of biomass with low- and high-density polyethylenes. Biomass Convers. Biorefinery 2018, 8, 143–150. [Google Scholar] [CrossRef]
- Xue, X.; Pan, Z.; Zhang, C.; Wang, D.; Xie, Y.; Zhang, R. Segmented catalytic co-pyrolysis of biomass and high-density polyethylene for aromatics production with MgCl2 and HZSM-5. J. Anal. Appl. Pyrolysis 2018, 134, 209–217. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, L.; Fan, L.; Cao, L.; Zhou, Y.; Zhao, Y.; Liu, Y.; Ruan, R. Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production. Waste Manag. 2017, 61, 276–282. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Jae, J.; Kim, B.-S.; Hong, Y.; Jung, S.-C.; Park, Y.-K. Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts. Energy Convers. Manag. 2017, 149, 966–973. [Google Scholar] [CrossRef]
- Qi, P.; Chang, G.; Wang, H.; Zhang, X.; Guo, Q. Production of aromatic hydrocarbons by catalytic co-pyrolysis of microalgae and polypropylene using HZSM-5. J. Anal. Appl. Pyrolysis 2018, 136, 178–185. [Google Scholar] [CrossRef]
- Chi, Y.; Xue, J.; Zhuo, J.; Zhang, D.; Liu, M.; Yao, Q. Catalytic co-pyrolysis of cellulose and polypropylene over all-silica mesoporous catalyst MCM-41 and Al-MCM-41. Sci. Total Environ. 2018, 633, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.P.; Srinivas, S. Catalytic Co-pyrolysis of Biomass and Plastics (Polypropylene and Polystyrene) Using Spent FCC Catalyst. Energy Fuels 2020, 34, 460–473. [Google Scholar] [CrossRef]
- Chen, J.; Ma, X.; Yu, Z.; Deng, T.; Chen, X.; Chen, L.; Dai, M. A study on catalytic co-pyrolysis of kitchen waste with tire waste over ZSM-5 using TG-FTIR and Py-GC/MS. Bioresour. Technol. 2019, 289. [Google Scholar] [CrossRef] [PubMed]
- Sanahuja-Parejo, O.; Veses, A.; Navarro, M.V.; Lopez, J.M.; Murillo, R.; Callen, M.S.; Garcia, T. Catalytic co-pyrolysis of grape seeds and waste tyres for the production of drop-in biofuels. Energy Convers. Manag. 2018, 171, 1202–1212. [Google Scholar] [CrossRef]
- Wang, J.; Zhong, Z.; Ding, K.; Zhang, B.; Deng, A.; Min, M.; Chen, P.; Ruan, R. Co-pyrolysis of bamboo residual with waste tire over dual catalytic stage of CaO and co-modified HZSM-5. Energy 2017, 133, 90–98. [Google Scholar] [CrossRef]
- Rezaei, P.S.; Oh, D.; Hong, Y.; Kim, Y.-M.; Jae, J.; Jung, S.-C.; Jeon, J.-K.; Park, Y.-K. In-Situ Catalytic Co-Pyrolysis of Yellow Poplar and High-Density Polyethylene Over Mesoporous Catalysts. Energy Convers. Manag. 2017, 151, 116–122. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Lee, H.W.; Jae, J.; Bin Jung, K.; Jung, S.-C.; Watanabe, A.; Park, Y.-K. Catalytic co-pyrolysis of biomass carbohydrates with LLDPE over Al-SBA-15 and mesoporous ZSM-5. Catal. Today 2017, 298, 46–52. [Google Scholar] [CrossRef]
- Iftikhar, H.; Zeeshan, M.; Iqbal, S.; Muneer, B.; Razzaq, M. Co-pyrolysis of sugarcane bagasse and polystyrene with ex-situ catalytic bed of metal oxides/HZSM-5 with focus on liquid yield. Bioresour. Technol. 2019, 289. [Google Scholar] [CrossRef]
- Luo, H.; Bao, L.-W.; Kong, L.-Z.; Sun, Y.-H. Revealing low temperature microwave-assisted pyrolysis kinetic behaviors and dielectric properties of biomass components. AIChE J. 2018, 64, 2124–2134. [Google Scholar] [CrossRef]
- Villota, E.M.; Lei, H.; Qian, M.; Yang, Z.; Villota, S.M.A.; Zhang, Y.; Yadavalli, G. Optimizing Microwave-Assisted Pyrolysis of Phosphoric Acid-Activated Biomass: Impact of Concentration on Heating Rate and Carbonization Time. ACS Sustain. Chem. Eng. 2018, 6, 1318–1326. [Google Scholar] [CrossRef]
- Parvez, A.M.; Wu, T.; Afzal, M.T.; Mareta, S.; He, T.; Zhai, M. Conventional and microwave-assisted pyrolysis of gumwood: A comparison study using thermodynamic evaluation and hydrogen production. Fuel Process. Technol. 2019, 184, 1–11. [Google Scholar] [CrossRef]
- Feng, Y.; Li, G.; Li, X.; Zhu, N.; Xiao, B.; Li, J.; Wang, Y. Enhancement of biomass conversion in catalytic fast pyrolysis by microwave-assisted formic acid pretreatment. Bioresour. Technol. 2016, 214, 520–527. [Google Scholar] [CrossRef]
- Dai, L.; Wang, Y.; Liu, Y.; Ruan, R. Microwave-assisted pyrolysis of formic acid pretreated bamboo sawdust for bio-oil production. Environ. Res. 2020, 182. [Google Scholar] [CrossRef]
- Duan, D.; Ruan, R.; Wang, Y.; Liu, Y.; Dai, L.; Zhao, Y.; Zhou, Y.; Wu, Q. Microwave-assisted acid pretreatment of alkali lignin: Effect on characteristics and pyrolysis behavior. Bioresour. Technol. 2018, 251, 57–62. [Google Scholar] [CrossRef]
- Duan, D.; Ruan, R.; Lei, H.; Liu, Y.; Wang, Y.; Zhang, Y.; Zhao, Y.; Dai, L.; Wu, Q.; Zhang, S. Microwave-assisted co-pyrolysis of pretreated lignin and soapstock for upgrading liquid oil: Effect of pretreatment parameters on pyrolysis behavior. Bioresour. Technol. 2018, 258, 98–104. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Q.; Duan, D.; Zhang, Y.; Ruan, R.; Liu, Y.; Fu, G.; Zhang, S.; Zhao, Y.; Dai, L.; et al. Co-pyrolysis of microwave-assisted acid pretreated bamboo sawdust and soapstock. Bioresour. Technol. 2018, 265, 33–38. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, D.; Liu, Y.; Ruan, R.; Fu, G.; Dai, L.; Zhou, Y.; Yu, Z.; Wu, Q.; Zeng, Z. Properties and pyrolysis behavior of moso bamboo sawdust after microwave-assisted acid pretreatment. J. Anal. Appl. Pyrolysis 2018, 129, 86–92. [Google Scholar] [CrossRef]
- Zheng, A.; Zhao, K.; Jiang, L.; Zhao, Z.; Sun, J.; Huang, Z.; Wei, G.; He, F.; Li, H. Bridging the Gap between Pyrolysis and Fermentation: Improving Anhydrosugar Production from Fast Pyrolysis of Agriculture and Forest Residues by Microwave-Assisted Organosolv Pretreatment. ACS Sustain. Chem. Eng. 2016, 4, 5033–5040. [Google Scholar] [CrossRef]
- Jiang, L.-Q.; Wu, Y.-X.; Wu, N.-N.; Zhong, H.-Q.; Zhang, Y.-C.; Zhao, Z.-L.; Li, H.-B.; Zhang, F. Selective saccharification of microwave-assisted glycerol pretreated corncobs via fast pyrolysis and enzymatic hydrolysis. Fuel 2020, 265. [Google Scholar] [CrossRef]
- Bu, Q.; Liu, Y.; Liang, J.; Morgan, H.M., Jr.; Yan, L.; Xu, F.; Mao, H. Microwave-assisted co-pyrolysis of microwave torrefied biomass with waste plastics using ZSM-5 as a catalyst for high quality bio-oil. J. Anal. Appl. Pyrolysis 2018, 134, 536–543. [Google Scholar] [CrossRef]
- Ellison, C.R.; Hoff, R.; Marculescu, C.; Boldor, D. Investigation of microwave-assisted pyrolysis of biomass with char in a rectangular waveguide applicator with built-in phase-shifting. Appl. Energy 2020, 259. [Google Scholar] [CrossRef]
- Bartoli, M.; Rosi, L.; Giovannelli, A.; Frediani, P.; Frediani, M. Production of bio-oils and bio-char from Arundo donax through microwave assisted pyrolysis in a multimode batch reactor. J. Anal. Appl. Pyrolysis 2016, 122, 479–489. [Google Scholar] [CrossRef]
- Martin, M.T.; Sanz, A.B.; Nozal, L.; Castro, F.; Alonso, R.; Aguirre, J.L.; Gonzalez, S.D.; Paz Matia, M.; Novella, J.L.; Peinado, M.; et al. Microwave-assisted pyrolysis of Mediterranean forest biomass waste: Bioproduct characterization. J. Anal. Appl. Pyrolysis 2017, 127, 278–285. [Google Scholar] [CrossRef]
- Zou, R.; Wang, Y.; Jiang, L.; Yu, Z.; Zhao, Y.; Wu, Q.; Dai, L.; Ke, L.; Liu, Y.; Ruan, R. Microwave-assisted co-pyrolysis of lignin and waste oil catalyzed by hierarchical ZSM-5/MCM-41 catalyst to produce aromatic hydrocarbons. Bioresour. Technol. 2019, 289. [Google Scholar] [CrossRef]
- Liu, W.; Jiang, H.; Zhang, X.; Zhao, Y.; Sun, S.; Qiao, J. Less defective graphene aerogel and its application in microwave-assisted biomass pyrolysis to prepare H-2-rich gas. J. Mater. Chem. A 2019, 7, 27236–27240. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, Y.; Liu, S.; Fan, L.; Zhou, N.; Peng, P.; Wang, Y.; Guo, F.; Min, M.; Cheng, Y.; et al. Fast microwave-assisted pyrolysis of wastes for biofuels production—A review. Bioresour. Technol. 2020, 297. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, L.; Wang, R.; Fan, L.; Liu, Y.; Xie, Q.; Ruan, R. Hydrocarbon fuel production from soapstock through fast microwave-assisted pyrolysis using microwave absorbent. J. Anal. Appl. Pyrolysis 2016, 119, 251–258. [Google Scholar] [CrossRef]
- Mamaeva, A.; Tahmasebi, A.; Tian, L.; Yu, J. Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil. Bioresour. Technol. 2016, 211, 382–389. [Google Scholar] [CrossRef]
- Chen, L.; Yu, Z.; Xu, H.; Wan, K.; Liao, Y.; Ma, X. Microwave-assisted co-pyrolysis of Chlorella vulgaris and wood sawdust using different additives. Bioresour. Technol. 2019, 273, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, B.A.; Kim, C.S.; Ellis, N.; Bi, X. Microwave-assisted catalytic pyrolysis of switchgrass for improving bio-oil and biochar properties. Bioresour. Technol. 2016, 201, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Fan, L.; Liu, Y.; Ruan, R.; Wang, Y.; Zhou, Y.; Zhao, Y.; Yu, Z. Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis. Bioresour. Technol. 2017, 225, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, B.A.; Ellis, N.; Kim, C.S.; Bi, X. Microwave-assisted catalytic biomass pyrolysis: Effects of catalyst mixtures. Appl. Catal. B Environ. 2019, 253, 226–234. [Google Scholar] [CrossRef]
- Zhang, B.; Zhong, Z.; Li, T.; Xue, Z.; Wang, X.; Ruan, R. Biofuel production from distillers dried grains with solubles (DDGS) co-fed with waste agricultural plastic mulching films via microwave-assisted catalytic fast pyrolysis using microwave absorbent and hierarchical ZSM-5/MCM-41 catalyst. J. Anal. Appl. Pyrolysis 2018, 130, 1–7. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, P.; Liu, S.; Peng, P.; Min, M.; Cheng, Y.; Anderson, E.; Zhou, N.; Fan, L.; Liu, C.; et al. Effects of feedstock characteristics on microwave-assisted pyrolysis—A review. Bioresour. Technol. 2017, 230, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, B.; Wu, S.; Kong, X.; Fang, Y.; Liu, J. Optimizing the Conditions for the Microwave-Assisted Pyrolysis of Cotton Stalk for Bio-Oil Production Using Response Surface Methodology. Waste Biomass Valorization 2017, 8, 1361–1369. [Google Scholar] [CrossRef]
- Reddy, B.R.; Vinu, R. Microwave assisted pyrolysis of Indian and Indonesian coals and product characterization. Fuel Process. Technol. 2016, 154, 96–103. [Google Scholar] [CrossRef]
- Reddy, B.R.; Vinu, R. Microwave-assisted co-pyrolysis of high ash Indian coal and rice husk: Product characterization and evidence of interactions. Fuel Process. Technol. 2018, 178, 41–52. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Q.; Yang, S.; Yang, Q.; Wu, J.; Ma, Z.; Jiang, L.; Yu, Z.; Dai, L.; Liu, Y.; et al. Microwave-assisted catalytic fast pyrolysis coupled with microwave-absorbent of soapstock for bio-oil in a downdraft reactor. Energy Convers. Manag. 2019, 185, 11–20. [Google Scholar] [CrossRef]
- Ding, K.; Liu, S.; Huang, Y.; Liu, S.; Zhou, N.; Peng, P.; Wang, Y.; Chen, P.; Ruan, R. Catalytic microwave-assisted pyrolysis of plastic waste over NiO and HY for gasoline-range hydrocarbons production. Energy Convers. Manag. 2019, 196, 1316–1325. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, Y.; Liu, S.; Zhou, N.; Chen, P.; Liu, Y.; Wang, Y.; Peng, P.; Cheng, Y.; Addy, M.; et al. Ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of low-density polyethylene with MgO. Energy Convers. Manag. 2017, 149, 432–441. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Z.; Ao, W.; Li, J.; Liu, G.; Fu, J.; Ran, C.; Mao, X.; Kang, Q.; Liu, Y.; et al. Microwave-assisted pyrolysis of textile dyeing sludge using different additives. J. Anal. Appl. Pyrolysis 2017, 127, 140–149. [Google Scholar] [CrossRef]
- Wang, J.; Zhong, Z.; Song, Z.; Ding, K.; Deng, A. Modification and regeneration of HZSM-5 catalyst in microwave assisted catalytic fast pyrolysis of mushroom waste. Energy Convers. Manag. 2016, 123, 29–34. [Google Scholar] [CrossRef]
- Zhou, N.; Liu, S.; Zhang, Y.; Fan, L.; Cheng, Y.; Wang, Y.; Liu, Y.; Chen, P.; Ruan, R. Silicon carbide foam supported ZSM-5 composite catalyst for microwave-assisted pyrolysis of biomass. Bioresour. Technol. 2018, 267, 257–264. [Google Scholar] [CrossRef]
- State, R.N.; Volceanov, A.; Muley, P.; Boldor, D. A review of catalysts used in microwave assisted pyrolysis and gasification. Bioresour. Technol. 2019, 277, 179–194. [Google Scholar] [CrossRef]
- Fan, L.; Chen, P.; Zhou, N.; Liu, S.; Zhang, Y.; Liu, Y.; Wang, Y.; Omar, M.M.; Peng, P.; Addy, M.; et al. In-situ and ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of lignin. Bioresour. Technol. 2018, 247, 851–858. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.; Fan, L.; Zhou, N.; Omar, M.M.; Peng, P.; Anderson, E.; Addy, M.; Cheng, Y.; Liu, Y.; et al. Oil production from microwave-assisted pyrolysis of a low rank American brown coal. Energy Convers. Manag. 2018, 159, 76–84. [Google Scholar] [CrossRef]
- Li, H.; Shi, S.; Lin, B.; Lu, J.; Ye, Q.; Lu, Y.; Wang, Z.; Hong, Y.; Zhu, X. Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals. Energy 2019, 187. [Google Scholar] [CrossRef]
- Wang, W.; Wang, M.; Huang, J.; Tang, N.; Dang, Z.; Shi, Y.; Zhaohe, M. Microwave-assisted catalytic pyrolysis of cellulose for phenol-rich bio-oil production. J. Energy Inst. 2019, 92, 1997–2003. [Google Scholar] [CrossRef]
- Suriapparao, D.V.; Batchu, S.; Jayasurya, S.; Vinu, R. Selective production of phenolics from waste printed circuit boards via microwave assisted pyrolysis. J. Clean. Prod. 2018, 197, 525–533. [Google Scholar] [CrossRef]
- Li, X.; Zhai, J.; Li, H.; Gao, X. An integration recycling process for cascade utilization of waste engine oil by distillation and microwave-assisted pyrolysis. Fuel Process. Technol. 2020, 199. [Google Scholar] [CrossRef]
- Anderson, E.; Zhou, J.; Fan, L.; Liu, S.; Zhou, N.; Peng, P.; Cheng, Y.; Chen, P.; Ruan, R. Microwave-Assisted Pyrolysis as an Alternative to Vacuum Distillation for Methyl Ester Recovery from Biodiesel Vacuum Distillation Bottoms. ACS Sustain. Chem. Eng. 2018, 6, 14348–14355. [Google Scholar] [CrossRef]
- Dong, Q.; Niu, M.; Bi, D.; Liu, W.; Gu, X.; Lu, C. Microwave-assisted catalytic pyrolysis of moso bamboo for high syngas production. Bioresour. Technol. 2018, 256, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Yan, J.; Angel Menendez, J.; Luo, X.; Yang, G.; Chen, Y.; Lester, E.; Wu, T. Production of H-2-Rich Syngas from Lignocellulosic Biomass Using Microwave-Assisted Pyrolysis Coupled With Activated Carbon Enabled Reforming. Front. Chem. 2020, 8. [Google Scholar] [CrossRef] [Green Version]
- Dos Reis, G.S.; Adebayo, M.A.; Sampaio, C.H.; Lima, E.C.; Thue, P.S.; de Brum, I.A.S.; Dias, S.L.P.; Pavan, F.A. Removal of Phenolic Compounds from Aqueous Solutions Using Sludge-Based Activated Carbons Prepared by Conventional Heating and Microwave-Assisted Pyrolysis. Water Air Soil Pollut. 2017, 228. [Google Scholar] [CrossRef]
- Lam, S.S.; Liew, R.K.; Wong, Y.M.; Yek, P.N.Y.; Ma, N.L.; Lee, C.L.; Chase, H.A. Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent. J. Clean. Prod. 2017, 162, 1376–1387. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, B.A.; Ellis, N.; Kim, C.S.; Bi, X.; Emam, A.E.-R. Engineered biochar from microwave-assisted catalytic pyrolysis of switchgrass for increasing water-holding capacity and fertility of sandy soil. Sci. Total Environ. 2016, 566, 387–397. [Google Scholar] [CrossRef]
Biomass | Catalyst | Reaction Conditions | Reactor | Major Product | Ref. | |||
---|---|---|---|---|---|---|---|---|
Feedstock/Catalyst (Weight) | Temp. (°C) | Acidity | Operating Mode | |||||
Jatropha residues | HZSM-5 | 1:1 | 500 | 40 | - | Pyroprobe pyrolyzer | Aliphatics, aromatics, Phenols, Ketones | [18] |
Corn cob | ZSM-5 | 1:2 | 550 | 27 | In situ | Double-shot pyrolyzer | Aromatic hydrocarbons | [19] |
Corn cob | HZSM-5 | 1:2 | 550 | 27 | In situ | Double-shot pyrolyzer | Aromatic hydrocarbons | [19] |
Kraft lignin | ZSM-5 | 1:2 | 600 | 11.5 | Ex situ | Fixed-bed reactor | Alkyl-Phenols, aromatics | [20] |
Kraft lignin | ZSM-5 | 1:2 | 600 | 25 | Ex situ | Fixed-bed reactor | Alkyl-Phenols, aromatics | [20] |
Kraft lignin | ZSM-5 | 1:2 | 600 | 40 | Ex situ | Fixed-bed reactor | Alkyl-Phenols, aromatics | [20] |
Lignin | ZSM-5 | 1:1 | 450 | 80 | In situ | Fixed bed reactor | Monomeric aromatics, Phenolics | [21] |
Poultry litter | ZSM-5/MCM-41 | 10:1 | 500 | - | Ex situ | Microwave oven | Toluene, xylene, PAHs, benzene | [22] |
Wood sawdust | ZSM-5 | 10:1 | 600 | 17.3 | Ex situ | CDS Pyroprobe 5200HP pyrolyser | Aromatic hydrocarbons, phenols | [23] |
Pinewood sawdust | ZSM-5 | 0.25:1~2:1 | 500 | 46 | - | CDS Pyroprobe 5200 HP pyrolyzer | Aromatic hydrocarbons, phenolics | [24] |
Sawdust | HZSM-5 | - | 400~600 | 25 | In situ | Drop tube quartz reactor | Aromatics, olefins | [25] |
Sawdust | HZSM-5 | - | 400~600 | 50 | In situ | Drop tube quartz reactor | Aromatics, olefins | [25] |
Sawdust | HZSM-5 | - | 400~600 | 80 | In situ | Drop tube quartz reactor | Aromatics, olefins | [25] |
Maize straw | ZSM-5@SBA-15 | 1:2~2:1 | 400~700 | - | In situ | Fixed-bed | Phenols, hydrocarbons | [26] |
Soda lignin | ZSM-5 | 1:2 | 500~900 | 30~40 | - | CDS Pyroprobe 5200HPR | Aromatics, phenol, catechol | [27] |
Soda lignin | Y-Zeolite | 1:2 | 500~900 | 8~9 | - | CDS Pyroprobe 5200HPR | Aromatics, phenol, catechol | [27] |
Corn cob | HZSM-5 | 1:2 | 700 | 25 | - | - | Acetonitrile, aromatics, pyridines | [28] |
Corn cob | MCM-41 | 1:2 | 700 | - | - | - | Acetonitrile, aromatics | [28] |
Corn cob | HY | 1:2 | 700 | - | - | - | Acetonitrile, aromatics | [28] |
Corn cob | Hβ | 1:2 | 700 | 25 | - | - | Acetonitrile, pyrroles | [28] |
Lignin | MCM-41 | 1:2 | 600 | - | Ex situ | Fixed bed | Aromatic amines, N-doped carbon | [29] |
Lignin | β-Zeolite | 1:2 | 600 | 50 | Ex situ | Fixed bed | Aromatic amines, N-doped carbon | [29] |
Lignin | HZSM-5 | 1:2 | 600 | 50 | Ex situ | Fixed bed | Aromatic amines, N-doped carbon | [29] |
Lignin | HY | 1:2 | 600 | 7.5 | Ex situ | Fixed bed | Aromatic amines, N-doped carbon | [29] |
Cellulose | ZSM-5 | 2:1~1:4 | 600 | 25 | In situ | Fixed bed | Light olefins (C2H4, C3H6) | [30] |
Biomass | Catalyst | Reaction Conditions | Reactor | Target Product | Ref. | |||
---|---|---|---|---|---|---|---|---|
Biomass/Catalyst (Weight) | Temp. (°C) | Sweeping Gas (N2) Rate (mL/min) | Si/Al | |||||
Alkali ligniin | Fe/ZSM-5 | 1:2 | 400–700 | 100 | 25 | Quartz reactor | Light olefins, aromatics | [37] |
Corn cob | Ni/HZSM-5 | 1:2 | 550 | 1 | 27 | Double-shot pyrolyzer | Aromatic hydrocarbons | [19] |
Lignin | Ni/ZSM-5 | 1:1 | 450 | 97 | 80 | Fixed bed reactor | Monomeric aromatics Phenolics | [21] |
woodchips | MgO/HZSM-5 | 5:1 | 500 | 100 | - | Fixed bed | Bio-oils, char | [38] |
woodchips | MgO/H-Beta | 5:1 | 500 | 100 | - | Fixed bed | Bio-oils, char | [38] |
woodchips | ZnO/HZSM-5 | 5:1 | 500 | 100 | - | Fixed bed | Bio-oils, char | [38] |
woodchips | ZnO/H-Beta | 5:1 | 500 | 100 | - | Fixed bed | Bio-oils, char | [38] |
Beech sawdust | Fe/ZSM-5 | 10:1 | 500 | 400 | 80 | Fixed bed | Phenolic compounds | [39] |
Wood sawdust | Fe/ZSM-5 | 10:1 | 500–800 | - | 16.6 | CDS Pyroprobe 5200HP pyrolyser | Aromatic hydrocarbons | [23] |
Wood sawdust | CaO/ZSM-5 | 1:5 | 600 | - | 38 | CDS Pyroprobe 5250HP pyrolyser | Aromatics (xylene, toluene, benzene) | [40] |
Wood sawdust | Al2O3/ZSM-5 | 1:5 | 600 | - | 38 | CDS Pyroprobe 5250HP pyrolyser | Aromatics (xylene, toluene, benzene) | [40] |
Wood sawdust | ZnO/ZSM-5 | 1:5 | 600 | - | 38 | CDS Pyroprobe 5250HP pyrolyser | Aromatics (xylene, toluene, benzene) | [40] |
Corn cob | Ga/HZSM-5 | 1:2 | 550~700 | 80 a | 25 | - | Acetonitrile, Aromatics | [28] |
Wheat straw | ZnO/HZSM-5 | - | 600 | - | 50 | fixed bed | Aromatic amines N-doped carbon | [29] |
Wheat straw | ZnO/HY | - | 600 | - | 7.5 | fixed bed | Aromatic amines N-doped carbon | [29] |
Cellulose | Fe/ZSM-5 | 2:1~1:4 | 600 | 100 | 25 | Fixed bed | Light olefins (C2H4, C3H6) | [30] |
Sawdust | Zn/ZSM-5 | 1:4 | - | 38 | CDS Pyroprobe 5250 pyrolyser | Benzene, toluene, xylene | [41] | |
Sawdust | Fe/ZSM-5 | 1:4 | - | 38 | CDS Pyroprobe 5250 pyrolyser | Benzene, toluene, xylene | [41] | |
Sawdust | Ca/ZSM-5 | 1:4 | - | 38 | CDS Pyroprobe 5250 pyrolyser | Benzene, toluene, xylene | [41] | |
Sawdust | Ce/ZSM-5 | 1:4 | - | 38 | CDS Pyroprobe 5250 pyrolyser | Benzene, toluene, xylene | [41] | |
Sawdust | La/ZSM-5 | 1:4 | - | 38 | CDS Pyroprobe 5250 pyrolyser | Benzene, toluene, xylene | [41] |
Types of Materials | Reaction Conditions | Results | Ref. | ||||
---|---|---|---|---|---|---|---|
Biomass | Co-Reactant | Catalyst | Biomass to Co-Reactant Ratio | Temp. (°C) | Reactor | Mainly Compounds | |
Lignin | LDPE | MgO/HZSM-5 | 1:0 | 550 | Microwave oven | Phenolic compounds | [91] |
Lignin | LDPE | MgO/HZSM-5 | 2:1 | 550 | Microwave oven | Phenolic compounds, aromatics | [91] |
Lignin | LDPE | MgO/HZSM-5 | 1:1 | 550 | Microwave oven | Aromatics, phenolic compounds | [91] |
Lignin | LDPE | MgO/HZSM-5 | 1:2 | 550 | Microwave oven | Aromatics | [91] |
Corn stover | LDPE | CeO2/HZSM-5 | 1:1 | 600 | Tandem catalytic bed | Aliphatics, aromatics | [103] |
Lignin | LDPE | Zn/lignin-char | - | 500 | Microwave oven | hydrocarbons, ketones, phenols | [104] |
Cellulose | LLDPE | Non-Catalyst | 1:1 | 600 | Semi-batch | Hydrocarbons, sugars | [105] |
Cellulose | LLDPE | MgO | 1:1 | 600 | Semi-batch | Hydrocarbons | [105] |
Cellulose | LLDPE | MgO/C | 1:1 | 600 | Semi-batch | Hydrocarbons, MAHs | [105] |
Cellulose | LLDPE | MgO/Al2O3 | 1:1 | 600 | Semi-batch | Hydrocarbons | [105] |
Cellulose | LLDPE | MgO/ZrO2 | 1:1 | 600 | Semi-batch | Hydrocarbons, oxygenate | [105] |
Sugarcane bagasse | HDPE | FAU-EAFS | 3:2 | 400 | Fixed-bed | Hydrocarbons, aromatic, alcohol | [106] |
Sugarcane bagasse | HDPE | FAU-EAFS | 3:2 | 500 | Fixed-bed | Hydrocarbons, alcohol | [106] |
Sugarcane bagasse | HDPE | FAU-EAFS | 3:2 | 600 | Fixed-bed | Hydrocarbons, acid, alcohol | [106] |
Switchgrass | PE | HZSM-5 | 1:1 | 500 | - | Aromatic, hydrocarbons, Alkyl benzenes | [107] |
Lignin | PP | HZSM-5 | 1:1 | 200 | Microwave reactor | Aromatics, alkenes, cycloalkanes | [108] |
Lignin | PP | HZSM-5 | 1:1 | 250 | Microwave reactor | Cycloalkanes, aromatics, alkenes | [108] |
Lignin | PP | HZSM-5 | 1:1 | 300 | Microwave reactor | Aromatics, cycloalkanes, alkenes | [108] |
Lignin | PP | HZSM-5 | 1:1 | 350 | Microwave reactor | Alkenes, aromatics, cycloalkanes | [108] |
Bamboo | PP | HZSM-5 | 1:0 | 250 | Microwave oven | Oxygen-cont. aromatics, Oxygen-cont. aliphatics | [109] |
Bamboo | PP | HZSM-5 | 2:1 | 250 | Microwave oven | Aliphatics hydrocarbons, aromatics | [109] |
Bamboo | PP | HZSM-5 | 1:1 | 250 | Microwave oven | Aliphatics hydrocarbons, aromatics | [109] |
Bamboo | PP | HZSM-5 | 1:2 | 250 | Microwave oven | Aliphatics hydrocarbons | [109] |
Bamboo | PP | HZSM-5 | 0:1 | 250 | Microwave oven | Aliphatics hydrocarbons, aromatics | [109] |
Laminaria japonica | PP | HZSM-5 | 1:1 | 600 | Fixed-bed | MAHs, other hydrocarbons, PAHs | [110] |
Laminaria japonica | PP | Pt/Meso MFI | 1:1 | 600 | Fixed-bed | MAHs, PAHs, Other hydrocarbons | [110] |
Laminaria japonica | PP | Meso MFI | 1:1 | 600 | Fixed-bed | MAHs, PAHs, Other hydrocarbons | [110] |
Laminaria japonica | PP | Al-SBA-16 | 1:1 | 600 | Fixed-bed | Other hydrocarbons, MAHs, PAH, oxygenates | [110] |
Rice straw | PP | HZSM-5 | 1:1 | 500 | Microwave oven | Aliphatic HCs, MAHs | [111] |
Bagasse | PP | HZSM-5 | 1:1 | 500 | Microwave oven | Aliphatic HCs | [111] |
Rice straw | PS | HZSM-5 | 1:1 | 500 | Microwave oven | MAHs | [111] |
Bagasse | PS | HZSM-5 | 1:1 | 500 | Microwave oven | MAHs, PAHs | [111] |
Cellulose | PP | HZSM-5 | 1:1 | 500 | Microwave oven | BTEXs, Light olefins | [112] |
Lignin | PS | Spent FCC | 1:1 | 600 | Continuous fluidized bed | Styrene | [113] |
Cellulose | PS | HZSM-5 | 2:1 | 550 | Pyroprobe pyrolyzer | Benzene, polyaromatics | [114] |
Grape seeds | Waste tires | Ca-based-1 | 5:1 | - | Auger reactor | Aromatics, cyclic HC, olefin | [115] |
Bamboo sawdust | Waste tires | HZSM-5/MgO | 2:3 | 550 | A tandem reactor | Aromatics hydrocarbons, olefins | [116] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Hou, Q.; Ju, M.; Ji, P.; Sun, Q.; Li, W. Biomass Pyrolysis Technology by Catalytic Fast Pyrolysis, Catalytic Co-Pyrolysis and Microwave-Assisted Pyrolysis: A Review. Catalysts 2020, 10, 742. https://doi.org/10.3390/catal10070742
Liu J, Hou Q, Ju M, Ji P, Sun Q, Li W. Biomass Pyrolysis Technology by Catalytic Fast Pyrolysis, Catalytic Co-Pyrolysis and Microwave-Assisted Pyrolysis: A Review. Catalysts. 2020; 10(7):742. https://doi.org/10.3390/catal10070742
Chicago/Turabian StyleLiu, Junjian, Qidong Hou, Meiting Ju, Peng Ji, Qingmei Sun, and Weizun Li. 2020. "Biomass Pyrolysis Technology by Catalytic Fast Pyrolysis, Catalytic Co-Pyrolysis and Microwave-Assisted Pyrolysis: A Review" Catalysts 10, no. 7: 742. https://doi.org/10.3390/catal10070742
APA StyleLiu, J., Hou, Q., Ju, M., Ji, P., Sun, Q., & Li, W. (2020). Biomass Pyrolysis Technology by Catalytic Fast Pyrolysis, Catalytic Co-Pyrolysis and Microwave-Assisted Pyrolysis: A Review. Catalysts, 10(7), 742. https://doi.org/10.3390/catal10070742