Electrochemical Response of Highly Porous Percolative CGO Electrospun Membranes
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. Materials and Methods
3.2. Materials Characterization
3.3. Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Campbell, C.T.; Peden, C.H.F. Oxygen Vacancies and Catalysis on Ceria Surfaces. Science 2005, 309, 713–714. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, R.; Nenning, A.; Kraynis, O.; Korobko, R.; Frenkel, A.I.; Lubomirsky, I.; Hailef, S.M.; Rupp, J.L.M. A review of defect structure and chemistry in ceria and its solid solutions. Chem. Soc. Rev. 2020, 49, 554–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seal, S.; Jeyaranjan, A.; Neal, C.J.; Kumar, U.; Sakthivel, T.S.; Sayle, D.C. Engineered defects in cerium oxides: Tuning chemical reactivity for biomedical, environmental, & energy applications. Nanoscale 2020, 12, 6879–6899. [Google Scholar] [PubMed]
- Ma, Y.; Gao, W.; Zhang, Z.; Zhang, S.; Tian, Z.; Liu, Y.; Ho, J.C.; Qu, Y. Regulating the surface of nanoceria and its applications in heterogeneous catalysis. Surf. Sci. Rep. 2018, 73, 1–36. [Google Scholar] [CrossRef]
- Ni, D.W.; de Florio, D.Z.; Marani, D.; Kaiser, A.; Tinti, V.B.; Esposito, V. Effect of chemical redox on Gd-doped ceria mass diffusion. J Mater. Chem. A 2015, 3, 18835–18838. [Google Scholar] [CrossRef]
- Paier, J.; Penschke, C.; Sauer, J. Oxygen Defects and Surface Chemistry of Ceria: Quantum Chemical Studies Compared to Experiment. Chem. Rev. 2013, 113, 3949–3985. [Google Scholar] [CrossRef]
- Lee, J.G.; Park, J.H.; Shul, Y.G. Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W cm−2 at 550 °C. Nat. Commun. 2014, 5, 4045. [Google Scholar] [CrossRef]
- Ahna, M.; Chob, J.; Lee, W. One-step fabrication of composite nanofibers for solid oxide fuel cell electrodes. J. Power Sources 2019, 434, 226749. [Google Scholar] [CrossRef]
- Schmidt, C.G.; Hansen, K.K.; Andersen, K.B.; Fu, Z.; Roosen, A.; Kaiser, A. Effect of pore formers on properties of tape cast porous sheets for electrochemical flue gas purification. J. Eur. Ceram. Soc 2016, 36, 645–653. [Google Scholar] [CrossRef] [Green Version]
- Kabir, A.; Santucci, S.; van Nong, N.; Varenik, M.; Lubomirsky, I.; Nigon, R.; Muralt, P.; Esposito, V. Effect of oxygen defects blocking barriers on gadolinium doped ceria (GDC) electro-chemo-mechanical properties. Acta Mater. 2019, 174, 53–60. [Google Scholar] [CrossRef]
- Santucci, S.; Zhang, H.; Sanna, S.; Pryds, N.; Esposito, V. Enhanced electro-mechanical coupling of TiN/Ce0.8Gd0.2O1.9 thin film electrostrictor. APL Mater. 2019, 7, 071104. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, J.A.; Grinter, D.C.; Liu, Z.; Palomino, R.M.; Senanayake, S.D. Ceria-based model catalysts: Fundamental studies on the importance of the metal–ceria interface in CO oxidation, the water–gas shift, CO2 hydrogenation, and methane and alcohol reforming. Chem. Soc. Rev. 2017, 46, 1824–1841. [Google Scholar] [CrossRef] [PubMed]
- Trovarelli, A. Catalytic Properties of Ceria and CeO2-Containing Materials. Catal Rev. Sci. Eng. 1996, 38, 439–520. [Google Scholar] [CrossRef]
- Wu, K.; Sun, L.-D.; Yan, C.-H. Recent Progress in Well-Controlled Synthesis of Ceria-Based Nanocatalysts towards Enhanced Catalytic Performance. Adv. Energy Mater. 2016, 6, 1600501. [Google Scholar] [CrossRef]
- Dankeaw, A.; Gualandris, F.; Silva, R.H.; Norrman, K.; Gudik-Sørensen, M.; Hansen, K.K.; Ksapabutr, B.; Esposito, V.; Marani, D. Amorphous saturated cerium–tungsten–titanium oxide nanofiber catalysts for NOx selective catalytic reaction. New J. Chem. 2018, 42, 9501–9509. [Google Scholar] [CrossRef] [Green Version]
- Dankeaw, A.; Gualandris, F.; Silva, R.H.; Scipioni, R.; Hansen, K.K.; Ksapabutr, B.; Esposito, V.; Marani, D. Highly porous Ce–W–TiO2 free-standing electrospun catalytic membranes for efficient de-NOx via ammonia selective catalytic reduction. Environ. Sci. Nano 2019, 6, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Castano, C.E.; O’Keefe, M.J.; Fahrenholtz, W.G. Photo-assisted reduction in nanostructured cerium-based coatings. Scrip. Mater. 2013, 69, 489–492. [Google Scholar] [CrossRef]
- Corma, A.; Atienzar, P.; Garcia, H.; Chane-Ching, J.Y. Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat. Mater. 2004, 3, 394–397. [Google Scholar] [CrossRef]
- Kargozar, S.; Baino, F.; Hoseini, S.J.; Hamzehlou, S.; Darroudi, M.; Verdi, J.; Hasanzadeh, L.; Kim, H.W.; Mozafari, M. Biomedical applications of nanoceria: New roles for an old player. Nanomedicine 2018, 13, 3051–3069. [Google Scholar] [CrossRef]
- Naganuma, T.; Traversa, E. The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation. Biomaterials 2014, 35, 4441–4453. [Google Scholar] [CrossRef]
- Caputo, F.; Mameli, M.; Sienkiewicz, A.; Licoccia, S.; Stellacci, F.; Ghibelli, L.; Traversa, E. A novel synthetic approach of cerium oxide nanoparticles with improved biomedical activity. Sci. Rep. 2017, 7, 4636. [Google Scholar] [CrossRef] [Green Version]
- Suresh, R.; Ponnuswamy, V.; Mariappan, R. Nanostructured cerium oxide thin films by nebulised spray pyrolysis (NSP) technique: Impact of surfactants on the structural, optical and compositional properties. Ceram. Int. 2014, 40, 13515–13527. [Google Scholar]
- Vorokhta, M.; Matolínová, I.; Dubau, M.; Haviar, S.; Khalakhan, I.; Ševčíková, K.; Mori, T.; Yoshikawa, H.; Matolín, V. HAXPES study of CeOx thin film–silicon oxide interface. Appl. Surf. Sci. 2014, 303, 46–53. [Google Scholar] [CrossRef]
- Xie, S.L.; Wang, Z.L.; Cheng, F.L.; Zhang, P.; Mai, W.J.; Tong, Y.X. Ceria and ceria-based nanostructured materials for photoenergy applications. Nano Energy 2017, 34, 313–337. [Google Scholar] [CrossRef]
- Marani, D.; Silva, R.H.; Dankeaw, A.; Norrman, K.; Werchmeister, R.M.L.; Ippolito, D.; Gudik-Sørensen, M.; Hansen, K.K.; Esposito, V. NOx selective catalytic reduction (SCR) on self-supported V–W-doped TiO2 nanofibers. New J. Chem. 2017, 41, 3466–3472. [Google Scholar] [CrossRef] [Green Version]
- Marani, D.; Silva, R.H.; Dankeaw, A.; Gudik-Sørensen, M.; Norrman, K.; Hansen, K.K.; Esposito, V. Effect of the sol-gel conditions on the morphology and SCR performance of electrospun VW-TiO2 catalysts. J. Phys. Chem. Solids 2018, 118, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Shahreen, L.; Chase, G.G.; Turinske, A.J.; Nelson, S.A.; Stojilovic, N. NO decomposition by CO over Pd catalyst supported on TiO2 nanofibers. Chem. Eng. J. 2013, 225, 340–349. [Google Scholar] [CrossRef]
- Kong, Y.; Sun, C.; Wu, X.; Sun, K.; Yin, X.; Zhang, N. One-Dimensional CuCo2O4−Er0.4Bi1.6O3 Composite Fiber as Cathode of Intermediate Temperature Solid Oxide Fuel Cells. ACS Sustain. Chem. Eng. 2020, 8, 3950–3958. [Google Scholar] [CrossRef]
- Marani, D.; Hjelm, J.; Wandel, M. Rheological analysis of stabilised cerium-gadolinium oxide (CGO) dispersons. J. Eur. Ceram. Soc. 2014, 34, 695–702. [Google Scholar] [CrossRef]
- Marani, D.; Gadea, C.; Hjelm, J.; Hjalmarsson, P.; Wandel, M.; Kiebach, R. Influence of hydroxyl groups of binders on rheological properties of cerium-gadolinium oxide (CGO) screen printing inks. J. Eur. Ceram. Soc. 2015, 35, 1495–1504. [Google Scholar] [CrossRef]
- Teocoli, F.; Marani, D.; Kiebach, R.; Esposito, V. Effect of spherical porosity on co-fired dense/porous zirconia bi-layers cambering. J. Eur. Ceram. Soc. 2018, 38, 173–179. [Google Scholar] [CrossRef]
- Thenmozhi, S.; Dharmaraj, N.; Kadirvelu, K.; Kim, H.Y. Electrospun nanofibers: New generation of materials for advanced applications. Mater. Sci. Eng. B 2017, 217, 39–48. [Google Scholar] [CrossRef]
- Sahay, R.; Kumar, P.S.; Sridhar, R.; Sundaramurthy, J.; Venugopal, J.; Mhaisalkar, S.G.; Ramakrishn, S. Electrospun composite nanofibers and their multifaceted applications. J. Mater. Chem. 2012, 22, 12953–12971. [Google Scholar] [CrossRef]
- Xue, J.; Xie, J.; Liu, W.; Xia, Y. Electrospun Nanofibers: New Concepts, Materials, and Applications. Acc. Chem. Res. 2017, 50, 1976–1987. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Greiner, A.; Wendorff, J.H. Functional materials by electrospinning of polymers. Prog. Polym. Sci. 2013, 38, 963–991. [Google Scholar] [CrossRef]
- Jung, J.-W.; Lee, C.-L.; Yu, S.; Kim, I.-D. Electrospun nanofibers as a platform for advanced secondary batteries: A comprehensive review. J. Mater. Chem. A 2016, 4, 703–750. [Google Scholar] [CrossRef]
- Ahn, M.; Han, S.; Lee, J.; Lee, W. Electrospun composite nanofibers for intermediate-temperature solid oxide fuel cell electrodes. Ceram. Int. 2020, 46, 6006–6011. [Google Scholar] [CrossRef]
- Zhi, M.; Mariani, N.; Gemmen, R.; Gerdes, K.; Wu, N. Nanofiber scaffold for cathode of solid oxide fuel cell. Energy Environ. Sci. 2011, 4, 417–420. [Google Scholar] [CrossRef]
- Lee, J.G.; Lee, C.M.; Park, M.G.; Jung, S.-J.; Shul, Y.G. Performance evaluation of anode-supported Gd0.1Ce0.9O1.95 cell with electrospun La0.6Sr0.4Co0.2Fe0.8O3−ı-Gd0.1Ce0.9O1.95 cathode. Electrochim. Acta 2013, 108, 356–360. [Google Scholar] [CrossRef]
- Lee, J.G.; Lee, C.M.; Park, M.; Shul, Y.G. Direct methane fuel cell with La2Sn2O7–Ni– Gd0.1Ce0.9O1.95 anode and electrospun La0.6Sr0.4Co0.2Fe0.8O3-δ–Gd0.1Ce0.9O1.95 cathode. RSC Adv. 2013, 3, 11816–11822. [Google Scholar] [CrossRef]
- Zhou, H.; Ding, X.; Yin, Z.; Xu, G.; Xue, Q.; Li, J.; Jiao, S.; Wang, X. Fabrication and electrochemical characteristics of electrospun LiMn2O4 nanofiber cathode for Li-ion batteries. Mater. Lett. 2014, 117, 175–178. [Google Scholar] [CrossRef]
- Wang, Y.; Li, W.; Xia, Y.; Jiao, X.; Chen, D. Electrospun flexible self-supporting γ-alumina fibrous membranes and their potential as high efficiency fine particulate filtration media. J. Mater. Chem. A 2014, 2, 15124–15131. [Google Scholar] [CrossRef]
- Wen, Q.; Di, J.; Zhao, Y.; Wang, Y.; Jiang, L.; Yu, J. Flexible inorganic nanofibrous membranes with hierarchical porosity for efficient water purification. Chem. Sci. 2013, 4, 4378–4382. [Google Scholar] [CrossRef]
- Mao, X.; Si, Y.; Chen, Y.; Yang, L.; Zhao, F.; Ding, B.; Yu, J. Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration. RSC Adv. 2012, 2, 12216–12223. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Ji, B.; Jiao, X.; Chen, D. Flexible Pd/CeO2–TiO2 nanofibrous membrane with high efficiency ultrafine particulate filtration and improved CO catalytic oxidation performance. RSC Adv. 2014, 5, 58120–58127. [Google Scholar] [CrossRef]
- Chen, Y.; Bu, Y.; Zhao, B.; Zhang, Y.; Ding, D.; Hua, R.; Wei, T.; Rainwater, B.; Ding, Y.; Chen, F.; et al. High-Performance Hollow-Nanofiber Cathode for Intermediate Temperature Fuel Cells. Nano Energy 2016, 26, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Zhi, M.; Lee, S.; Miller, N.; Menzler, N.H.; Wu, N. An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode. Energy Environ. Sci. 2012, 5, 7066–7071. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-J.; Chase, G.G.; Jeong, K.-U.; Kim, H.Y. Mechanical properties of titania nanofiber mats fabricated by electrospinning of sol–gel precursor. J. Sol. Gel. Sci. Technol. 2010, 54, 188–194. [Google Scholar] [CrossRef]
- Kumar, A.; Jose, R.; Fujihara, K.; Wang, J.; Ramakrishna, S. Structural and Optical Properties of Electrospun TiO2 Nanofibers. Chem. Mater. 2007, 19, 6536–6542. [Google Scholar] [CrossRef]
- Zhang, M.F.; Li, T.J.; Zhao, X.H.; Zhou, H.J. Enhanced ionic conductivity in ce0.8gd0.2o2-δ nanofiber: Effect of the crystallite size. Solid State Phenom 2017, 281, 761–766. [Google Scholar] [CrossRef]
- Ou, G.; Liu, W.; Yao, L.; Wu, H.; Pan, W. High conductivity of La2Zr2O7 nanofibers by phase control. J. Mater. Chem. A 2014, 2, 1855–1861. [Google Scholar] [CrossRef]
- Yao, L.; Liu, W.; Ou, G.; Nishijima, H.; Pan, W. Phase stability and high conductivity of ScSZ nanofibers: Effect of the crystallite size. J. Mater. Chem. A 2015, 3, 10795–10800. [Google Scholar] [CrossRef]
- Thompson, C.J.; Chase, G.G.; Yarin, A.L.; Reniker, D.H. Effects of parameters on nanofiber diameters determined from electrospinning model. Polymer 2007, 48, 6913–6922. [Google Scholar] [CrossRef]
- Gazquez, G.C.; Smulders, V.; Veldhuis, S.A.; Wieringa, P.; Moroni, L.; Boukamp, B.A.; Elshof, J.E.t. Influence of Solution Properties and Process Parameters on the Formation and Morphology of YSZ and NiO Ceramic Nanofibers by Electrospinning. Nanomaterials 2017, 7, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artini, C.; Pani, M.; Lausi, A.; Masini, R.; Costa, G.A. High Temperature Structural Study of Gd-Doped Ceria by Synchrotron X-ray Diffraction (673 K ≤ T ≤ 1073 K). Inorg. Chem. 2014, 53, 10140–10149. [Google Scholar] [CrossRef]
- Tomadakis, M.M.; Robertson, T.J. Viscous Permeability of Random Fiber Structures: Comparison of Electrical and Diffusional Estimates with Experimental and Analytical Results. J. Compos. Mater. 2005, 39, 163. [Google Scholar] [CrossRef]
- Esposito, V.; Traversa, E. Design of Electroceramics for Solid Oxides Fuel Cell Applications: Playing with Ceria. J. Am. Ceram. Soc. 2008, 91, 1037–1051. [Google Scholar] [CrossRef]
Sample | Crystallite Sizes (nm) (XRD) | Grain Sizes (nm) (SEM) | Nanofibers Diameters (nm) (SEM) | Membrane Porosity (%) (SEM) |
---|---|---|---|---|
CGO500 | 7.57 ± 0.82 | - | 42.71 ± 11.49 | 86.60 ± 1.38 |
CGO600 | 14.96 ± 1.26 | 18.56 ± 4.90 | 76.50 ± 14.61 | 88.10 ± 1.38 |
CGO700 | 24.49 ± 1.92 | 32.53 ± 10.48 | 97.25 ± 31.06 | 87.30 ± 1.38 |
CG0800 | 31.08 ± 2.71 | 47.21 ± 14.46 | 65.84 ± 19.16 | 84.40 ± 1.38 |
CGO900 | 40.40 ± 2.98 | 67.57 ± 22.32 | 60.45 ± 15.56 | 86.60 ± 1.38 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hubert Silva, R.; Esposito, V.; Dankeaw, A.; Bergmann, C.P.; Marani, D. Electrochemical Response of Highly Porous Percolative CGO Electrospun Membranes. Catalysts 2020, 10, 756. https://doi.org/10.3390/catal10070756
Hubert Silva R, Esposito V, Dankeaw A, Bergmann CP, Marani D. Electrochemical Response of Highly Porous Percolative CGO Electrospun Membranes. Catalysts. 2020; 10(7):756. https://doi.org/10.3390/catal10070756
Chicago/Turabian StyleHubert Silva, Rafael, Vincenzo Esposito, Apiwat Dankeaw, Carlos Pérez Bergmann, and Debora Marani. 2020. "Electrochemical Response of Highly Porous Percolative CGO Electrospun Membranes" Catalysts 10, no. 7: 756. https://doi.org/10.3390/catal10070756
APA StyleHubert Silva, R., Esposito, V., Dankeaw, A., Bergmann, C. P., & Marani, D. (2020). Electrochemical Response of Highly Porous Percolative CGO Electrospun Membranes. Catalysts, 10(7), 756. https://doi.org/10.3390/catal10070756