Synthesis of Superior Visible-Light-Driven Nanophotocatalyst Using High Surface Area TiO2 Nanoparticles Decorated with CuxO Particles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Prepared and Modified TiO2 Nanoparticles
2.2. Photocatalytic Assessment
3. Experimental Section
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hashimoto, K.; Irie, H.; Fujishima, A. TiO2 Photocatalysis: A Historical Overview and Future Prospects. Jpn. J. Appl. Phys. 2005, 44, 8269–8285. [Google Scholar] [CrossRef]
- Christy, P.D.; Melikechi, N.; Jothi, N.S.N.; Suganthi, A.R.B.; Sagayaraj, P. Synthesis of TiO2 nanorods by oriented attachment using EDTA modifier: A novel approach towards 1D nanostructure development. J. Nanoparticle Res. 2010, 12, 2875–2882. [Google Scholar] [CrossRef]
- Xiang, L.; Zhao, X. Wet-Chemical Preparation of TiO2-Based Composites with Different Morphologies and Photocatalytic Properties. Nanomaterials 2017, 7, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, A.; Zhu, Y.; Guo, X.; Zhou, L.; Jiang, Q. Synthesis of Various TiO2 Micro-/Nano-Structures and Their Photocatalytic Performance. Materials (Basel) 2018, 11, 995. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Chaudhary, U.; Das, S.; Godavarty, A.; Agarwal, A. Effect of Porosity on Photocatalytic Activity of Plasma-Sprayed TiO2 Coating. J. Therm. Spray Technol. 2013, 22, 1193–1200. [Google Scholar] [CrossRef]
- Ge, M.; Li, Q.; Cao, C.; Huang, J.; Li, S.; Zhang, S.; Chen, Z.; Zhang, K.; Al-Deyab, S.S.; Lai, Y. One-dimensional TiO2 Nanotube Photocatalysts for Solar Water Splitting. Adv. Sci. 2016, 4, 1600152. [Google Scholar] [CrossRef]
- Yuan, W.; Cheng, L.; An, Y.; Lv, S.; Wu, H.; Fan, X.; Zhang, Y.; Guo, X.; Tang, J. Laminated Hybrid Junction of Sulfur-Doped TiO2 and a Carbon Substrate Derived from Ti3C2M Xenes: Toward Highly Visible Light-Driven Photocatalytic Hydrogen Evolution. Adv. Sci. 2018, 5, 1700870. [Google Scholar] [CrossRef] [Green Version]
- Ochiai, T.; Fujishima, A. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 247–262. [Google Scholar] [CrossRef]
- Rajeshwar, K. Hydrogen generation at irradiated oxide semiconductor-solution interfaces. J. Appl. Electrochem. 2007, 37, 765–787. [Google Scholar] [CrossRef]
- Mazierski, P.; Malankowska, A.; Kobylański, M.; Diak, M.; Kozak, M.; Winiarski, M.J.; Klimczuk, T.; Lisowski, W.; Nowaczyk, G.; Zaleska-Medynska, A. Photocatalytically Active TiO2/Ag2O Nanotube Arrays Interlaced with Silver Nanoparticles Obtained from the One-Step Anodic Oxidation of Ti-Ag Alloys. ACS Catal. 2017, 7, 2753. [Google Scholar] [CrossRef]
- Batmunkh, M.; Macdonald, T.J.; Shearer, C.J.; Bat-Erdene, M.; Wang, Y.; Biggs, M.J.; Parkin, I.P.; Nann, T.; Shapter, J.G. Carbon Nanotubes in TiO2Nanofiber Photoelectrodes for High-Performance Perovskite Solar Cells. Adv. Sci. 2017, 4, 1600504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolobov, N.; Svintsitskiy, D.A.; Kozlova, E.; Selishchev, D.; Kozlov, D. UV-LED photocatalytic oxidation of carbon monoxide over TiO2 supported with noble metal nanoparticles. Chem. Eng. J. 2017, 314, 600–611. [Google Scholar] [CrossRef]
- Wu, B.; Liu, D.; Mubeen, S.; Chuong, T.T.; Moskovits, M.; Stucky, G.D. Anisotropic Growth of TiO2 onto Gold Nanorods for Plasmon Enhanced Hydrogen Production from Water Reduction. J. Am. Chem. Soc. 2016, 138, 1114–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Li, W.; Wang, J.; Qu, Y.; Yang, Y.; Xie, Y.; Zhang, K.; Wang, L.; Fu, H.; Zhao, D. Ordered Mesoporous Black TiO2 as Highly Efficient Hydrogen Evolution Photocatalyst. J. Am. Chem. Soc. 2014, 136, 9280–9283. [Google Scholar] [CrossRef]
- Ibhadon, A.O.; Fitzpatrick, P. Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts 2013, 3, 189–218. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Cole, I.; Li, Q. Quantum-confined bandgap narrowing of TiO2 nanoparticles by graphene quantum dots for visible-light-driven applications. Chem. Commun. 2016, 52, 9208–9211. [Google Scholar] [CrossRef]
- Zhang, J.; Vasei, M.; Sang, Y.; Liu, H.; Claverie, J.P.; Nasrabadi, M.V. TiO2@Carbon Photocatalysts: The Effect of Carbon Thickness on Catalysis. ACS Appl. Mater. Interfaces 2016, 8, 1903–1912. [Google Scholar] [CrossRef]
- Murcia, J.J. Visible active noble metals-structured photocatalysts for the removal of emerging contaminants. In Visible Light Active Structured Photocatalysts for the Removal of Emerging Contaminants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 27–40. [Google Scholar]
- Borowska, E.; Gomes, J.; Martins, R.C.; Quinta-Ferreira, R.; Horn, H.; Gmurek, M. Solar Photocatalytic Degradation of Sulfamethoxazole by TiO2 Modified with Noble Metals. Catalysts 2019, 9, 500. [Google Scholar] [CrossRef] [Green Version]
- Gombac, V.; Sordelli, L.; Montini, T.; Delgado, J.J.; Adamski, A.; Adami, G.; Cargnello, M.; Bernal, S.; Fornasiero, P. CuOx−TiO2 Photocatalysts for H2 Production from Ethanol and Glycerol Solutions†. J. Phys. Chem. A 2010, 114, 3916–3925. [Google Scholar] [CrossRef]
- Chiang, L.-F.; Doong, R.-A. Cu-TiO2 nanorods with enhanced ultraviolet-and visible-light photoactivity for bisphenol A degradation. J. Hazard. Mater. 2014, 277, 84–92. [Google Scholar] [CrossRef]
- Yoong, L.; Chong, F.-K.; Dutta, B.K. Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light. Energy 2009, 34, 1652–1661. [Google Scholar] [CrossRef]
- Basnet, P.; Anderson, E.C.; Zhao, Y. Hybrid CuxO-TiO2 Nanopowders Prepared by Ball Milling for Solar Energy Conversion and Visible-Light-Induced Wastewater Treatment. ACS Appl. Nano Mater. 2019, 2, 2446–2455. [Google Scholar] [CrossRef]
- Costa, D.; Savio, L.; Pradier, C.-M. Adsorption of Amino Acids and Peptides on Metal and Oxide Surfaces in Water Environment: A Synthetic and Prospective Review. J. Phys. Chem. B 2016, 120, 7039–7052. [Google Scholar] [CrossRef] [PubMed]
- Musić, S.; Gotic, M.; Ivanda, M.; Popović, S.; Turkovic, A.; Trojko, R.; Sekulic, A.; Furic, K. Chemical and micro structural properties of TiO2 synthesized by sol-gel procedure. Mater. Sci. Eng. B 1997, 47, 33–40. [Google Scholar] [CrossRef]
- Khdary, N.H.; Ghanem, M.A.; Abdesalam, M.E.; Al-Garadah, M.M. Sequestration of CO2 using Cu nanoparticles supported on spherical and rod-shape mesoporous silica. J. Saudi Chem. Soc. 2018, 22, 343–351. [Google Scholar] [CrossRef] [Green Version]
- Howard, A.G.; Khdary, N.H. Spray synthesis of monodisperse sub-micron spherical silica particles. Mater. Lett. 2007, 61, 1951–1954. [Google Scholar] [CrossRef]
- Khdary, N.H.; Alkhuraiji, W.S.; Ghanem, M.A.; Alqureshah, F.A. Anchoring di and tri-metallic nanoparticles on an amorphous functionalized surface for inducing photocatalytic activity. New J. Chem. 2017, 41, 11556–11567. [Google Scholar] [CrossRef]
- Han, G.S.; Song, Y.H.; Jin, Y.U.; Lee, J.-W.; Park, N.-G.; Kang, B.K.; Lee, J.-K.; Cho, I.S.; Yoon, D.H.; Jung, H. Reduced Graphene Oxide/Mesoporous TiO2 Nanocomposite Based Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 23521–23526. [Google Scholar] [CrossRef]
- Ventosa, E.; Tymoczko, A.; Xie, K.; Xia, W.; Muhler, M.; Schuhmann, W. Low temperature hydrogen reduction of high surface area anatase and anatase/β-TiO2 for high-charging-rate batteries. ChemSusChem 2014, 7, 2584–2589. [Google Scholar] [CrossRef]
- Patra, S.; Davoisne, C.; Bruyere, S.; Bouyanfif, H.; Cassaignon, S.; Taberna, P.-L.; Sauvage, F. Room-Temperature Synthesis of High Surface Area Anatase TiO2 Exhibiting a Complete Lithium Insertion Solid Solution. Part. Part. Syst. Charact. 2013, 30, 1093–1104. [Google Scholar] [CrossRef]
- Leroy, P.; Tournassat, C.; Bizi, M. Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles. J. Colloid Interface Sci. 2011, 356, 442–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Hao, Y.; Zhang, B.; Shao, X.; Hu, L. A multifunctional nobel-metal-free catalyst of CuO/TiO2 hybride nanofibers. Appl. Catal. A Gen. 2017, 531, 1–12. [Google Scholar] [CrossRef]
- Khdary, N.H.; Gassim, A.E.; Howard, A.G. Scavenging of benzodiazepine drugs from water using dual-functionalized silica nanoparticles. Anal. Methods 2012, 4, 2900–2907. [Google Scholar] [CrossRef]
- Ma, P.C.; Kim, J.-K.; Tang, B.Z. Functionalization of carbon nanotubes using a silane coupling agent. Carbon 2006, 44, 3232–3238. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-M.; Razzaq, A.; Park, Y.H.; Sorcar, S.; Park, Y.; Grimes, C.A.; In, S.-I. Hybrid CuxO–TiO2 Heterostructured Composites for Photocatalytic CO2 Reduction into Methane Using Solar Irradiation: Sunlight into Fuel. ACS Omega 2016, 1, 868–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bououdina, M.; Davim, J.P. Handbook of Research on Nanoscience, Nanotechnology, and Advanced Materials; IGI Global: Hershey, PA, USA, 2014. [Google Scholar]
- Jung, M.; Hart, J.N.; Scott, J.; Ng, Y.H.; Jiang, Y.; Amal, R. Exploring Cu oxidation state on TiO2 and its transformation during photocatalytic hydrogen evolution. Appl. Catal. A Gen. 2016, 521, 190–201. [Google Scholar] [CrossRef]
- Priebe, J.B.; Radnik, J.; Lennox, A.J.J.; Pohl, M.-M.; Karnahl, M.; Hollmann, D.; Grabow, K.; Bentrup, U.; Junge, H.; Beller, M.; et al. Solar Hydrogen Production by Plasmonic Au-TiO2 Catalysts: Impact of Synthesis Protocol and TiO2 Phase on Charge Transfer Efficiency and H2 Evolution Rates. ACS Catal. 2015, 5, 2137–2148. [Google Scholar] [CrossRef]
- Ingo, G.M.; Dirè, S.; Babonneau, F. XPS studies of SiO2-TiO2 powders prepared by sol-gel process. Appl. Surf. Sci. 1993, 70, 230–234. [Google Scholar] [CrossRef]
- Liu, G.; Yin, L.; Wang, J.; Niu, P.; Zhen, C.; Xie, Y.; Cheng, H.-M. A red anatase TiO2 photocatalyst for solar energy conversion. Energy Environ. Sci. 2012, 5, 9603–9610. [Google Scholar] [CrossRef]
- Wan, L.; Li, J.-F.; Feng, J.-Y.; Sun, W.; Mao, Z.-Q. Photocatalysts of Cr Doped TiO2 Film Prepared by Micro Arc Oxidation. Chin. J. Chem. Phys. 2008, 21, 487–492. [Google Scholar] [CrossRef]
- Reza, K.M.; Kurny, A.; Gulshan, F. Parameters affecting the photocatalytic degradation of dyes using TiO2: A review. Appl. Water Sci. 2015, 7, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, I.; Anwar, Z.; Ali, S.A.; Hasan, K.A.; Sheraz, M.A.; Ahmed, S.; Hassan, K.A. Ionic strength effects on the photodegradation reactions of riboflavin in aqueous solution. J. Photochem. Photobiol. B Boil. 2016, 157, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M. Why is anatase a better photocatalyst than rutile?—Model studies on epitaxial TiO2 films. Sci. Rep. 2014, 4, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalyanasundaram, K. Dye-Sensitized Solar Cells; EPFL Press: Lausanne, Switzerland, 2010. [Google Scholar]
- Yu, J.C.; Yu, J.; Ho, W.; Jiang, Z.; Zhang, L. Effects of F-Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders. Chem. Mater. 2002, 14, 3808–3816. [Google Scholar] [CrossRef]
- Sangchay, W.; Sikong, L.; Kooptarnond, K. Comparison of photocatalytic reaction of commercial P25 and synthetic TiO2-AgCl nanoparticles. Procedia Eng. 2012, 32, 590–596. [Google Scholar] [CrossRef] [Green Version]
- Hurum, D.C.; Agrios, A.G.; Gray, K.A.; Rajh, T.; Thurnauer, M.C. Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR. J. Phys. Chem. B 2003, 107, 4545–4549. [Google Scholar] [CrossRef]
- Hou, C.; Hu, B.; Zhu, J. Photocatalytic Degradation of Methylene Blue over TiO2 Pretreated with Varying Concentrations of NaOH. Catalysts 2018, 8, 575. [Google Scholar] [CrossRef] [Green Version]
Substance | Surface Area, (BET, m2/g) | Pore Volume (cm3/g) | Average Pore Diameter, nm |
---|---|---|---|
TiO2 | 337 | 0.322 | 4.777 |
TiO2-NH2-CuxO | 97 | 0.101 | 3.215 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khdary, N.H.; Alkhuraiji, W.S.; Sakthivel, T.S.; Khdary, D.N.; Salam, M.A.; Alshihri, S.; Al-Mayman, S.I.; Seal, S. Synthesis of Superior Visible-Light-Driven Nanophotocatalyst Using High Surface Area TiO2 Nanoparticles Decorated with CuxO Particles. Catalysts 2020, 10, 872. https://doi.org/10.3390/catal10080872
Khdary NH, Alkhuraiji WS, Sakthivel TS, Khdary DN, Salam MA, Alshihri S, Al-Mayman SI, Seal S. Synthesis of Superior Visible-Light-Driven Nanophotocatalyst Using High Surface Area TiO2 Nanoparticles Decorated with CuxO Particles. Catalysts. 2020; 10(8):872. https://doi.org/10.3390/catal10080872
Chicago/Turabian StyleKhdary, Nezar H., Waleed S. Alkhuraiji, Tamil S. Sakthivel, Duaa N. Khdary, Mohamed Abdel Salam, Saeed Alshihri, Sulaiman I. Al-Mayman, and Sudipta Seal. 2020. "Synthesis of Superior Visible-Light-Driven Nanophotocatalyst Using High Surface Area TiO2 Nanoparticles Decorated with CuxO Particles" Catalysts 10, no. 8: 872. https://doi.org/10.3390/catal10080872
APA StyleKhdary, N. H., Alkhuraiji, W. S., Sakthivel, T. S., Khdary, D. N., Salam, M. A., Alshihri, S., Al-Mayman, S. I., & Seal, S. (2020). Synthesis of Superior Visible-Light-Driven Nanophotocatalyst Using High Surface Area TiO2 Nanoparticles Decorated with CuxO Particles. Catalysts, 10(8), 872. https://doi.org/10.3390/catal10080872