In Situ Wet Etching of MoS2@dWO3 Heterostructure as Ultra-Stable Highly Active Electrocatalyst for Hydrogen Evolution Reaction
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Synthesis of WO3 Nanosheets
3.3. Synthesis of MoS2@dWO3 Heterostructure Nanosheets
3.4. Characterizations
3.5. Fabrication of Electrodes
3.6. Catalytic Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Voiry, D.; Yang, J.; Chhowalla, M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 2016, 28, 6197–6206. [Google Scholar] [CrossRef]
- Jin, H.; Guo, C.; Liu, X.; Liu, J.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S.-Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 2015, 44, 2713–2731. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiao, Y.; Li, L.H.; Xing, T.; Chen, Y.; Jaroniec, M.; Qiao, S.Z. Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 2014, 8, 5290–5296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Q.; Han, J.; Wang, X.; Xu, P.; Yao, T.; Zhong, J.; Zhong, W.; Liu, S.; Gao, T.; Zhang, Z.; et al. 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis. Adv. Mater. 2020. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Yu, Y.; Ma, Q.; Chen, B.; Zhang, H. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 2016, 28, 1917–1933. [Google Scholar] [CrossRef]
- Liu, C.; Wang, L.; Tang, Y.; Luo, S.; Liu, Y.; Zhang, S.; Zeng, Y.; Xu, Y. Vertical single or few-layer MoS2 nanosheets rooting into TiO2 nanofibers for highly efficient photocatalytic hydrogen evolution. Appl. Catal. B-Environ. 2015, 164, 1–9. [Google Scholar] [CrossRef]
- Guo, J.; Huo, F.; Cheng, Y.; Xiang, Z. PAF-1 as oxygen tank to in -situ synthesize edge -exposed O-MoS2 for highly efficient hydrogen evolution. Catal. Today 2020, 347, 56–62. [Google Scholar] [CrossRef]
- Yang, L.; Zhu, X.; Xiong, S.; Wu, X.; Shan, Y.; Chu, P.K. Synergistic WO3.2H2O nanoplates/WS2 hybrid catalysts for high-efficiency hydrogen evolution. ACS Appl. Mater. Interfaces 2016, 8, 13966–13972. [Google Scholar] [CrossRef]
- Zhang, N.; Li, X.; Liu, Y.; Long, R.; Li, M.; Chen, S.; Qi, Z.; Wang, C.; Song, L.; Jiang, J.; et al. Defective tungsten oxide hydrate nanosheets for boosting aerobic coupling of amines: Synergistic catalysis by oxygen vacancies and bronsted acid sites. Small 2017, 13, 1701354. [Google Scholar] [CrossRef]
- Jain, A.; Sadan, M.B.; Ramasubramaniam, A. Promoting active sites for hydrogen evolution in MoSe2 via transition-metal dopin. J. Phys. Chem. C 2020, 124, 12324–12336. [Google Scholar] [CrossRef]
- Luo, J.; Xu, P.; Zhang, D.; Wei, L.; Zhou, D.; Xu, W.; Li, J.; Yuan, D. Synthesis of 3D-MoO2 microsphere supported MoSe2 as an efficient electrocatalyst for hydrogen evolution reaction. Nanotechnology 2017, 28, 12. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Liu, E.; He, F.; Shi, C.; He, C.; Li, J.; Zhao, N. 2D sandwich-like carbon-coated ultrathin TiO2@defect-rich MoS2 hybrid nanosheets: Synergistic-effect-promoted electrochemical performance for lithium ion batteries. Nano Energy 2016, 26, 541–549. [Google Scholar] [CrossRef]
- Fu, W.; He, H.; Zhang, Z.; Wu, C.; Wang, X.; Wang, H.; Zeng, Q.; Sun, L.; Wang, X.; Zhou, J.; et al. Strong interfacial coupling of MoS2/g-C3N4 van de Waals solids for highly active water reduction. Nano Energy 2016, 27, 44–50. [Google Scholar] [CrossRef]
- Sun, Y.; Alimohammadi, F.; Zhang, D.; Guo, G. Enabling colloidal synthesis of edge-oriented MoS2 with expanded interlayer spacing for enhanced HER catalysis. Nano Lett. 2017, 17, 1963–1969. [Google Scholar] [CrossRef]
- Ye, W.; Ren, C.; Liu, D.; Wang, C.; Zhang, N.; Yan, W.; Song, L.; Xiong, Y. Maneuvering charge polarization and transport in 2H-MoS2 for enhanced electrocatalytic hydrogen evolution reaction. Nano Res. 2016, 9, 2662–2671. [Google Scholar] [CrossRef]
- Xu, J.; Cui, J.; Guo, C.; Zhao, Z.; Jiang, R.; Xu, S.; Zhuang, Z.; Huang, Y.; Wang, L.; Li, Y. Ultrasmall Cu7S4 @MoS2 hetero-nanoframes with abundant active edge sites for ultrahigh-performance hydrogen evolution. Angew. Chem. Int. Ed. Engl. 2016, 55, 6502–6505. [Google Scholar] [CrossRef]
- Jiang, R.; He, C.; Guo, C.; Chen, W.; Luo, J.; Chen, Y.; Wang, L. Edge-contact geometry and anion-deficit construction for activating ultrathin MoS2 on W17O47 in the hydrogen evolution reaction. Inorg. Chem. 2019, 58, 11241–11247. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, P.; Late, D.J.; Kumar, A.; Patel, S.; Singh, J. 2D layered transition metal dichalcogenides (MoS2): Synthesis, applications and theoretical aspects. Appl. Mater. Today 2018, 13, 242–270. [Google Scholar] [CrossRef]
- Liu, B.; Wang, S.; Mo, Q.; Peng, L.; Cao, S.; Wang, J.; Wu, C.; Li, C.; Guo, J.; Liu, B.; et al. Epitaxial MoS2 nanosheets on nitrogen doped graphite foam as a 3D electrode for highly efficient electrochemical hydrogen evolution. Electrochim. Acta 2018, 292, 407–418. [Google Scholar] [CrossRef]
- Ai, K.; Ruan, C.; Shen, M.; Lu, L. MoS2 nanosheets with widened interlayer spacing for high-efficiency removal of mercury in aquatic systems. Adv. Funct. Mater. 2016, 26, 5542–5549. [Google Scholar] [CrossRef]
- Tan, C.; Cao, X.; Wu, X.-J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.-H.; et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, W.; Wang, Z.; Chen, J.G.; Liu, C.-j. Porous MS2/MO2 (M = W, Mo) nanorods as efficient hydrogen evolution reaction catalysts. Acs. Catal. 2016, 6, 6585–6590. [Google Scholar] [CrossRef]
- Geng, S.; Yang, W.; Yu, Y.S. Building MoS2/S-doped g-C3N4 layered heterojunction electrocatalysts for efficient hydrogen evolution reaction. J. Catal. 2019, 375, 441–447. [Google Scholar] [CrossRef]
- Sivasankaran, R.P.; Rockstroh, N.; Kreyenschulte, C.R.; Bartling, S.; Lund, H.; Acharjya, A.; Junge, H.; Thomas, A.; Brueckner, A. Influence of MoS2 on activity and stability of carbon nitride in photocatalytic hydrogen production. Catalysts 2019, 9, 695. [Google Scholar] [CrossRef] [Green Version]
- Kusmierek, E. Evaluating the effect of WO3 on electrochemical and corrosion properties of TiO2-RuO2-coated titanium anodes with low content of RuO2. Electrocatalysis 2020, 11, 555–566. [Google Scholar] [CrossRef]
- Lu, H.; Chen, X.; Dai, W.; Zhang, K.; Liu, C.; Dong, H. Prickly pear-like three-dimensional porous MoS2: Synthesis, characterization and advanced hydrogen evolution reaction. Catalysts 2018, 8, 580. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.-Z.; Gong, Y.; Manchanda, P.; Zhang, Y.-Y.; Ye, G.; Chen, S.; Song, L.; Pantelides, S.T.; Ajayan, P.M.; Chisholm, M.F.; et al. Rhenium-doped and stabilized MoS2 atomic layers with basal-plane catalytic activity. Adv. Mater. 2018, 30, 1803477. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Xing, Z.; Zhao, T.; Qiu, Y.; Tao, B.; Li, Z.; Zhou, W. Hollow flower-like polyhedral alpha-Fe2O3/defective MoS2/Ag Z-scheme heterojunctions with enhanced photocatalytic-Fenton performance via surface plasmon resonance and photothermal effects. Appl. Catal. B-Environ. 2020, 272, 118978. [Google Scholar] [CrossRef]
- Zhou, Q.; Feng, J.; Peng, X.; Zhong, L.; Sun, R. Porous carbon coupled with an interlaced MoP-MoS2 heterojunction hybrid for efficient hydrogen evolution reaction. J. Energy Chem. 2020, 45, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Song, Y.; Wang, Z.; Gao, Y.; Sheng, Y.; Shu, Z.; Zhang, J.; Li, X.a. Porous nickel disulfide/reduced graphene oxide nanohybrids with improved electrocatalytic performance for hydrogen evolution. Catal. Commun. 2016, 85, 26–29. [Google Scholar] [CrossRef]
- Tang, Y.-J.; Wang, Y.; Wang, X.-L.; Li, S.-L.; Huang, W.; Dong, L.-Z.; Liu, C.-H.; Li, Y.-F.; Lan, Y.-Q. Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Adv. Energy Mater. 2016, 6, 1600116. [Google Scholar] [CrossRef]
- Wang, H.; Ouyang, L.; Zou, G.; Sun, C.; Hu, J.; Xiao, X.; Gao, L. Optimizing MoS2 edges by alloying isovalent W for robust hydrogen evolution activity. Acs. Catal. 2018, 8, 9529–9536. [Google Scholar] [CrossRef]
- Zhang, X.; Lai, Z.; Tan, C.; Zhang, H. Solution-processed two-dimensional MoS2 nanosheets: Preparation, hybridization, and applications. Angew. Chem. Int. Ed. 2016, 55, 8816–8838. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Zhu, J.; Xi, P.; Tao, K.; Gao, D. P dopants triggered new basal plane active sites and enlarged interlayer spacing in MoS2 nanosheets toward electrocatalytic hydrogen evolution. ACS Energy Lett. 2017, 2, 745–752. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, J.; Li, S.; Grote, F.; Zhang, X.; Zhang, H.; Wang, R.; Lei, Y.; Pan, B.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888. [Google Scholar] [CrossRef]
- Yang, L.; Liu, P.; Li, J.; Xiang, B. Two-dimensional material molybdenum misulfides as electrocatalysts for hydrogen evolution. Catalysts 2017, 7, 285. [Google Scholar] [CrossRef] [Green Version]
- Latorre-Sánchez, M.; Esteve-Adell, I.; Primo, A.; García, H. Innovative preparation of MoS2–graphene heterostructures based on alginate containing (NH4)2MoS4 and their photocatalytic activity for H2 generation. Carbon 2015, 81, 587–596. [Google Scholar] [CrossRef]
- Joe, J.; Bae, C.; Kim, E.; Ho, T.A.; Yang, H.; Park, J.H.; Shin, H. Mixed-phase (2H and 1T) MoS2 catalyst for a highly efficient and stable Si photocathode. Catalysts 2018, 8, 580. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Wang, K.; Song, H.; Wu, H.; Yan, S.; Xu, X.; Shi, Y. Fabrication of C/Co-FeS2/CoS2 with highly efficient hydrogen evolution reaction. Catalysts 2019, 9, 556. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Rhee, C.K.; Sohn, Y. Photoelectrochemical hydrogen evolution and CO2 reduction over MoS2/Si and MoSe2/Si nanostructures by combined photoelectrochemical deposition and rapid-thermal annealing process. Catalysts 2019, 9, 494. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Fang, G.; Pan, A.; Liang, S. Oxygen-incorporated MoS2 nanosheets with expanded interlayers for hydrogen evolution reaction and pseudocapacitor applications. Acs. Appl. Mater. Interfaces 2016, 8, 33681–33689. [Google Scholar] [CrossRef]
- Reddy, B.M.; Sreekanth, P.M.; Yamada, Y.; Xu, Q.; Kobayashi, T. Surface characterization of sulfate, molybdate and tungstate promoted TiO2-ZrO2 solid acid catalysts by XPS and other techniques. Appl. Catal. A. Gen. 2002, 228, 269–278. [Google Scholar] [CrossRef]
- Jin, Q.; Liu, N.; Dai, C.; Xu, R.; Wu, B.; Yu, G.; Chen, B.; Du, Y. H-2-directing strategy on in situ synthesis of Co-MoS2 with highly expanded interlayer for elegant HER activity and its mechanism. Adv. Energy Mater. 2020, 10, 2000291. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, X.; Zhou, C.; Du, S.; Zhen, D.; Chen, B.; Li, J.; Wu, Q.; Iru, Y.; Chen, D. A modulated electronic state strategy designed to integrate active HER and OER components as hybrid heterostructures for efficient overall water splitting. Appl. Catal. B. Environ. 2020, 260, 118197. [Google Scholar] [CrossRef]
- Gao, M.R.; Liang, J.X.; Zheng, Y.R.; Xu, Y.F.; Jiang, J.; Gao, Q.; Li, J.; Yu, S.H. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 2015, 6, 5982. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lu, Z.; Xu, S.; Kong, D.; Cha, J.J.; Zheng, G.; Hsu, P.; Yan, K.; Brandshaw, D.; Prinz, F.B.; et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 2013, 110, 19701. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, S.; Hao, X.; Zhou, J.; Song, D.; Wang, D.; Hou, L.; Gao, F. Fluorine- and nitrogen-codoped MoS2 with a catalytically active basal plane. Acs. Appl. Mater. Interfaces 2017, 9, 27715–27719. [Google Scholar] [CrossRef]
- Posudievsky, O.Y.; Kozarenko, O.A.; Dyadyun, V.S.; Koshechko, V.G.; Pokhodenko, V.D. Efficient mechanochemical preparation of graphene-like molybdenum disulfide and graphene-based composite electrocatalysts for hydrogen evolution reaction. Electrocatalysis 2019, 10, 477–488. [Google Scholar] [CrossRef]
- Shibli, S.M.A.; Anupama, V.R.; Arun, P.S.; Jineesh, P.; Suji, L. Synthesis and development of nano WO3 catalyst incorporated Ni–P coating for electrocatalytic hydrogen evolution reaction. Int. J. Hydrog. Energy 2016, 41, 10090–10102. [Google Scholar] [CrossRef]
Catalyst | Synthetic Method | η (mV) (j = 10 mA cm−2) | Tafel Slope (mV dec−1) | Ref. |
---|---|---|---|---|
Co–MoS2 | Hydrothermal process | 56 | 32 | [35] |
MoS2/N-RGO-180 | Hydrothermal process | 56 | 41 | [32] |
Cu7S4@MoS2 | Hot injection synthesis | 133 | 48 | [17] |
WS2/rGO | Hydrothermal | 265 | 58 | [9] |
O–MoS2 | Hydrothermal | 300 | 55 | [36] |
MoS2/rGO | Hydrothermal | 150 | 43.5 | [15] |
MoS2/CoSe2 | Hydrothermal | 75 | 36 | [46] |
MoS2/CFP | Chemical vapor deposition | 168 | 44 | [47] |
N,F–MoS2 | Hydrothermal | 210 | 57 | [48] |
MoS2@dWO3 | In situ wet etching | 191 | 42 | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wang, C. In Situ Wet Etching of MoS2@dWO3 Heterostructure as Ultra-Stable Highly Active Electrocatalyst for Hydrogen Evolution Reaction. Catalysts 2020, 10, 977. https://doi.org/10.3390/catal10090977
Liu X, Wang C. In Situ Wet Etching of MoS2@dWO3 Heterostructure as Ultra-Stable Highly Active Electrocatalyst for Hydrogen Evolution Reaction. Catalysts. 2020; 10(9):977. https://doi.org/10.3390/catal10090977
Chicago/Turabian StyleLiu, Xintian, and Congwei Wang. 2020. "In Situ Wet Etching of MoS2@dWO3 Heterostructure as Ultra-Stable Highly Active Electrocatalyst for Hydrogen Evolution Reaction" Catalysts 10, no. 9: 977. https://doi.org/10.3390/catal10090977
APA StyleLiu, X., & Wang, C. (2020). In Situ Wet Etching of MoS2@dWO3 Heterostructure as Ultra-Stable Highly Active Electrocatalyst for Hydrogen Evolution Reaction. Catalysts, 10(9), 977. https://doi.org/10.3390/catal10090977