Sulfonic Acid-Functionalized Inorganic Materials as Efficient Catalysts in Various Applications: A Minireview
Abstract
:1. Introduction
2. Sulfonic Acid-Functionalized Materials: Synthesis and Applications
2.1. Sulfonic-Silica Based Materials
2.2. Sulfonic-Titania Based Materials
2.3. Other Sulfonic-Functionalized Metal Oxides: Zirconia (ZrO2) and Allumina (Al2O3)
3. Sulfonic Acid-Functionalized Materials: Characterization
4. Considerations on the Stability of Sulfonic Solid Acid Catalysts
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Melero, J.A.; van Grieken, R.; Morales, G. Advances in the synthesis and catalytic applications of organosulfonic-functionalized mesostructured materials. Chem. Rev. 2006, 106, 3790–3812. [Google Scholar] [CrossRef] [PubMed]
- Doustkhah, E.; Lin, J.; Rostamnia, S.; Len, C.; Luque, R.; Luo, X.; Bando, Y.; Wu, K.C.-W.; Kim, J.; Yamauchi, Y.; et al. Development of sulfonic-acid-functionalized mesoporous materials: Synthesis and catalytic applications. Chem. A Eur. J. 2019, 25, 1614–1635. [Google Scholar] [CrossRef] [PubMed]
- Gholamzadeh, P.; Ziarani, G.M.; Lashgari, N.; Badiei, A.; Asadiatouei, P. Silica functionalized propyl sulfonic acid (SiO2-Pr-SO3H): An efficient catalyst in organic reactions. J. Mol. Catal. A Chem. 2014, 391, 208–222. [Google Scholar] [CrossRef]
- Li, R.; Ouda, R.; Kimura, C.; Narita, R.; Nishimura, H.; Fujita, T.; Watanabe, T. Conversion of beech wood into antiviral lignin-carbohydrate complexes by microwave acidolysis. ACS Sustain. Chem. Eng. 2021, 9, 9248–9256. [Google Scholar] [CrossRef]
- De Nino, A.; Tallarida, M.A.; Algieri, V.; Olivito, F.; Costanzo, P.; De Filpo, G.; Maiuolo, L. Sulfonated cellulose-based magnetic composite as useful media for water remediation from amine pollutants. Appl. Sci. 2020, 10, 8155. [Google Scholar] [CrossRef]
- Martínez-Edo, G.; Balmori, A.; Pontón, I.; Del Rio, A.M.; Sánchez-García, D. Functionalized ordered mesoporous silicas (MCM-41): Synthesis and applications in Catalysis. Catalysts 2018, 8, 617. [Google Scholar] [CrossRef] [Green Version]
- Van Rhijn, W.M.; De Vos, D.E.; Sels, B.F.; Bossaert, W.D. Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions. Chem. Commun. 1998, 317–318. [Google Scholar] [CrossRef]
- Anan, A.; Sharma, K.K.; Asefa, T. Selective, efficient nanoporous catalysts for nitroaldol condensation: Co-placement of multiple site-isolated functional groups on mesoporous materials. J. Mol. Catal. A Chem. 2008, 288, 1–13. [Google Scholar] [CrossRef]
- Testa, M.L. Functionalized nanomaterials for biomass conversion. Mater. Today Proc. 2020, 35, 156–163. [Google Scholar] [CrossRef]
- Testa, M.L.; La Parola, V.; Venezia, A.M. Transesterification of short chain esters using sulfonic acid-functionalized hybrid silicas: Effect of silica morphology. Catal. Today 2014, 223, 115–121. [Google Scholar] [CrossRef]
- Lindlar, B.; Lüchinger, M.; Röthlisberger, A.; Haouas, M.; Pirngruber, G.; Kogelbauer, A.; Prins, R. Chemical modification of high-quality large-pore M41S materials. J. Mater. Chem. 2002, 12, 528–533. [Google Scholar] [CrossRef]
- Mbaraka, I.K.; Radu, D.R.; Lin, V.S.Y.; Shanks, B.H. Organosulfonic acid-functionalized mesoporous silicas for the esterification of fatty acid. J. Catal. 2003, 219, 329–336. [Google Scholar] [CrossRef]
- Timm, J.; Marschall, R. A novel and versatile grafting procedure: Toward the highest possible sulfonation degree of mesoporous silica. Adv. Sustain. Syst. 2018, 2, 1700170. [Google Scholar] [CrossRef]
- Tenorio, M.; Morère, J.; Carnerero, C.; Torralvo, M.; Pando, C.; Cabañas, A. Thiol group functionalization of mesoporous SiO2 SBA-15 using supercritical CO2. Microporous Mesoporous Mater. 2018, 256, 147–154. [Google Scholar] [CrossRef]
- González, M.D.; Cesteros, Y.; Llorca, J.; Salagre, P. Boosted selectivity toward high glycerol tertiary butyl ethers by microwave-assisted sulfonic acid-functionalization of SBA-15 and beta zeolite. J. Catal. 2012, 290, 202–209. [Google Scholar] [CrossRef]
- Domingues, E.M.; Bion, N.; Figueiredo, F.M.; Ferreira, P. Tuning the acid content of propylsulfonic acid-functionalized mesoporous benzene-silica by microwave-assisted synthesis. Microporous Mesoporous Mater. 2016, 226, 386–395. [Google Scholar] [CrossRef]
- Niknam, K.; Saberi, D.; Sefat, M.N. Silica-bonded S-sulfonic acid as a recyclable catalyst for chemoselective synthesis of 1,1-diacetates. Tetrahedron Lett. 2009, 50, 4058–4062. [Google Scholar] [CrossRef] [Green Version]
- Niknam, K.; Saberi, D. Preparation of sulfuric acid ([3-(3-silicapropyl) sulfanyl] propyl) ester: A new and recyclable catalyst for the formylation and acetylation of alcohols under heterogeneous conditions. Appl. Catal. A Gen. 2009, 366, 220–225. [Google Scholar] [CrossRef]
- Safaei, S.; Mohammadpoor-Baltork, I.; Khosropour, A.R.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V. SO3H-functionalized MCM-41 as an efficient catalyst for the combinatorial synthesis of 1H-pyrazolo-[3,4-b] pyridines and spiro-pyrazolo-[3,4-b] pyridines. J. Iran. Chem. Soc. 2017, 14, 1583–1589. [Google Scholar] [CrossRef]
- Ng, E.-P.; Subari, S.N.M.; Marie, O.; Mukti, R.R.; Juan, J.-C. Sulfonic acid functionalized MCM-41 as solid acid catalyst for tert-butylation of hydroquinone enhanced by microwave heating. Appl. Catal. A Gen. 2013, 450, 34–41. [Google Scholar] [CrossRef]
- Chermahini, A.N.; Hafizi, H.; Andisheh, N.; Saraji, M.; Shahvar, A. The catalytic effect of Al-KIT-5 and KIT-5-SO3H on the conversion of fructose to 5-hydroxymethylfurfural. Res. Chem. Intermed. 2017, 43, 5507–5521. [Google Scholar] [CrossRef]
- Jetti, S.R.; Bhatewara, A.; Kadre, T.; Jain, S. Silica-bonded N-propyl sulfamic acid as an efficient recyclable catalyst for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones under heterogeneous conditions. Chin. Chem. Lett. 2014, 25, 469–473. [Google Scholar] [CrossRef]
- Jetti, S.R.; Upadhyaya, A.; Jain, S. 3,4-Hydropyrimidin-2-(1H) one derivatives: Solid silica-based sulfonic acid catalyzed microwave-assisted synthesis and their biological evaluation as antihypertensive and calcium channel blocking agents. Med. Chem. Res. 2014, 23, 4356–4366. [Google Scholar] [CrossRef]
- Ghorbani-Choghamarani, A.; Ghorbani, F.; Yousofvand, Z.; Azadi, G. Mesoporous MCM-41-nPr-NHSO3H as novel and effective nanoreactor catalyst for the synthesis of multi-substituted imidazoles under solvent-free conditions. J. Porous Mater. 2015, 22, 665–673. [Google Scholar] [CrossRef]
- Gharib, A.; Pesyan, N.N.; Khorasani, B.R.H.; Roshani, M.; Scheeren, J.W. Silica-bonded N-propyl sulfamic acid: A recyclable catalyst for microwave-assisted synthesis of spirooxindoles via three-component reaction. Bulg. Chem. Commun. 2013, 45, 371–378. [Google Scholar]
- Xie, W.; Yang, D. Silica-bonded N-propyl sulfamic acid used as a heterogeneous catalyst for transesterification of soybean oil with methanol. Bioresour. Technol. 2011, 102, 9818–9822. [Google Scholar] [CrossRef]
- Niknam, K.; Saberi, D. Silica-bonded N-propyl sulfamic acid as an efficient catalyst for the formylation and acetylation of alcohols and amines under heterogeneous conditions. Tetrahedron Lett. 2009, 50, 5210–5214. [Google Scholar] [CrossRef]
- Beejapur, H.A.; La Parola, V.; Liotta, L.F.; Testa, M.L. Glycerol acetylation over organic-inorganic sulfonic or phosphonic silica catalysts. ChemistrySelect 2017, 2, 4934–4941. [Google Scholar] [CrossRef]
- Alvaro, M.; Corma, A.; Das, D.; Fornés, V.; García, H. “Nafion”-functionalized mesoporous MCM-41 silica shows high activity and selectivity for carboxylic acid esterification and Friedel–Crafts acylation reactions. J. Catal. 2005, 231, 48–55. [Google Scholar] [CrossRef]
- Harmer, M.A.; Sun, Q.; Michalczyk, M.J.; Yang, Z. Unique silane modified perfluorosulfonic acids as versatile reagents for new solid acid catalysts. Chem. Commun. 1997, 1803–1804. [Google Scholar] [CrossRef]
- Govan, J.; Gun’Ko, Y.K. Recent advances in the application of magnetic nanoparticles as a support for homogeneous catalysts. Nanomaterials 2014, 4, 222–241. [Google Scholar] [CrossRef]
- Maleki, A.; Movahed, H.; Ravaghi, P.; Kari, T. Facile in situ synthesis and characterization of a novel PANI/Fe3O4/Ag nanocomposite and investigation of catalytic applications. RSC Adv. 2016, 6, 98777–98787. [Google Scholar] [CrossRef]
- Zolfigol, M.A.; Khakyzadeh, V.; Moosavi-Zare, A.R.; Rostami, A.; Zare, A.; Iranpoor, N.; Beyzavi, M.H.; Luque, R. A highly stable and active magnetically separable Pd nanocatalyst in aqueous phase heterogeneously catalyzed couplings. Green Chem. 2013, 15, 2132–2140. [Google Scholar] [CrossRef]
- Sharma, R.; Monga, Y.; Puri, A. Zirconium (IV)-modified silica@magnetic nanocomposites: Fabrication, characterization and application as efficient, selective and reusable nanocatalysts for Friedel–Crafts, Knoevenagel and Pechmann condensation reactions. Catal. Commun. 2013, 35, 110–114. [Google Scholar] [CrossRef]
- Nikoorazm, M.; Erfani, Z. Core–shell nanostructure (Fe3O4@MCM-41@Cu-P2C) as a highly efficient and recoverable nanocatalyst for the synthesis of polyhydroquinoline, 5-substituted 1H-tetrazoles and sulfides. Chem. Phys. Lett. 2019, 737, 136784. [Google Scholar] [CrossRef]
- Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Shaker, M.; Elhamifar, D. Sulfonic acid supported on magnetic methylene-based organosilica as an efficient and recyclable nanocatalyst for biodiesel production via esterification. Front. Energy Res. 2020, 8, 78. [Google Scholar] [CrossRef]
- Moradi, S.; Zolfigol, M.A.; Zarei, M.; Alonso, D.A.; Khoshnood, A.; Tajally, A. An efficient catalytic method for the synthesis of pyrido [2,3-d] pyrimidines as biologically drug candidates by using novel magnetic nanoparticles as a reusable catalyst. Appl. Organomet. Chem. 2017, 32, e4043. [Google Scholar] [CrossRef]
- Mobaraki, A.; Movassagh, B.; Karimi, B. Magnetic solid sulfonic acid decorated with hydrophobic regulators: A combinatorial and magnetically separable catalyst for the synthesis of α-aminonitriles. ACS Comb. Sci. 2014, 16, 352–358. [Google Scholar] [CrossRef]
- Kassaee, M.Z.; Masrouri, H.; Movahedi, F. Sulfamic acid-functionalized magnetic Fe3O4 nanoparticles as an efficient and reusable catalyst for one-pot synthesis of α-amino nitriles in water. Appl. Catal. A Gen. 2011, 395, 28–33. [Google Scholar] [CrossRef]
- Gill, C.S.; Price, B.A.; Jones, C.W. Sulfonic acid-functionalized silica-coated magnetic nanoparticle catalysts. J. Catal. 2007, 251, 145–152. [Google Scholar] [CrossRef]
- Afshari, M.; Gorjizadeh, M.; Naseh, M. Supported sulfonic acid on magnetic nanoparticles used as a reusable catalyst for rapid synthesis of α-aminophosphonates. Inorg. Nano-Metal Chem. 2016, 47, 591–596. [Google Scholar] [CrossRef]
- Vekariya, R.H.; Prajapati, N.P.; Patel, H.D. MCM-41-anchored sulfonic acid (MCM-41-SO3H): An efficient heterogeneous catalyst for green organic synthesis. Synth. Commun. 2016, 46, 1713–1734. [Google Scholar] [CrossRef]
- Hasan, Z.; Yoon, J.W.; Jhung, S.H. Esterification and acetylation reactions over in situ synthesized mesoporous sulfonated silica. Chem. Eng. J. 2015, 278, 105–112. [Google Scholar] [CrossRef]
- Hakki, A.; Dillert, R.; Bahnemann, D.W. Arenesulfonic acid-functionalized mesoporous silica decorated with titania: A heterogeneous catalyst for the one-pot photocatalytic synthesis of quinolines from nitroaromatic compounds and alcohols. ACS Catal. 2013, 3, 565–572. [Google Scholar] [CrossRef]
- Samutsri, S.; Panpranot, J.; Tungasmita, D.N. Propylsulfonic acid functionalized MCA cubic mesoporous and ZSM-5-MCA composite catalysts for anisole alkylation. Microporous Mesoporous Mater. 2017, 239, 253–262. [Google Scholar] [CrossRef]
- Fang, L.; Zhang, K.; Li, X.; Wu, H.; Wu, P. Preparation of a carbon-silica mesoporous composite functionalized with sulfonic acid groups and its application to the production of biodiesel. Chin. J. Catal. 2012, 33, 114–122. [Google Scholar] [CrossRef]
- Zhong, R.; Peng, L.; De Clippel, F.; Gommes, C.; Goderis, B.; Ke, X.; Van Tendeloo, G.; Jacobs, P.A.; Sels, B.F. An eco-friendly soft template synthesis of mesostructured silica-carbon nanocomposites for acid catalysis. ChemCatChem 2015, 7, 3047–3058. [Google Scholar] [CrossRef]
- Aguado-Deblas, L.; Estevez, R.; Russo, M.; La Parola, V.; Bautista, F.M.; Testa, M.L. Microwave-Assisted Glycerol Etherification Over Sulfonic Acid Catalysts. Materials 2020, 13, 1584. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef]
- Vlachou, E.-E.N.; Armatas, G.S.; Litinas, K.E. Synthesis of fused oxazolocoumarins from o -hydroxynitrocoumarins and benzyl alcohol under gold nanoparticles or FeCl3 catalysis. J. Heterocycl. Chem. 2017, 54, 2447–2453. [Google Scholar] [CrossRef]
- Sudarsanam, P.; Li, H.; Sagar, T.V. TiO2-based water-tolerant acid catalysis for biomass-based fuels and chemicals. ACS Catal. 2020, 10, 9555–9584. [Google Scholar] [CrossRef]
- Pizzio, L.R. Synthesis and characterization of trifluoromethanesulfonic acid supported on mesoporous titania. Mater. Lett. 2006, 60, 3931–3935. [Google Scholar] [CrossRef]
- Atghia, S.V.; Beigbaghlou, S.S. Nanocrystalline titania-based sulfonic acid (TiO2-Pr-SO3H) as a new, highly efficient and recyclable solid acid catalyst for the N-Boc protection of amines at room temperature. J. Organomet. Chem. 2013, 745–746, 42–49. [Google Scholar] [CrossRef]
- Gardy, J.; Hassanpour, A.; Lai, X.; Ahmed, M.H.; Rehan, M. Biodiesel production from used cooking oil using a novel surface functionalised TiO2 nano-catalyst. Appl. Catal. B Environ. 2017, 207, 297–310. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, M.M.; Kolvari, E.; Zolfagharinia, S.; Hamzeh, M. Simple hydrothermal synthesis of sphere-like TiO2 nanoparticles and their functionalization with 1,4-butane sultone as a new heterogeneous catalyst. J. Iran. Chem. Soc. 2017, 14, 1777–1788. [Google Scholar] [CrossRef]
- Shirini, F.; Abedini, M.; Kiaroudi, S.A. Introduction of titania sulfonic acid (TiO2-SO3H) as a new, efficient, and reusable heterogenous solid acid catalyst for the synthesis of biscoumarins. Phosphorus Sulfur Silicon Relat. Elem. 2014, 189, 1279–1288. [Google Scholar] [CrossRef]
- Dhawan, K.; Bhardwaj, D.; Singh, R. An efficient nano titania-supported sulfonic acid (n-TSA) catalyzed solvent-free synthesis of isoxazolyl-thiazolidinones. Mater. Today Proc. 2021, 43, 3231–3235. [Google Scholar] [CrossRef]
- Zhou, S.; Lai, J.; Liu, X.; Huang, G.; You, G.; Xu, Q.; Yin, D. Selective conversion of biomass-derived furfuryl alcohol into n-butyl levulinate over sulfonic acid functionalized TiO2 nanotubes. Green Energy Environ. 2020. [Google Scholar] [CrossRef]
- Testa, M.L.; Miroddi, G.; Russo, M.; La Parola, V.; Marcì, G. Dehydration of fructose to 5-HMF over acidic TiO2 catalysts. Materials 2020, 13, 1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Chao, P.-Y.; Cheng, T.-Y.; Ho, Y.; Lin, C.-T.; Hsu, H.-Y.; Wong, J.-J.; Tsai, T.-C. Design of sulfonated mesoporous silica catalyst for fructose dehydration guided by difructose anhydride intermediate incorporated reaction network. Chem. Eng. J. 2016, 283, 778–788. [Google Scholar] [CrossRef]
- Tian, C.; Oyola, Y.; Nelson, K.M.; Chai, S.-H.; Zhu, X.; Bauer, J.C.; Janke, C.; Brown, S.; Guo, Y.; Dai, S. A renewable HSO3/H2PO3-grafted polyethylene fiber catalyst: An efficient heterogeneous catalyst for the synthesis of 5-hydroxymethylfurfural from fructose in water. RSC Adv. 2013, 3, 21242–21246. [Google Scholar] [CrossRef]
- Mika, L.T.; Cséfalvay, E.; Nemeth, A. Catalytic conversion of carbohydrates to initial platform chemicals: Chemistry and sustainability. Chem. Rev. 2017, 118, 505–613. [Google Scholar] [CrossRef]
- Tabrizian, E.; Amoozadeh, A. A new type of SO3H-functionalized magnetic-titania as a robust magnetically-recoverable solid acid nanocatalyst for multi-component reactions. RSC Adv. 2016, 6, 96606–96615. [Google Scholar] [CrossRef]
- Murugesan, A.; Gengan, R.M.; Lin, C.-H. Efficient synthesis of ethyl–piperazinyl quinolinyl-(E)-chalcone derivatives via Claisen–Schmidt reaction by using TiO2 -BPTETSA catalyst. J. Taiwan Inst. Chem. Eng. 2017, 80, 852–866. [Google Scholar] [CrossRef]
- Zolfigol, M.A.; Yarie, M. Fe3O4 @TiO2 @O2 PO2 (CH2) NHSO3H as a novel nanomagnetic catalyst: Application to the preparation of 2-amino-4,6-diphenylnicotinonitriles via anomeric-based oxidation. Appl. Organomet. Chem. 2016, 31, e3598. [Google Scholar] [CrossRef]
- Murzin, D.Y.; Bertrand, E.; Tolvanen, P.; Devyatkov, S.Y.; Rahkila, J.; Eränen, K.; Wärnå, J.; Salmi, T. Heterogeneous catalytic oxidation of furfural with hydrogen peroxide over sulfated zirconia. Ind. Eng. Chem. Res. 2020, 59, 13516–13527. [Google Scholar] [CrossRef]
- Testa, M.L.; La Parola, V.; Mesrar, F.; Ouanji, F.; Kacimi, M.; Ziyad, M.; Liotta, L.F. Use of zirconium phosphate-sulphate as acid catalyst for synthesis of glycerol-based fuel additives. Catalysts 2019, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Zhou, Y.; Tong, D.; Yang, M.; Fang, K.; Zhou, C.; Yu, W. Catalytic conversion of cellulose to reducing sugars over clay-based solid acid catalyst supported nanosized SO42−-ZrO2. Appl. Clay Sci. 2019, 185, 105376. [Google Scholar] [CrossRef]
- Morales, G.; Osatiashtiani, A.; Hernández, B.; Iglesias, J.; Melero, J.A.; Paniagua, M.; Brown, D.R.; Granollers, M.; Lee, A.F.; Wilson, K. Conformal sulfated zirconia monolayer catalysts for the one-pot synthesis of ethyl levulinate from glucose. Chem. Commun. 2014, 50, 11742–11745. [Google Scholar] [CrossRef] [Green Version]
- Yadav, G.D.; Murkute, A.D. Preparation of a novel catalyst UDCaT-5: Enhancement in activity of acid-treated zirconia—Effect of treatment with chlorosulfonic acid vis-à-vis sulfuric acid. J. Catal. 2004, 224, 218–223. [Google Scholar] [CrossRef]
- Zhang, Y.; Wong, W.-T.; Yung, K.-F. One-step production of biodiesel from rice bran oil catalyzed by chlorosulfonic acid modified zirconia via simultaneous esterification and transesterification. Bioresour. Technol. 2013, 147, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Amoozadeh, A.; Rahmani, S.; Bitaraf, M.; Abadi, F.B.; Tabrizian, E. Nano-zirconia as an excellent nano support for immobilization of sulfonic acid: A new, efficient and highly recyclable heterogeneous solid acid nanocatalyst for multicomponent reactions. New J. Chem. 2015, 40, 770–780. [Google Scholar] [CrossRef]
- Chidambaram, M.; Selvakumar, S.; Selvi, T.T.; Singh, A. Liquid phase condensation of anisole with p-formaldehyde over benzylsulfonic acid functionalized mesoporous Zr-TMS catalysts. J. Mol. Catal. A Chem. 2006, 245, 69–77. [Google Scholar] [CrossRef]
- Tadjarodi, A.; Khodikar, R.; Ghafuri, H. Nanomagnetic zirconia-based sulfonic acid (Fe3O4@ZrO2-Pr-SO3H): A new, efficient and recyclable solid acid catalyst for the protection of alcohols via HMDS under solvent free conditions. RSC Adv. 2016, 6, 63480–63487. [Google Scholar] [CrossRef]
- Wu, L.Q. Nano n -propylsulfonated γ-Al2O3: A new, efficient and reusable catalyst for synthesis of spiro [indoline-3,4-pyrazolo[3,4-e][1,4] thiazepine] diones in aqueous media. Appl. Organomet. Chem. 2013, 27, 148–154. [Google Scholar] [CrossRef]
- Yin, Z.; Zheng, B.; Ai, F. Sulfonic acid functionalized nano Γ-Al2O3: A new, efficient, and reusable catalyst for synthesis of thioamides. Phosphorus Sulfur Silicon Relat. Elem. 2013, 188, 1412–1420. [Google Scholar] [CrossRef]
- Li, W.L.; Tian, S.B.; Zhu, F. Sulfonic acid functionalized nano-γ-Al2O3: A new, efficient, and reusable catalyst for synthesis of 3-substituted-2H-1,4-benzothiazines. Sci. World J. 2013, 2013, 1–6. [Google Scholar] [CrossRef]
- Maldonado, C.S.; De la Rosa, J.R.; Ortiz, C.J.L.; Valente, J.S.; Castaldi, M.J. Synthesis and characterization of functionalized alumina catalysts with thiol and sulfonic groups and their performance in producing 5-hydroxymethylfurfural from fructose. Fuel 2017, 198, 134–144. [Google Scholar] [CrossRef]
- Lin, F.; Wang, K.; Gao, L.; Guo, X. Efficient conversion of fructose to 5-hydroxymethylfurfural by functionalized γ-Al2O3 beads. Appl. Organomet. Chem. 2019, 33, e4821. [Google Scholar] [CrossRef]
- Zhao, R.; Zhang, L.; Xu, L.; Zhang, W. One-pot selective synthesis of renewable p -Xylene by completely biomass-based ethanol and dimethylfuran with functionalized mesoporous MCM-41. ChemistrySelect 2021, 6, 2400–2409. [Google Scholar] [CrossRef]
- La Parola, V.; Longo, A.; Venezia, A.M.; Spinella, A.; Caponetti, E. Interaction of gold with Co-condensed and grafted HMS-SH Silica: A 29Si {1H} CP-MAS NMR spectroscopy, XRD, XPS and Au LIII EXAFS study. Eur. J. Inorg. Chem. 2010, 2010, 3628–3635. [Google Scholar] [CrossRef]
- Xue, Z.; Shang, H.; Xiong, C.; Lu, C.; An, G.; Zhang, Z.; Cui, C.; Xu, M. Synthesis of polyoxymethylene dimethyl ethers catalyzed by sulfonic acid-functionalized mesoporous SBA-15. RSC Adv. 2017, 7, 20300–20308. [Google Scholar] [CrossRef] [Green Version]
- Ghahremani, M.; Ciriminna, R.; Pandarus, V.; Scurria, A.; La Parola, V.; Giordano, F.M.; Avellone, G.; Béland, F.; Karimi, B.; Pagliaro, M. Green and direct synthesis of benzaldehyde and benzyl benzoate in one pot. ACS Sustain. Chem. Eng. 2018, 6, 15441–15446. [Google Scholar] [CrossRef]
- Cattaneo, A.S.; Ferrara, C.; Villa, D.C.; Angioni, S.; Milanese, C.; Capsoni, D.; Grandi, S.; Mustarelli, P.; Allodi, V.; Mariotto, G.; et al. SBA-15 mesoporous silica highly functionalized with propylsulfonic pendants: A thorough physico-chemical characterization. Microporous Mesoporous Mater. 2016, 219, 219–229. [Google Scholar] [CrossRef]
- Krishna, N.V.; Anuradha, S.; Ganesh, R.; Kumar, V.V.; Selvam, P. Sulfonic acid functionalized ordered mesoporous silica and their application as highly efficient and selective heterogeneous catalysts in the formation of 1,2-monoacetone-D-glucose. ChemCatChem 2018, 10, 5610–5618. [Google Scholar] [CrossRef]
- Da Silva, A.C.; Cordeiro, P.; Estevão, B.; Caetano, W.; Eckert, H.; Santin, S.; Moisés, M.P.; Hioka, N.; Tessaro, A. Synthesis of highly ordered mesoporous MCM-41: Selective external functionalization by time control. J. Braz. Chem. Soc. 2019, 30, 1599–1607. [Google Scholar] [CrossRef]
- Xie, W.; Zhang, C. Propylsulfonic and arenesulfonic functionalized SBA-15 silica as an efficient and reusable catalyst for the acidolysis of soybean oil with medium-chain fatty acids. Food Chem. 2016, 211, 74–82. [Google Scholar] [CrossRef]
- Margolese, D.; Melero, J.A.; Christiansen, S.C.; Chmelka, B.F.; Stucky, G.D. Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups. Chem. Mater. 2000, 12, 2448–2459. [Google Scholar] [CrossRef]
- Schäfgen, B.; Malter, O.D.; Kaigarula, E.; Schüßler, A.; Ernst, S.; Thiel, W.R. A Brønsted acid functionalized periodic mesoporous organosilica and its application in catalytic condensation and THP protection/deprotection reactions. Microporous Mesoporous Mater. 2017, 251, 122–128. [Google Scholar] [CrossRef]
- Peixoto, A.F.; Soliman, M.M.; Pinto, T.V.; Silva, S.M.; Costa, P.; Alegria, E.C.; Freire, C. Highly active organosulfonic aryl-silica nanoparticles as efficient catalysts for biomass derived biodiesel and fuel additives. Biomass Bioenergy 2020, 145, 105936. [Google Scholar] [CrossRef]
- Putz, A.-M.; Almásy, L.; Len, A.; Ianăşi, C. Functionalized silica materials synthesized via co-condensation and post-grafting methods. Fuller. Nanotub. Carbon Nanostructures 2019, 27, 323–332. [Google Scholar] [CrossRef]
- Tabrizian, E.; Amoozadeh, A.; Rahmani, S. Sulfamic acid-functionalized nano-titanium dioxide as an efficient, mild and highly recyclable solid acid nanocatalyst for chemoselective oxidation of sulfides and thiols. RSC Adv. 2016, 6, 21854–21864. [Google Scholar] [CrossRef]
- Wilson, K.; Lee, A.; Macquarrie, D.J.; Clark, J.H. Structure and reactivity of sol–gel sulphonic acid silicas. Appl. Catal. A Gen. 2002, 228, 127–133. [Google Scholar] [CrossRef]
- Pizzolitto, C.; Ghedini, E.; Menegazzo, F.; Signoretto, M.; Giordana, A.; Cerrato, G.; Cruciani, G. Effect of grafting solvent in the optimisation of Sba-15 acidity for levulinIc acid production. Catal. Today 2019, 345, 183–189. [Google Scholar] [CrossRef]
- Rác, B.; Molnár, A.; Forgo, P.; Mohai, M.; Bertóti, I. A comparative study of solid sulfonic acid catalysts based on various ordered mesoporous silica materials. J. Mol. Catal. A Chem. 2006, 244, 46–57. [Google Scholar] [CrossRef]
- Testa, M.L.; La Parola, V.; Venezia, A.M. Esterification of acetic acid with butanol over sulfonic acid-functionalized hybrid silicas. Catal. Today 2010, 158, 109–113. [Google Scholar] [CrossRef]
- Drago, C.; Liotta, L.F.; La Parola, V.; Testa, M.L.; Nicolosi, G. One-pot microwave assisted catalytic transformation of vegetable oil into glycerol-free biodiesel. Fuel 2013, 113, 707–711. [Google Scholar] [CrossRef]
- La Parola, V.; Testa, M.L.; Venezia, A.M. Pd and PdAu catalysts supported over 3-MPTES grafted HMS used in the HDS of thiophene. Appl. Catal. B Environ. 2012, 119-120, 248–255. [Google Scholar] [CrossRef]
- Sandbrink, L.; Lazaridis, T.; Rose, M.; Palkovits, R. Ambient temperature gas phase sulfonation: A mild route towards acid functionalized ordered mesoporous organosilica. Microporous Mesoporous Mater. 2018, 267, 198–202. [Google Scholar] [CrossRef]
- Björk, E.M.; Militello, M.P.; Tamborini, L.H.; Rodriguez, R.C.; Planes, G.A.; Acevedo, D.F.; Moreno, M.S.; Odén, M.; Barbero, C.A. Mesoporous silica and carbon based catalysts for esterification and biodiesel fabrication—The effect of matrix surface composition and porosity. Appl. Catal. A Gen. 2017, 533, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Wawrzyńczak, A.; Jarmolińska, S.; Nowak, I. Nanostructured KIT-6 materials functionalized with sulfonic groups for catalytic purposes. Catal. Today 2021. [Google Scholar] [CrossRef]
- Ogino, I.; Suzuki, Y.; Mukai, S.R. Esterification of levulinic acid with ethanol catalyzed by sulfonated carbon catalysts: Promotional effects of additional functional groups. Catal. Today 2018, 314, 62–69. [Google Scholar] [CrossRef]
- Diaz, I.; Marquez-Alvarez, C.; Mohino, F.; Perez-Pariente, J.; Sastre, E. Combined alkyl and sulfonic acid functionalization of MCM-41-type silica: Part 1. Synthesis and characterization. J. Catal. 2000, 193, 283–294. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Qi, W.; Huang, R.; Fang, J.; Su, R.; He, Z. Functionalized silica nanoparticles for conversion of fructose to 5-hydroxymethylfurfural. Chem. Eng. J. 2016, 296, 209–216. [Google Scholar] [CrossRef]
- Kamegawa, T.; Mizuno, A.; Yamashita, H. Hydrophobic modification of SO3H-functionalized mesoporous silica and investigations on the enhanced catalytic performance. Catal. Today 2014, 243, 153–157. [Google Scholar] [CrossRef]
- Kasinathan, P.; Lang, C.; Gaigneaux, E.M.; Jonas, A.M.; Fernandes, A.E. Influence of site pairing in hydrophobic silica-supported sulfonic acid bifunctional catalysts. Langmuir 2020, 36, 13743–13751. [Google Scholar] [CrossRef] [PubMed]
- Testa, M.L.; La Parola, V.; Liotta, L.F.; Venezia, A.M. Screening of different solid acid catalysts for glycerol acetylation. J. Mol. Catal. A Chem. 2013, 367, 69–76. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, M.; Iqbal, M. Research progress on stability of solid acid catalysts. Catal. Surv. Asia 2020, 24, 196–206. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Testa, M.L.; La Parola, V. Sulfonic Acid-Functionalized Inorganic Materials as Efficient Catalysts in Various Applications: A Minireview. Catalysts 2021, 11, 1143. https://doi.org/10.3390/catal11101143
Testa ML, La Parola V. Sulfonic Acid-Functionalized Inorganic Materials as Efficient Catalysts in Various Applications: A Minireview. Catalysts. 2021; 11(10):1143. https://doi.org/10.3390/catal11101143
Chicago/Turabian StyleTesta, Maria Luisa, and Valeria La Parola. 2021. "Sulfonic Acid-Functionalized Inorganic Materials as Efficient Catalysts in Various Applications: A Minireview" Catalysts 11, no. 10: 1143. https://doi.org/10.3390/catal11101143
APA StyleTesta, M. L., & La Parola, V. (2021). Sulfonic Acid-Functionalized Inorganic Materials as Efficient Catalysts in Various Applications: A Minireview. Catalysts, 11(10), 1143. https://doi.org/10.3390/catal11101143