Recent Manganese Oxide Octahedral Molecular Sieves (OMS–2) with Isomorphically Substituted Cationic Dopants and Their Catalytic Applications
Abstract
:1. Introduction
2. Octahedral Molecular Sieves (OMS)
2.1. General Aspects
2.2. Manganese Octahedral Molecular Sieves
2.3. Cryptomelane (OMS–2)
2.3.1. General Aspects
2.3.2. Assessment of Doping Processes
3. [M]–K–OMS–2 Materials
3.1. Characterization Data
3.1.1. [Ag]–K–OMS–2
3.1.2. [Ce]–K–OMS–2
3.1.3. [Ru]–K–OMS–2
3.1.4. [Ti]–K–OMS–2
3.1.5. Doping with High-Valence Cations: [Mo]–K–OMS–2, [W]–K–OMS–2 and [V]–K–OMS–2
3.1.6. [Nb]–K–OMS–2
3.1.7. [In]–K–OMS–2
3.1.8. [Zn]–K–OMS–2 and [Zr]–K–OMS–2
3.2. Catalytic Applications
3.2.1. [Ce]–K–OMS–2 as a Catalyst for General Pollutant Control Processes
- An O3 molecule is adsorbed on the surface of the catalyst, and then dissociates into an oxygen molecule and an atomic oxygen species.
- The remaining atomic oxygen species react with another ozone molecule to form an adsorbed peroxide species (O22−) or superoxide (O2−) and an oxygen molecule.
- Adsorbed O22− or O2− decompose into oxygen molecules and desorb from the active site of catalysts
3.2.2. [Ru]–K–OMS–2 as a Catalyst for Fine Chemicals
3.2.3. [Ag]–, [Nb]–, [Mo]–, [V]–, [Cu]– and [Zn]–K–OMS–2 as Catalysts for CO Oxidation
3.2.4. Other High-Impact Applications
4. Conclusions and Future Trends
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Neculita, C.M.; Rosa, E. A review of the implications and challenges of manganese removal from mine drainage. Chemosphere 2019, 214, 491–510. [Google Scholar] [CrossRef]
- Post, J.E. Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc. Natl. Acad. Sci. USA 1999, 96, 3447–3454. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Kim, B.-S.; Chon, C.-M. Characterization of iron and manganese minerals and their associated microbiota in different mine sites to reveal the potential interactions of microbiota with mineral formation. Chemosphere 2018, 191, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Costas, M. Z=25, manganeso, Mn. El metal del centro generador de O2 en la fotosíntesis. Anales de Química de la RSEQ 2019, 115, 87. [Google Scholar]
- Bertini, I.; Gray, H.; Stiefel, E.; Valentine, J. Biological Inorganic Chemistry; University Science Books: Sausalito, CA, USA, 2007. [Google Scholar]
- Luo, C.; Tian, Z.; Yang, B.; Zhang, L.; Yan, S. Manganese dioxide/iron oxide/acid oxidized multi-walled carbon nanotube magnetic nanocomposite for enhanced hexavalent chromium removal. Chem. Eng. J. 2013, 234, 256–265. [Google Scholar] [CrossRef]
- Wan, S.; Ding, W.; Wang, Y.; Wu, J.; Gu, Y.; He, F. Manganese oxide nanoparticles impregnated graphene oxide aggregates for cadmium and copper remediation. Chem. Eng. J. 2018, 350, 1135–1143. [Google Scholar] [CrossRef]
- Wu, H.; Xu, X.; Shi, L.; Yin, Y.; Zhang, L.-C.; Wu, Z.; Duan, X.; Wang, S.; Sun, H. Manganese oxide integrated catalytic ceramic membrane for degradation of organic pollutants using sulfate radicals. Water Res. 2019, 167, 115110. [Google Scholar] [CrossRef]
- Smirniotis, P.G.; Peña, D.A.; Uphade, B.S. Low-Temperature Selective Catalytic Reduction (SCR) of NO with NH3 by Using Mn, Cr, and Cu Oxides Supported on Hombikat TiO2. Angew. Chem. Int. Ed. 2001, 40, 2479–2482. [Google Scholar] [CrossRef]
- Dismukes, G.C.; Brimblecombe, R.; Felton, G.A.N.; Pryadun, R.S.; Sheats, J.E.; Spiccia, L.; Swiegers, G.F. Development of Bioinspired Mn4O4−Cubane Water Oxidation Catalysts: Lessons from Photosynthesis. Acc. Chem. Res. 2009, 42, 1935–1943. [Google Scholar] [CrossRef]
- Kim, S.C.; Shim, W.G. Catalytic combustion of VOCs over a series of manganese oxide catalysts. Appl. Catal. B Environ. 2010, 98, 180–185. [Google Scholar] [CrossRef]
- Qi, G.; Yang, R.T.; Chang, R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Appl. Catal. B Environ. 2004, 51, 93–106. [Google Scholar] [CrossRef]
- Kamal, M.S.; Razzak, S.A.; Hossain, M.M. Catalytic oxidation of volatile organic compounds (VOCs)—A review. Atmos. Environ. 2016, 140, 117–134. [Google Scholar] [CrossRef]
- Gorlin, Y.; Jaramillo, T.F. A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation. J. Am. Chem. Soc. 2010, 132, 13612–13614. [Google Scholar] [CrossRef] [PubMed]
- Julien, C.M.; Mauger, A. Nanostructured MnO2 as Electrode Materials for Energy Storage. Nanomaterials 2017, 7, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, W.; Cui, X.; Chen, W.; Ivey, D.G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697–1721. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Ma, Y.; Wang, H.; Key, J.; Brett, D.; Ji, S.; Yin, S.; Shen, P.K. A cost effective, highly porous, manganese oxide/carbon supercapacitor material with high rate capability. J. Mater. Chem. A 2016, 4, 5390–5394. [Google Scholar] [CrossRef]
- Thackeray, M.M. Manganese oxides for lithium batteries. Prog. Solid State Chem. 1997, 25, 1–71. [Google Scholar] [CrossRef]
- Liu, X.; Chen, C.; Zhao, Y.; Jia, B. A Review on the Synthesis of Manganese Oxide Nanomaterials and Their Applications on Lithium-Ion Batteries. J. Nanomater. 2013, 2013, 736375. [Google Scholar] [CrossRef]
- Margreth, M.; Schlink, R.; Steinbach, A. Water Determination by Karl Fischer Titration. In Pharmaceutical Sciences Encyclopedia: Drug Discovery, Development, and Manufacturing; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Carrillo, A.J.; Pizarro, P.; Coronado, J.M. Assessing Cr incorporation in Mn2O3/Mn3O4 redox materials for thermochemical heat storage applications. J. Energy Storage 2021, 33, 102028. [Google Scholar] [CrossRef]
- Yang, G.; Xu, L.; Chao, Y.; Xu, J.; Sun, X.; Wu, Y.; Peng, R.; Liu, Z. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 2017, 8, 902. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Hou, P.; Dong, L.; Cai, L.; Chen, Z.; Zhao, M.; Li, J. Manganese dioxide nanosheets: From preparation to biomedical applications. Int. J. Nanomed. 2019, 14, 4781–4800. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Momin, E.; Choi, J.; Yuan, K.; Zaidi, H.; Kim, J.; Park, M.; Lee, N.; McMahon, M.T.; Quinones-Hinojosa, A.; et al. Mesoporous Silica-Coated Hollow Manganese Oxide Nanoparticles as Positive T1 Contrast Agents for Labeling and MRI Tracking of Adipose-Derived Mesenchymal Stem Cells. J. Am. Chem. Soc. 2011, 133, 2955–2961. [Google Scholar] [CrossRef]
- Birgisson, S.; Saha, D.; Iversen, B.B. Formation Mechanisms of Nanocrystalline MnO2 Polymorphs under Hydrothermal Conditions. Cryst. Growth Des. 2018, 18, 827–838. [Google Scholar] [CrossRef]
- Huang, J.; Zhong, S.; Dai, Y.; Liu, C.-C.; Zhang, H. Effect of MnO2 Phase Structure on the Oxidative Reactivity toward Bisphenol A Degradation. Environ. Sci. Technol. 2018, 52, 11309–11318. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Fan, Y.; Ye, R.; Tang, Y.; Cao, X.; Yin, Z.; Zeng, Z. MnO2-Based Materials for Environmental Applications. Adv. Mater. 2021, 33, 2004862. [Google Scholar] [CrossRef]
- Chen, B.-R.; Sun, W.; Kitchaev, D.A.; Mangum, J.S.; Thampy, V.; Garten, L.M.; Ginley, D.S.; Gorman, B.P.; Stone, K.H.; Ceder, G.; et al. Understanding crystallization pathways leading to manganese oxide polymorph formation. Nat. Commun. 2018, 9, 2553. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Liu, L.L.; Tian, S.; Li, L.; Yue, Y.B.; Wu, Y.P.; Guan, S.Y.; Zhu, K. Nano-LiCoO2 as cathode material of large capacity and high rate capability for aqueous rechargeable lithium batteries. Electrochem. Commun. 2010, 12, 1524–1526. [Google Scholar] [CrossRef]
- Biswal, A.; Chandra Tripathy, B.; Sanjay, K.; Subbaiah, T.; Minakshi, M. Electrolytic manganese dioxide (EMD): A perspective on worldwide production, reserves and its role in electrochemistry. RSC Adv. 2015, 5, 58255–58283. [Google Scholar] [CrossRef]
- Dose, W.M.; Donne, S.W. Heat treated electrolytic manganese dioxide for primary Li/MnO2 batteries: Effect of manganese dioxide properties on electrochemical performance. Electrochim. Acta 2013, 105, 305–313. [Google Scholar] [CrossRef]
- Meng, Y.; Song, W.; Huang, H.; Ren, Z.; Chen, S.-Y.; Suib, S.L. Structure–Property Relationship of Bifunctional MnO2 Nanostructures: Highly Efficient, Ultra-Stable Electrochemical Water Oxidation and Oxygen Reduction Reaction Catalysts Identified in Alkaline Media. J. Am. Chem. Soc. 2014, 136, 11452–11464. [Google Scholar] [CrossRef] [PubMed]
- Kitchaev, D.A.; Dacek, S.T.; Sun, W.; Ceder, G. Thermodynamics of Phase Selection in MnO2 Framework Structures through Alkali Intercalation and Hydration. J. Am. Chem. Soc. 2017, 139, 2672–2681. [Google Scholar] [CrossRef] [Green Version]
- Suib, S.L. Porous Manganese Oxide Octahedral Molecular Sieves and Octahedral Layered Materials. Acc. Chem. Res. 2008, 41, 479–487. [Google Scholar] [CrossRef]
- Ghosh, S.K. Diversity in the Family of Manganese Oxides at the Nanoscale: From Fundamentals to Applications. ACS Omega 2020, 5, 25493–25504. [Google Scholar] [CrossRef]
- Pistoia, G.; Antonini, A.; Zane, D.; Pasquali, M. Synthesis of Mn spinels from different polymorphs of MnO2. J. Power Sources 1995, 56, 37–43. [Google Scholar] [CrossRef]
- Chukhrov, F.V.; Gorshkov, A.I.; Sivtsov, A.V.; Berezovskaya, V.V.; Dikov, Y.P.; Dubinina, G.A.; Varinov, N.N. Akhtenskite—The natural analog oF ε-MnO2. Int. Geol. Rev. 1989, 31, 1068–1072. [Google Scholar] [CrossRef]
- Hunter, J.C. Preparation of a new crystal form of manganese dioxide: λ-MnO2. J. Solid State Chem. 1981, 39, 142–147. [Google Scholar] [CrossRef]
- Hendriks, R.; Cunha, D.M.; Singh, D.P.; Huijben, M. Enhanced Lithium Transport by Control of Crystal Orientation in Spinel LiMn2O4 Thin Film Cathodes. ACS Appl. Energy Mater. 2018, 1, 7046–7051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, J.; Seo, J.K.; Yaylian, R.; Huang, A.; Meng, Y.S. A review on mechanistic understanding of MnO2 in aqueous electrolyte for electrical energy storage systems. Int. Mater. Rev. 2020, 65, 356–387. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhao, H.; Song, J.; Zhu, T.; Xu, W. Structure-Activity Relationship of Manganese Oxide Catalysts for the Catalytic Oxidation of (chloro)-VOCs. Catalysts 2019, 9, 726. [Google Scholar] [CrossRef] [Green Version]
- Dey, S.; Praveen Kumar, V. V The performance of highly active manganese oxide catalysts for ambient conditions carbon monoxide oxidation. Curr. Res. Green Sustain. Chem. 2020, 3, 100012. [Google Scholar] [CrossRef]
- Shen, X.-F.; Ding, Y.-S.; Liu, J.; Han, Z.-H.; Budnick, J.I.; Hines, W.A.; Suib, S.L. A Magnetic Route to Measure the Average Oxidation State of Mixed-Valent Manganese in Manganese Oxide Octahedral Molecular Sieves (OMS). J. Am. Chem. Soc. 2005, 127, 6166–6167. [Google Scholar] [CrossRef]
- Ilton, E.S.; Post, J.E.; Heaney, P.J.; Ling, F.T.; Kerisit, S.N. XPS determination of Mn oxidation states in Mn (hydr)oxides. Appl. Surf. Sci. 2016, 366, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, Y.; Gu, Q.; Sheng, A.; Zhang, B. Tunable Mn Oxidation State and Redox Potential of Birnessite Coexisting with Aqueous Mn(II) in Mildly Acidic Environments. Minerals 2020, 10, 690. [Google Scholar] [CrossRef]
- Bernardini, S.; Bellatreccia, F.; Della Ventura, G.; Sodo, A. A Reliable Method for Determining the Oxidation State of Manganese at the Microscale in Mn Oxides via Raman Spectroscopy. Geostand. Geoanal. Res. 2021, 45, 223–244. [Google Scholar] [CrossRef]
- Pan, G.-H.; Song, R.-J.; Li, J.-H. Radical-mediated synthesis of γ-lactones by copper-catalyzed intermolecular carboesterification of alkenes with α-carbonyl alkyl bromides and H2O. Org. Chem. Front. 2018, 5, 179–183. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Z.; Liao, J.; Li, J.; Wu, W.; Jiang, H. MnO2-promoted carboesterification of alkenes with anhydrides: A facile approach to γ-lactones. Chem. Commun. 2016, 52, 2628–2631. [Google Scholar] [CrossRef] [PubMed]
- Ndolomingo, M.J.; Meijboom, R. Noble and Base-Metal Nanoparticles Supported on Mesoporous Metal Oxides: Efficient Catalysts for the Selective Hydrogenation of Levulinic Acid to γ-Valerolactone. Catal. Lett. 2019, 149, 2807–2822. [Google Scholar] [CrossRef]
- Nie, J.; Liu, H. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on manganese oxide catalysts. J. Catal. 2014, 316, 57–66. [Google Scholar] [CrossRef]
- Kamimura, A.; Nozaki, Y.; Ishikawa, S.; Inoue, R.; Nakayama, M. K-birnessite MnO2: A new selective oxidant for benzylic and allylic alcohols. Tetrahedron Lett. 2011, 52, 538–540. [Google Scholar] [CrossRef]
- Fu, X.; Feng, J.; Wang, H.; Ng, K.M. Manganese oxide hollow structures with different phases: Synthesis, characterization and catalytic application. Catal. Commun. 2009, 10, 1844–1848. [Google Scholar] [CrossRef]
- Maji, B.; Yamamoto, H. Proline-Tetrazole-Catalyzed Enantioselective N-Nitroso Aldol Reaction of Aldehydes with In Situ Generated Nitrosocarbonyl Compounds. Angew. Chem. Int. Ed. 2014, 53, 8714–8717. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Ruan, L.; Lv, X.; Lv, Y.; Su, J.; Wen, Y. TG–FTIR analysis of pyrolusite reduction by major biomass components. Chin. J. Chem. Eng. 2015, 23, 1691–1697. [Google Scholar] [CrossRef]
- Sarmah, B.; Srivastava, R.; Manjunathan, P.; Shanbhag, G.V. Green and Sustainable Tandem Catalytic Approach for Fine-Chemicals Synthesis Using Octahedral MnO2 Molecular Sieve: Catalytic Activity versus Method of Catalyst Synthesis. ACS Sustain. Chem. Eng. 2015, 3, 2933–2943. [Google Scholar] [CrossRef]
- Yang, Y.; Su, X.; Zhang, L.; Kerns, P.; Achola, L.; Hayes, V.; Quardokus, R.; Suib, S.L.; He, J. Intercalating MnO2 Nanosheets With Transition Metal Cations to Enhance Oxygen Evolution. ChemCatChem 2019, 11, 1689–1700. [Google Scholar] [CrossRef]
- Lu, F.; Huang, J.; Wu, Q.; Zhang, Y. Mixture of α-Fe2O3 and MnO2 powders for direct conversion of syngas to light olefins. Appl. Catal. A Gen. 2021, 621, 118213. [Google Scholar] [CrossRef]
- Zhao, H.; Fang, K.; Dong, F.; Lin, M.; Sun, Y.; Tang, Z. Textual properties of Cu–Mn mixed oxides and application for methyl formate synthesis from syngas. J. Ind. Eng. Chem. 2017, 54, 117–125. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Yang, Y.; Miao, S.; Shen, F. Effect of the Mechanism of H2S on Elemental Mercury Removal Using the MnO2 Sorbent during Coal Gasification. Energy Fuels 2018, 32, 4453–4460. [Google Scholar] [CrossRef]
- Sherman, J.D. Synthetic zeolites and other microporous oxide molecular sieves. Proc. Natl. Acad. Sci. USA 1999, 96, 3471–3478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auroux, A. Molecular Sieves—Science and Technology: Acidity and Basicity; Karge, H., Weitkamp, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 6. [Google Scholar] [CrossRef]
- Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712. [Google Scholar] [CrossRef]
- Corma, A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chem. Rev. 1997, 97, 2373–2420. [Google Scholar] [CrossRef]
- Tanev, P.T.; Pinnavaia, T.J. A Neutral Templating Route to Mesoporous Molecular Sieves. Science 1995, 267, 865–867. [Google Scholar] [CrossRef]
- Ying, J.Y.; Mehnert, C.P.; Wong, M.S. Synthesis and Applications of Supramolecular-Templated Mesoporous Materials. Angew. Chem. Int. Ed. 1999, 38, 56–77. [Google Scholar] [CrossRef]
- Nieto, J.M.L. The selective oxidative activation of light alkanes. From supported vanadia to multicomponent bulk V-containing catalysts. Top. Catal. 2006, 41, 3–15. [Google Scholar] [CrossRef]
- Sadakane, M.; Kodato, K.; Kuranishi, T.; Nodasaka, Y.; Sugawara, K.; Sakaguchi, N.; Nagai, T.; Matsui, Y.; Ueda, W. Molybdenum–Vanadium-Based Molecular Sieves with Microchannels of Seven-Membered Rings of Corner-Sharing Metal Oxide Octahedra. Angew. Chem. Int. Ed. 2008, 47, 2493–2496. [Google Scholar] [CrossRef]
- Zhu, Q.; Yin, S.; Zhou, M.; Wang, J.; Chen, C.; Hu, P.; Jiang, X.; Zhang, Z.; Li, Y.; Ueda, W. Aerobic Alcohol Oxidation by a Zeolitic Octahedral Metal Oxide based on Iron Vanadomolybdates Under Mild Conditions. ChemCatChem 2021, 13, 1763–1771. [Google Scholar] [CrossRef]
- Corma, A.; Corresa, E.; Mathieu, Y.; Sauvanaud, L.; Al-Bogami, S.; Al-Ghrami, M.S.; Bourane, A. Crude oil to chemicals: Light olefins from crude oil. Catal. Sci. Technol. 2017, 7, 12–46. [Google Scholar] [CrossRef] [Green Version]
- Besnardiere, J.; Ma, B.; Torres-Pardo, A.; Wallez, G.; Kabbour, H.; González-Calbet, J.M.; Von Bardeleben, H.J.; Fleury, B.; Buissette, V.; Sanchez, C.; et al. Structure and electrochromism of two-dimensional octahedral molecular sieve h’-WO3. Nat. Commun. 2019, 10, 327. [Google Scholar] [CrossRef] [Green Version]
- Corma, A.; Navarro, M.T. From micro to mesoporous molecular sieves: Adapting composition and structure for catalysis. In Impact of Zeolites and Other Porous Materials on the New Technologies at the Beginning of the New Millennium; Aiello, R., Giordano, G., Testa, Eds.; Elsevier: Amsterdam, The Netherlands, 2002; Volume 142, pp. 487–501. ISBN 0167-2991. [Google Scholar]
- Martínez, C.; Corma, A. Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coord. Chem. Rev. 2011, 255, 1558–1580. [Google Scholar] [CrossRef] [Green Version]
- Suib, S.L. (Ed.) Introduction. In New and Future Developments in Catalysis; Elsevier: Amsterdam, The Netherlands, 2013; pp. ix–x. ISBN 978-0-444-53874-1. [Google Scholar]
- Brock, S.L.; Duan, N.; Tian, Z.R.; Giraldo, O.; Zhou, H.; Suib, S.L. A Review of Porous Manganese Oxide Materials. Chem. Mater. 1998, 10, 2619–2628. [Google Scholar] [CrossRef]
- DeGuzman, R.N.; Shen, Y.-F.; Neth, E.J.; Suib, S.L.; O’Young, C.-L.; Levine, S.; Newsam, J.M. Synthesis and Characterization of Octahedral Molecular Sieves (OMS-2) Having the Hollandite Structure. Chem. Mater. 1994, 6, 815–821. [Google Scholar] [CrossRef]
- Suib, S.L.; Iton, L.E. Magnetic Studies of Manganese Oxide Octahedral Molecular Sieves: A New Class of Spin Glasses. Chem. Mater. 1994, 6, 429–433. [Google Scholar] [CrossRef]
- Suib, S.L. Microporous manganese oxides. Curr. Opin. Solid State Mater. Sci. 1998, 3, 63–70. [Google Scholar] [CrossRef]
- Tian, Z.-R.; Tong, W.; Wang, J.-Y.; Duan, N.-G.; Krishnan, V.V.; Suib, S.L. Manganese Oxide Mesoporous Structures: Mixed-Valent Semiconducting Catalysts. Science 1997, 276, 926–930. [Google Scholar] [CrossRef]
- Shen, Y.F.; Zerger, R.P.; DeGuzman, R.N.; Suib, S.L.; McCurdy, L.; Potter, D.I.; O’Young, C.L. Manganese Oxide Octahedral Molecular Sieves: Preparation, Characterization, and Applications. Science 1993, 260, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, S.R.; Carrado, K.A.; Yuchs, S.E.; Shen, Y.F.; Cao, H.; Suib, S.L. The structure of new synthetic manganese oxide octahedral molecular sieves. Phys. B Condens. Matter 1995, 208–209, 674–676. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.-F.; Ding, Y.-S.; Liu, J.; Cai, J.; Laubernds, K.; Zerger, R.P.; Vasiliev, A.; Aindow, M.; Suib, S.L. Control of Nanometer-Scale Tunnel Sizes of Porous Manganese Oxide Octahedral Molecular Sieve Nanomaterials. Adv. Mater. 2005, 17, 805–809. [Google Scholar] [CrossRef]
- Corma, A. State of the art and future challenges of zeolites as catalysts. J. Catal. 2003, 216, 298–312. [Google Scholar] [CrossRef]
- Férey, G. Crystal Chemistry. From Basic to Tools for Materials Creation; Word Scientific Publishing Company: Singapore, 2017. [Google Scholar]
- Plug, C.M. On the relationship between the structure of CaFe2O4 and hollandite. J. Solid State Chem. 1982, 41, 23–26. [Google Scholar] [CrossRef]
- Bursill, L.A. Structural relationships between [beta]-gallia, rutile, hollandite, psilomelane, ramsdellite and gallium titanate type structures. Acta Crystallogr. Sect. B 1979, 35, 530. [Google Scholar] [CrossRef]
- De Guzman, R.N.; Awaluddin, A.; Shen, Y.-F.; Tian, Z.R.; Suib, S.L.; Ching, S.; O’Young, C.-L. Electrical Resistivity Measurements on Manganese Oxides with Layer and Tunnel Structures: Birnessites, Todorokites, and Cryptomelanes. Chem. Mater. 1995, 7, 1286–1292. [Google Scholar] [CrossRef]
- Ching, S.; Krukowska, K.S.; Suib, S.L. A new synthetic route to todorokite-type manganese oxides. Inorg. Chim. Acta 1999, 294, 123–132. [Google Scholar] [CrossRef]
- Yin, Y.-G.; Xu, W.-Q.; Shen, Y.-F.; Suib, S.L.; O’Young, C.L. Studies of Oxygen Species in Synthetic Todorokite-like Manganese Oxide Octahedral Molecular Sieves. Chem. Mater. 1994, 6, 1803–1808. [Google Scholar] [CrossRef]
- Cerdá-Moreno, C.; Chica, A.; Keller, S.; Rautenberg, C.; Bentrup, U. Ni-sepiolite and Ni-todorokite as efficient CO2 methanation catalysts: Mechanistic insight by operando DRIFTS. Appl. Catal. B Environ. 2020, 264, 118546. [Google Scholar] [CrossRef]
- Fuertes, A.; Da Costa-Serra, J.F.; Chica, A. New Catalysts based on Ni-Birnessite and Ni-Todorokite for the Efficient Production of Hydrogen by Bioethanol Steam Reforming. Energy Procedia 2012, 29, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Bletsa, E.; Zaccone, C.; Miano, T.; Terzano, R.; Deligiannakis, Y. Natural Mn-todorokite as an efficient and green azo dye–degradation catalyst. Environ. Sci. Pollut. Res. 2020, 27, 9835–9842. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, N.; Komaba, S.; Abe, K.; Yashiro, H. Synthesis of metal-doped todorokite-type MnO2 and its cathode characteristics for rechargeable lithium batteries. J. Power Sources 2005, 146, 310–314. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, D.; Bai, X.; Xie, H.; Liu, X.; Jiang, X.; Lin, H.; He, H. High-Cycle-Performance Aqueous Magnesium Ions Battery Capacitor Based on a Mg-OMS-1/Graphene as Cathode and a Carbon Molecular Sieves as Anode. ACS Sustain. Chem. Eng. 2019, 7, 6113–6121. [Google Scholar] [CrossRef]
- Zhang, H.; Ye, K.; Cang, R.; Zhu, K.; Yan, J.; Cheng, K.; Wang, G.; Cao, D. The synthesis of 1×1 magnesium octahedral molecular sieve with controllable size and shape for aqueous magnesium ion battery cathode material. J. Electroanal. Chem. 2017, 807, 37–44. [Google Scholar] [CrossRef]
- Jakubek, T.; Hudy, C.; Indyka, P.; Nowicka, E.; Golunski, S.; Kotarba, A. Effect of noble metal addition to alkali-exchanged cryptomelane on the simultaneous soot and VOC combustion activity. Catal. Commun. 2019, 132, 105807. [Google Scholar] [CrossRef]
- Malz, R., Jr.; Kumar, R.; Garces, L.J.; Suib, S.L. Process for Preparing Ortho Substituted Phenylamines. WO2004072028A2, 26 August 2004. [Google Scholar]
- Kumar, R.; Garces, L.J.; Son, Y.-C.; Suib, S.L.; Malz, R.E. Manganese oxide octahedral molecular sieve catalysts for synthesis of 2-aminodiphenylamine. J. Catal. 2005, 236, 387–391. [Google Scholar] [CrossRef]
- Yang, L.; Ma, J.; Li, X.; He, G.; Zhang, C.; He, H. Improving the catalytic performance of ozone decomposition over Pd-Ce-OMS-2 catalysts under harsh conditions. Catal. Sci. Technol. 2020, 10, 7671–7680. [Google Scholar] [CrossRef]
- Hou, J.; Li, Y.; Mao, M.; Zhao, X.; Yue, Y. The effect of Ce ion substituted OMS-2 nanostructure in catalytic activity for benzene oxidation. Nanoscale 2014, 6, 15048–15058. [Google Scholar] [CrossRef]
- Sultana, S.; Ye, Z.; Veerapandian, S.K.P.; Löfberg, A.; De Geyter, N.; Morent, R.; Giraudon, J.-M.; Lamonier, J.-F. Synthesis and catalytic performances of K-OMS-2, Fe/K-OMS-2 and Fe-K-OMS-2 in post plasma-catalysis for dilute TCE abatement. Catal. Today 2018, 307, 20–28. [Google Scholar] [CrossRef]
- Lin, Y.; Minghua, H.; Jvcheng, G.; Ziqin, X. Catalytic oxidation of toluene over Co-modified manganese oxide octahedral molecular sieves (OMS-2) synthesized by different methods. IOP Conf. Ser. Mater. Sci. Eng. 2018, 392, 32017. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, J.; Zhang, S.; Wang, S.; Deng, S.; Wang, B.; Yu, G. Catalytic removal of gaseous HCBz on Cu doped OMS: Effect of Cu location on catalytic performance. Appl. Catal. B Environ. 2014, 150–151, 167–178. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, J. Ce ion substitution position effect on catalytic activity of OMS-2 for benzene oxidation. Mater. Res. Bull. 2019, 118, 110497. [Google Scholar] [CrossRef]
- Pahalagedara, L.R.; Dharmarathna, S.; King’ondu, C.K.; Pahalagedara, M.N.; Meng, Y.T.; Kuo, C.H.; Suib, S.L. Microwave-Assisted Hydrothermal Synthesis of α-MnO2: Lattice Expansion via Rapid Temperature Ramping and Framework Substitution. J. Phys. Chem. C 2014, 118, 20363–20373. [Google Scholar] [CrossRef]
- Shen, X.; Morey, A.M.; Liu, J.; Ding, Y.; Cai, J.; Durand, J.; Wang, Q.; Wen, W.; Hines, W.A.; Hanson, J.C.; et al. Characterization of the Fe-Doped Mixed-Valent Tunnel Structure Manganese Oxide KOMS-2. J. Phys. Chem. C 2011, 115, 21610–21619. [Google Scholar] [CrossRef]
- Ma, J.; Wang, C.; He, H. Transition metal doped cryptomelane-type manganese oxide catalysts for ozone decomposition. Appl. Catal. B Environ. 2017, 201, 503–510. [Google Scholar] [CrossRef]
- Zhang, Q.; Cheng, X.; Feng, X.; Qiu, G.; Tan, W.; Liu, F. Large-scale size-controlled synthesis of cryptomelane-type manganese oxide OMS-2 in lateral and longitudinal directions. J. Mater. Chem. 2011, 21, 5223–5225. [Google Scholar] [CrossRef]
- Sabaté, F.; Jordá, J.L.; Sabater, M.J.; Corma, A. Synthesis of isomorphically substituted Ru manganese molecular sieves and their catalytic properties for selective alcohol oxidation. J. Mater. Chem. A 2020, 8, 3771–3784. [Google Scholar] [CrossRef]
- Fan, C.; Lu, A.; Li, Y.; Wang, C. Synthesis, characterization, and catalytic activity of cryptomelane nanomaterials produced with industrial manganese sulfate. J. Colloid Interface Sci. 2008, 327, 393–402. [Google Scholar] [CrossRef]
- Su, Y.; Wang, L.-C.; Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N. Microwave-accelerated solvent-free aerobic oxidation of benzyl alcohol over efficient and reusable manganese oxides. Catal. Commun. 2007, 8, 2181–2185. [Google Scholar] [CrossRef]
- Luo, Y.; Tan, W.; Suib, S.L.; Qiu, G.; Liu, F. Dissolution and phase transformation processes of hausmannite in acidic aqueous systems under anoxic conditions. Chem. Geol. 2018, 487, 54–62. [Google Scholar] [CrossRef]
- Dharmarathna, S.; King’ondu, C.K.; Pahalagedara, L.; Kuo, C.-H.; Zhang, Y.; Suib, S.L. Manganese octahedral molecular sieve (OMS-2) catalysts for selective aerobic oxidation of thiols to disulfides. Appl. Catal. B Environ. 2014, 147, 124–131. [Google Scholar] [CrossRef]
- Zhang, Q.; Cheng, X.; Qiu, G.; Liu, F.; Feng, X. Size-controlled synthesis and formation mechanism of manganese oxide OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids. Solid State Sci. 2016, 55, 152–158. [Google Scholar] [CrossRef]
- Dharmarathna, S.; King’ondu, C.K.; Pedrick, W.; Pahalagedara, L.; Suib, S.L. Direct Sonochemical Synthesis of Manganese Octahedral Molecular Sieve (OMS-2) Nanomaterials Using Cosolvent Systems, Their Characterization, and Catalytic Applications. Chem. Mater. 2012, 24, 705–712. [Google Scholar] [CrossRef]
- Tian, H.; He, J.; Zhang, X.; Zhou, L.; Wang, D. Facile synthesis of porous manganese oxide K-OMS-2 materials and their catalytic activity for formaldehyde oxidation. Microporous Mesoporous Mater. 2011, 138, 118–122. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Kobayashi, H.; Wang, Y.; Oishi, T.; Ogasawara, Y.; Mizuno, N. Green oxidative synthesis of primary amides from primary alcohols or aldehydes catalyzed by a cryptomelane-type manganese oxide-based octahedral molecular sieve, OMS-2. Catal. Sci. Technol. 2013, 3, 318–327. [Google Scholar] [CrossRef]
- Bi, X.; Huang, Y.; Liu, X.; Yao, N.; Zhao, P.; Meng, X.; Astruc, D. Oxidative degradation of aqueous organic contaminants over shape-tunable MnO2 nanomaterials via peroxymonosulfate activation. Sep. Purif. Technol. 2021, 275, 119141. [Google Scholar] [CrossRef]
- Dinh, M.T.N.; Nguyen, C.C.; Phan, M.D.; Duong, M.K.; Nguyen, P.H.D.; Lancelot, C.; Nguyen, D.L. Novel cryptomelane nanosheets for the superior catalytic combustion of oxygenated volatile organic compounds. J. Hazard. Mater. 2021, 417, 126111. [Google Scholar] [CrossRef]
- Jin, L.; Reutenauer, J.; Opembe, N.; Lai, M.; Martenak, D.J.; Han, S.; Suib, S.L. Studies on Dehydrogenation of Ethane in the Presence of CO2 over Octahedral Molecular Sieve (OMS-2) Catalysts. ChemCatChem 2009, 1, 441–444. [Google Scholar] [CrossRef]
- Sriskandakumar, T.; Opembe, N.; Chen, C.-H.; Morey, A.; King’ondu, C.; Suib, S.L. Green Decomposition of Organic Dyes Using Octahedral Molecular Sieve Manganese Oxide Catalysts. J. Phys. Chem. A 2009, 113, 1523–1530. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Wu, X.; Yang, S.; Li, C.; Tang, F.; Chen, J.; Chen, Y.; Xiang, Y.; Wu, X.; He, Z. Cryptomelane-Type KMn8O16 as Potential Cathode Material—For Aqueous Zinc Ion Battery. Front. Chem. 2018, 6, 352. [Google Scholar] [CrossRef] [PubMed]
- Ho, P.H.; Lee, S.C.; Kim, J.; Lee, D.; Woo, H.C. Properties of a manganese oxide octahedral molecular sieve (OMS-2) for adsorptive desulfurization of fuel gas for fuel cell applications. Fuel Process. Technol. 2015, 131, 238–246. [Google Scholar] [CrossRef]
- Poyraz, A.S.; Huang, J.; Pelliccione, C.J.; Tong, X.; Cheng, S.; Wu, L.; Zhu, Y.; Marschilok, A.C.; Takeuchi, K.J.; Takeuchi, E.S. Synthesis of cryptomelane type [small alpha]-MnO2 (KxMn8O16) cathode materials with tunable K+ content: The role of tunnel cation concentration on electrochemistry. J. Mater. Chem. A 2017, 5, 16914–16928. [Google Scholar] [CrossRef]
- Poyraz, A.S.; Huang, J.; Wu, L.; Bock, D.C.; Zhu, Y.; Marschilok, A.C.; Takeuchi, K.J.; Takeuchi, E.S. Potassium-Based α-Manganese Dioxide Nanofiber Binder-Free Self-Supporting Electrodes: A Design Strategy for High Energy Density Batteries. Energy Technol. 2016, 4, 1358–1368. [Google Scholar] [CrossRef]
- Rasul, S.; Suzuki, S.; Yamaguchi, S.; Miyayama, M. Manganese oxide octahedral molecular sieves as insertion electrodes for rechargeable Mg batteries. Electrochim. Acta 2013, 110, 247–252. [Google Scholar] [CrossRef]
- Liu, T.; Li, Q.; Xin, Y.; Zhang, Z.; Tang, X.; Zheng, L.; Gao, P.-X. Quasi free K cations confined in hollandite-type tunnels for catalytic solid (catalyst)-solid (reactant) oxidation reactions. Appl. Catal. B Environ. 2018, 232, 108–116. [Google Scholar] [CrossRef]
- Kona, J.R.; King’ondu, C.K.; Howell, A.R.; Suib, S.L. OMS-2 for Aerobic, Catalytic, One-pot Alcohol Oxidation-Wittig Reactions: Efficient Access to α,β-Unsaturated Esters. ChemCatChem 2014, 6, 749–752. [Google Scholar] [CrossRef]
- Ferlin, F.; Marini, A.; Ascani, N.; Ackermann, L.; Lanari, D.; Vaccaro, L. Heterogeneous Manganese-Catalyzed Oxidase C−H/C−O Cyclization to Access Pharmaceutically Active Compounds. ChemCatChem 2020, 12, 449–454. [Google Scholar] [CrossRef]
- Opembe, N.N.; Guild, C.; King’ondu, C.; Nelson, N.C.; Slowing, I.I.; Suib, S.L. Vapor-Phase Oxidation of Benzyl Alcohol Using Manganese Oxide Octahedral Molecular Sieves (OMS-2). Ind. Eng. Chem. Res. 2014, 53, 19044–19051. [Google Scholar] [CrossRef] [Green Version]
- Makwana, V.D.; Garces, L.J.; Liu, J.; Cai, J.; Son, Y.-C.; Suib, S.L. Selective oxidation of alcohols using octahedral molecular sieves: Influence of synthesis method and property–activity relations. Catal. Today 2003, 85, 225–233. [Google Scholar] [CrossRef]
- Schurz, F.; Bauchert, J.M.; Merker, T.; Schleid, T.; Hasse, H.; Gläser, R. Octahedral molecular sieves of the type K-OMS-2 with different particle sizes and morphologies: Impact on the catalytic properties in the aerobic partial oxidation of benzyl alcohol. Appl. Catal. A Gen. 2009, 355, 42–49. [Google Scholar] [CrossRef]
- Sabaté, F.; Navas, J.; Sabater, M.J.; Corma, A. Synthesis of γ-lactones from easily and accessible reactants catalyzed by Cu–MnOx catalysts. C. R. Chim. 2018, 21, 164–173. [Google Scholar] [CrossRef]
- Sabaté, F.; Jordà, J.L.; Sabater, M.J. Ruthenium isomorphic substitution into Manganese Oxide Octahedral Molecular Sieve OMS-2: Comparative physic-chemical and catalytic studies of Ru versus Abundant Metal Cationic Dopants. Catal. Today 2021. [Google Scholar] [CrossRef]
- Pan, F.; Liu, W.; Yu, Y.; Yin, X.; Wang, Q.; Zheng, Z.; Wu, M.; Zhao, D.; Zhang, Q.; Lei, X.; et al. The effects of manganese oxide octahedral molecular sieve chitosan microspheres on sludge bacterial community structures during sewage biological treatment. Sci. Rep. 2016, 6, 37518. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Zhao, Z.; Wei, Y.; Liu, J. Ordered micro/macro porous K-OMS-2/SiO2 nanocatalysts: Facile synthesis, low cost and high catalytic activity for diesel soot combustion. Sci. Rep. 2017, 7, 43894. [Google Scholar] [CrossRef] [Green Version]
- Hernández, W.Y.; Centeno, M.A.; Ivanova, S.; Eloy, P.; Gaigneaux, E.M.; Odriozola, J.A. Cu-modified cryptomelane oxide as active catalyst for CO oxidation reactions. Appl. Catal. B Environ. 2012, 123–124, 27–35. [Google Scholar] [CrossRef]
- Davó-Quiñonero, A.; Navlani-García, M.; Lozano-Castelló, D.; Bueno-López, A. CuO/cryptomelane catalyst for preferential oxidation of CO in the presence of H2: Deactivation and regeneration. Catal. Sci. Technol. 2016, 6, 5684–5692. [Google Scholar] [CrossRef] [Green Version]
- Ousmane, M.; Perrussel, G.; Yan, Z.; Clacens, J.M.; De Campo, F.; Pera-Titus, M. Highly selective direct amination of primary alcohols over a Pd/K-OMS-2 catalyst. J. Catal. 2014, 309, 439–452. [Google Scholar] [CrossRef]
- Hou, J.; Li, Y.; Liu, L.; Ren, L.; Zhao, X. Effect of giant oxygen vacancy defects on the catalytic oxidation of OMS-2 nanorods. J. Mater. Chem. A 2013, 1, 6736–6741. [Google Scholar] [CrossRef]
- Doménech-Carbó, A.; Sabaté, F.; Sabater, M.J. Electrochemical Analysis of Catalytic and Oxygen Interfacial Transfer Effects on MnO2 Deposited on Gold Electrodes. J. Phys. Chem. C 2018, 122, 10939–10947. [Google Scholar] [CrossRef]
- Davó-Quiñonero, A.; Such-Basáñez, I.; Juan-Juan, J.; Lozano-Castelló, D.; Stelmachowski, P.; Grzybek, G.; Kotarba, A.; Bueno-López, A. New insights into the role of active copper species in CuO/Cryptomelane catalysts for the CO-PROX reaction. Appl. Catal. B Environ. 2019, 118372. [Google Scholar] [CrossRef]
- Bellussi, G.; Fattore, V. Isomorphous Substitution in Zeolites: A Route for the Preparation of Novel Catalysts. In Zeolite Chemistry and Catalysis; Jacobs, P.A., Jaeger, N.I., Kubelková, L., Wichterlov, B., Eds.; Elsevier: Amsterdam, The Netherlands, 1991; Volume 69, pp. 79–92. ISBN 0167-2991. [Google Scholar]
- Delgado, D.; Concepción, P.; Trunschke, A.; López Nieto, J.M. Tungsten–niobium oxide bronzes: A bulk and surface structural study. Dalton Trans. 2020, 49, 13282–13293. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Recio, I.; Azor-Lafarga, A.; Ruiz-González, M.L.; Hernando, M.; Parras, M.; Calvino, J.J.; Fernández-Díaz, M.T.; Portehault, D.; Sanchez, C.; González-Calbet, J.M. Unambiguous localization of titanium and iron cations in doped manganese hollandite nanowires. Chem. Commun. 2020, 56, 4812–4815. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Liu, J.; Willis, W.S.; Suib, S.L. Framework Doping of Iron in Tunnel Structure Cryptomelane. Chem. Mater. 2001, 13, 2413–2422. [Google Scholar] [CrossRef]
- King’ondu, C.K.; Opembe, N.; Chen, C.; Ngala, K.; Huang, H.; Iyer, A.; Garcés, H.F.; Suib, S.L. Manganese Oxide Octahedral Molecular Sieves (OMS-2) Multiple Framework Substitutions: A New Route to OMS-2 Particle Size and Morphology Control. Adv. Funct. Mater. 2011, 21, 312–323. [Google Scholar] [CrossRef]
- El-Sawy, A.M.; King’ondu, C.K.; Kuo, C.-H.; Kriz, D.A.; Guild, C.J.; Meng, Y.; Frueh, S.J.; Dharmarathna, S.; Ehrlich, S.N.; Suib, S.L. X-ray Absorption Spectroscopic Study of a Highly Thermally Stable Manganese Oxide Octahedral Molecular Sieve (OMS-2) with High Oxygen Reduction Reaction Activity. Chem. Mater. 2014, 26, 5752–5760. [Google Scholar] [CrossRef]
- Li, W.; Cui, X.; Zeng, R.; Du, G.; Sun, Z.; Zheng, R.; Ringer, S.P.; Dou, S.X. Performance modulation of α-MnO2 nanowires by crystal facet engineering. Sci. Rep. 2015, 5, 8987. [Google Scholar] [CrossRef]
- Shah, S.I.; Khan, T.; Khan, R.; Khan, S.A.; Khattak, S.A.; Khan, G. Study of structural, optical and dielectric properties of α-MnO2 nanotubes (NTS). J. Mater. Sci. Mater. Electron. 2019, 30, 19199–19205. [Google Scholar] [CrossRef]
- Feng, Q.; Kanoh, H.; Miyai, Y.; Ooi, K. Alkali Metal Ions Insertion/Extraction Reactions with Hollandite-Type Manganese Oxide in the Aqueous Phase. Chem. Mater. 1995, 7, 148–153. [Google Scholar] [CrossRef]
- Calvert, C.; Joesten, R.; Ngala, K.; Villegas, J.; Morey, A.; Shen, X.; Suib, S.L. Synthesis, Characterization, and Rietveld Refinement of Tungsten-Framework-Doped Porous Manganese Oxide (K-OMS-2) Material. Chem. Mater. 2008, 20, 6382–6388. [Google Scholar] [CrossRef]
- Chen, X.; Shen, Y.-F.; Suib, S.L.; O’Young, C.L. Characterization of Manganese Oxide Octahedral Molecular Sieve (M−OMS-2) Materials with Different Metal Cation Dopants. Chem. Mater. 2002, 14, 940–948. [Google Scholar] [CrossRef]
- Hu, R.; Cheng, Y.; Xie, L.; Wang, D. Effect of Doped Ag on Performance of Manganese Oxide Octahedral Molecular Sieve for CO Oxidation. Chin. J. Catal. 2007, 28, 463–468. [Google Scholar] [CrossRef]
- Hu, R.; Yan, C.; Xie, L.; Cheng, Y.; Wang, D. Selective oxidation of CO in rich hydrogen stream over Ag/OMS-2 catalyst. Int. J. Hydrog. Energy 2011, 36, 64–71. [Google Scholar] [CrossRef]
- Li, Y.; Fan, Z.; Shi, J.; Liu, Z.; Zhou, J.; Shangguan, W. Modified manganese oxide octahedral molecular sieves M′-OMS-2 (M′=Co,Ce,Cu) as catalysts in post plasma-catalysis for acetaldehyde degradation. Catal. Today 2015, 256, 178–185. [Google Scholar] [CrossRef]
- Yue, L.; Hu, M.; Tian, M.; Liao, X.; Xu, Z.; Shi, L.; He, C. Insight Into the Role of Ceria on OMS-2 and OL Materials for Catalytic Degradation of Toluene. Front. Environ. Chem. 2020, 1, 12. [Google Scholar] [CrossRef]
- Nur, H.; Hayati, F.; Hamdan, H. On the location of different titanium sites in Ti–OMS-2 and their catalytic role in oxidation of styrene. Catal. Commun. 2007, 8, 2007–2011. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-H.; Njagi, E.C.; Chen, S.-Y.; Horvath, D.T.; Xu, L.; Morey, A.; Mackin, C.; Joesten, R.; Suib, S.L. Structural Distortion of Molybdenum-Doped Manganese Oxide Octahedral Molecular Sieves for Enhanced Catalytic Performance. Inorg. Chem. 2015, 54, 10163–10171. [Google Scholar] [CrossRef]
- Genuino, H.C.; Meng, Y.; Horvath, D.T.; Kuo, C.H.; Seraji, M.S.; Morey, A.M.; Joesten, R.L.; Suib, S.L. Enhancement of Catalytic Activities of Octahedral Molecular Sieve Manganese Oxide for Total and Preferential CO Oxidation through Vanadium Ion Framework Substitution. ChemCatChem 2013, 5, 2306–2317. [Google Scholar] [CrossRef]
- Polverejan, M.; Villegas, J.C.; Suib, S.L. Higher Valency Ion Substitution into the Manganese Oxide Framework. J. Am. Chem. Soc. 2004, 126, 7774–7775. [Google Scholar] [CrossRef]
- Legutko, P.; Gryboś, J.; Fedyna, M.; Janas, J.; Wach, A.; Szlachetko, J.; Adamski, A.; Yu, X.; Zhao, Z.; Kotarba, A.; et al. Soot Combustion over Niobium-Doped Cryptomelane (K-OMS-2) Nanorods—Redox State of Manganese and the Lattice Strain Control the Catalysts Performance. Catalysts 2020, 10, 1390. [Google Scholar] [CrossRef]
- Wasalathanthri, N.D.; Guild, C.; Nizami, Q.A.; Dissanayake, S.L.; He, J.; Kerns, P.; Fee, J.; Achola, L.; Rathnayake, D.; Weerakkody, C.; et al. Niobium-substituted octahedral molecular sieve (OMS-2) materials in selective oxidation of methanol to dimethoxymethane. RSC Adv. 2019, 9, 32665–32673. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Zhang, Q.; Garcia-Martinez, J.; Suib, S.L. Adsorptive and Acidic Properties, Reversible Lattice Oxygen Evolution, and Catalytic Mechanism of Cryptomelane-Type Manganese Oxides as Oxidation Catalysts. J. Am. Chem. Soc. 2008, 130, 3198–3207. [Google Scholar] [CrossRef] [PubMed]
- Özacar, M.; Poyraz, A.S.; Genuino, H.C.; Kuo, C.-H.; Meng, Y.; Suib, S.L. Influence of silver on the catalytic properties of the cryptomelane and Ag-hollandite types manganese oxides OMS-2 in the low-temperature CO oxidation. Appl. Catal. A Gen. 2013, 462–463, 64–74. [Google Scholar] [CrossRef]
- Dutov, V.V.; Mamontov, G.V.; Sobolev, V.I.; Vodyankina, O.V. Silica-supported silver-containing OMS-2 catalysts for ethanol oxidative dehydrogenation. Catal. Today 2016, 278, 164–173. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Li, H.; Huang, X.; Shen, W. Facile synthesis of Ag–OMS-2 nanorods and their catalytic applications in CO oxidation. Microporous Mesoporous Mater. 2008, 116, 586–592. [Google Scholar] [CrossRef]
- Qu, Z.; Bu, Y.; Qin, Y.; Wang, Y.; Fu, Q. The improved reactivity of manganese catalysts by Ag in catalytic oxidation of toluene. Appl. Catal. B Environ. 2013, 132–133, 353–362. [Google Scholar] [CrossRef]
- O’Donnell, R.; Ralphs, K.; Grolleau, M.; Manyar, H.; Artioli, N. Doping Manganese Oxides with Ceria and Ceria Zirconia Using a One-Pot Sol–Gel Method for Low Temperature Diesel Oxidation Catalysts. Top. Catal. 2020, 63, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Li, J. OMS-2 Catalysts for Formaldehyde Oxidation: Effects of Ce and Pt on Structure and Performance of the Catalysts. Catal. Lett. 2009, 131, 500–505. [Google Scholar] [CrossRef]
- Xie, J.; Chen, L.; Zhou, W.-F.; Au, C.-T.; Yin, S.-F. Selective oxidation of p-chlorotoluene to p-chlorobenzaldehyde over metal-modified OMS-2 molecular sieves. J. Mol. Catal. A Chem. 2016, 425, 110–115. [Google Scholar] [CrossRef]
- Chen, J.; Wang, W.; Zhai, S.; Sun, P.; Wu, Z. The positive effect of Ca2+ on cryptomelane-type octahedral molecular sieve (K-OMS-2) catalysts for chlorobenzene combustion. J. Colloid Interface Sci. 2020, 576, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Diao, G.; Ye, F.; Sun, M.; Zhou, J.; Li, Y.; Liu, Y. Promoting Effect of Ce in Ce/OMS-2 Catalyst for Catalytic Combustion of Dimethyl Ether. Catal. Lett. 2011, 141, 111–119. [Google Scholar] [CrossRef]
- Santos, V.P.; Soares, O.S.G.P.; Bakker, J.J.W.; Pereira, M.F.R.; Órfão, J.J.M.; Gascon, J.; Kapteijn, F.; Figueiredo, J.L. Structural and chemical disorder of cryptomelane promoted by alkali doping: Influence on catalytic properties. J. Catal. 2012, 293, 165–174. [Google Scholar] [CrossRef]
- Santos, V.P.; Carabineiro, S.A.C.; Bakker, J.J.W.; Soares, O.S.G.P.; Chen, X.; Pereira, M.F.R.; Órfão, J.J.M.; Figueiredo, J.L.; Gascon, J.; Kapteijn, F. Stabilized gold on cerium-modified cryptomelane: Highly active in low-temperature CO oxidation. J. Catal. 2014, 309, 58–65. [Google Scholar] [CrossRef]
- Adjimi, S.; García-Vargas, J.M.; Díaz, J.A.; Retailleau, L.; Gil, S.; Pera-Titus, M.; Guo, Y.; Giroir-Fendler, A. Highly efficient and stable Ru/K-OMS-2 catalyst for NO oxidation. Appl. Catal. B Environ. 2017, 219, 459–466. [Google Scholar] [CrossRef]
- Molleti, J.; Tiwari, M.S.; Yadav, G.D. Novel synthesis of Ru/OMS catalyst by solvent-free method: Selective hydrogenation of levulinic acid to γ-valerolactone in aqueous medium and kinetic modelling. Chem. Eng. J. 2018, 334, 2488–2499. [Google Scholar] [CrossRef]
- Chen, S.; Huang, H.; Jiang, P.; Yang, K.; Diao, J.; Gong, S.; Liu, S.; Huang, M.; Wang, H.; Chen, Q. Mn-Doped RuO2 Nanocrystals as Highly Active Electrocatalysts for Enhanced Oxygen Evolution in Acidic Media. ACS Catal. 2020, 10, 1152–1160. [Google Scholar] [CrossRef]
- Xu, Y.-F.; Chen, Y.; Xu, G.-L.; Zhang, X.-R.; Chen, Z.; Li, J.-T.; Huang, L.; Amine, K.; Sun, S.-G. RuO2 nanoparticles supported on MnO2 nanorods as high efficient bifunctional electrocatalyst of lithium-oxygen battery. Nano Energy 2016, 28, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, M.; Tamura, M.; Nakagawa, Y.; Tomishige, K. Demethoxylation of guaiacol and methoxybenzenes over carbon-supported Ru–Mn catalyst. Appl. Catal. B Environ. 2016, 182, 193–203. [Google Scholar] [CrossRef]
- Yang, L.; Ma, J.; Li, X.; Zhang, C.; He, H. Enhancing Oxygen Vacancies of Ce-OMS-2 via Optimized Hydrothermal Conditions to Improve Catalytic Ozone Decomposition. Ind. Eng. Chem. Res. 2020, 59, 118–128. [Google Scholar] [CrossRef]
- Ahrens, L.H. The use of ionization potentials Part 1. Ionic radii of the elements. Geochim. Cosmochim. Acta 1952, 2, 155–169. [Google Scholar] [CrossRef]
- Hayati, F.; Chandren, S.; Hamdan, H.; Nur, H. The Role of Ti and Lewis Acidity in Manganese Oxide Octahedral Molecular Sieves Impregnated with Titanium in Oxidation Reactions. Bull. Chem. React. Eng. Catal. 2014, 9, 28–38. [Google Scholar] [CrossRef]
- Gao, T.; Glerup, M.; Krumeich, F.; Nesper, R.; Fjellvåg, H.; Norby, P. Microstructures and Spectroscopic Properties of Cryptomelane-type Manganese Dioxide Nanofibers. J. Phys. Chem. C 2008, 112, 13134–13140. [Google Scholar] [CrossRef]
- Tabassum, L.; Tasnim, H.; Meguerdichian, A.G.; Willis, W.S.; Macharia, J.; Price, C.; Dang, Y.; Suib, S.L. Enhanced Catalytic Activity of a Vanadium-Doped Mesoporous Octahedral Molecular Sieve-2 (K-OMS-2) toward Hydrogen Evolution Reaction. ACS Appl. Energy Mater. 2020, 3, 12185–12193. [Google Scholar] [CrossRef]
- Hecht, D.S.; Hu, L.; Irvin, G. Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Adv. Mater. 2011, 23, 1482–1513. [Google Scholar] [CrossRef] [PubMed]
- Minami, T. Chapter Five—Transparent Conductive Oxides for Transparent Electrode Applications. In Oxide Semiconductors; Svensson, B.G., Pearton, S.J., Jagadish, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y.I.; et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Xing, Y.; Chen, C.-H.; Zhao, L.; Suib, S.L. Framework Doping of Indium in Manganese Oxide Materials: Synthesis, Characterization, and Electrocatalytic Reduction of Oxygen. Chem. Mater. 2008, 20, 2069–2071. [Google Scholar] [CrossRef]
- Wu, X.; Yu, X.; Chen, Z.; Huang, Z.; Jing, G. Low-valence or tetravalent cation doping of manganese oxide octahedral molecular sieve (K-OMS-2) materials for nitrogen oxide emission abatement. Catal. Sci. Technol. 2019, 9, 4108–4117. [Google Scholar] [CrossRef]
- Nguyen Dinh, M.T.; Giraudon, J.M.; Vandenbroucke, A.M.; Morent, R.; De Geyter, N.; Lamonier, J.F. Manganese oxide octahedral molecular sieve K-OMS-2 as catalyst in post plasma-catalysis for trichloroethylene degradation in humid air. J. Hazard. Mater. 2016, 314, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ma, J.; Liu, F.; He, H.; Zhang, R. The Effects of Mn2+ Precursors on the Structure and Ozone Decomposition Activity of Cryptomelane-Type Manganese Oxide (OMS-2) Catalysts. J. Phys. Chem. C 2015, 119, 23119–23126. [Google Scholar] [CrossRef]
- Tseng, L.-T.; Lu, Y.; Fan, H.M.; Wang, Y.; Luo, X.; Liu, T.; Munroe, P.; Li, S.; Yi, J. Magnetic properties in α-MnO2 doped with alkaline elements. Sci. Rep. 2015, 5, 9094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Ma, J.; He, H. Recent advances in catalytic decomposition of ozone. J. Environ. Sci. 2020, 94, 14–31. [Google Scholar] [CrossRef] [PubMed]
- Dotsenko, S.S.; Verkhov, V.A.; Svetlichnyi, V.A.; Liotta, L.F.; La Parola, V.; Izaak, T.I.; Vodyankina, O. V Oxidative dehydrogenation of ethanol on modified OMS-2 catalysts. Catal. Today 2020, 357, 503–510. [Google Scholar] [CrossRef]
- Makwana, V.D.; Son, Y.-C.; Howell, A.R.; Suib, S.L. The Role of Lattice Oxygen in Selective Benzyl Alcohol Oxidation Using OMS-2 Catalyst: A Kinetic and Isotope-Labeling Study. J. Catal. 2002, 210, 46–52. [Google Scholar] [CrossRef]
- Gu, Y.; Min, Y.; Li, L.; Lian, Y.; Sun, H.; Wang, D.; Rummeli, M.H.; Guo, J.; Zhong, J.; Xu, L.; et al. Crystal Splintering of β-MnO2 Induced by Interstitial Ru Doping Toward Reversible Oxygen Conversion. Chem. Mater. 2021, 33, 4135–4145. [Google Scholar] [CrossRef]
- Kwon, N.H.; Lee, K.-G.; Kim, H.K.; Hwang, S.-J. MnO2-based nanostructured materials for various energy applications. Mater. Chem. Front. 2021, 5, 3549–3575. [Google Scholar] [CrossRef]
- Garcia, C.; Truttmann, V.; Lopez, I.; Haunold, T.; Marini, C.; Rameshan, C.; Pittenauer, E.; Kregsamer, P.; Dobrezberger, K.; Stöger-Pollach, M.; et al. Dynamics of Pd Dopant Atoms inside Au Nanoclusters during Catalytic CO Oxidation. J. Phys. Chem. C 2020, 124, 23626–23636. [Google Scholar] [CrossRef]
- López-Hernández, I.; García, C.; Truttmann, V.; Pollitt, S.; Barrabés, N.; Rupprechter, G.; Rey, F.; Palomares, A.E. Evaluation of the silver species nature in Ag-ITQ2 zeolites by the CO oxidation reaction. Catal. Today 2020, 345, 22–26. [Google Scholar] [CrossRef]
- Sarma, B.B.; Plessow, P.N.; Agostini, G.; Concepción, P.; Pfänder, N.; Kang, L.; Wang, F.R.; Studt, F.; Prieto, G. Metal-Specific Reactivity in Single-Atom Catalysts: CO Oxidation on 4d and 5d Transition Metals Atomically Dispersed on MgO. J. Am. Chem. Soc. 2020, 142, 14890–14902. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Corma, A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018, 118, 4981–5079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Royer, S.; Duprez, D. Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides. ChemCatChem 2011, 3, 24–65. [Google Scholar] [CrossRef]
- Fu, Z.; Chen, M.; Ye, Q.; Dong, N.; Dai, H. Enhanced Performance of the OMS-2-Supported CuOx Catalysts for Carbon Monoxide, Ethyl Acetate, and Toluene Oxidation. Catalysts 2021, 11, 713. [Google Scholar] [CrossRef]
- Chen, J.; Tang, X.; Liu, J.; Zhan, E.; Li, J.; Huang, X.; Shen, W. Synthesis and Characterization of Ag−Hollandite Nanofibers and Its Catalytic Application in Ethanol Oxidation. Chem. Mater. 2007, 19, 4292–4299. [Google Scholar] [CrossRef]
- Li, L.; King, D.L. Synthesis and Characterization of Silver Hollandite and Its Application in Emission Control. Chem. Mater. 2005, 17, 4335–4343. [Google Scholar] [CrossRef]
- Genuino, H.C.; Seraji, M.S.; Meng, Y.; Valencia, D.; Suib, S.L. Combined experimental and computational study of CO oxidation promoted by Nb in manganese oxide octahedral molecular sieves. Appl. Catal. B Environ. 2015, 163, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Genuino, H.C.; Valencia, D.; Suib, S.L. Insights into the structure–property–activity relationship in molybdenum-doped octahedral molecular sieve manganese oxides for catalytic oxidation. Catal. Sci. Technol. 2018, 8, 6493–6502. [Google Scholar] [CrossRef]
- Jiang, Z.; Ma, Y.; Li, Y.; Liu, H. Highly effective UV–Vis-IR and IR photothermocatalytic CO abatement on Zn doped OMS-2 nanorods. Appl. Surf. Sci. 2019, 483, 827–834. [Google Scholar] [CrossRef]
- Davó-Quiñonero, A.; Lozano-Castelló, D.; Bueno-López, A. Unexpected stability of CuO/Cryptomelane catalyst under Preferential Oxidation of CO reaction conditions in the presence of CO2 and H2O. Appl. Catal. B Environ. 2017, 217, 459–465. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Chen, S.-Y.; Tang, W.; Dang, Y.; Kerns, P.; Miao, R.; Dutta, B.; Gao, P.-X.; Suib, S.L. Microwave-assisted integration of transition metal oxide nanocoatings on manganese oxide nanoarray monoliths for low temperature CO oxidation. Appl. Catal. B Environ. 2019, 255, 117766. [Google Scholar] [CrossRef]
- Stelmachowski, P.; Monteverde Videla, A.H.A.; Jakubek, T.; Kotarba, A.; Specchia, S. The Effect of Fe, Co, and Ni Structural Promotion of Cryptomelane (KMn8O16) on the Catalytic Activity in Oxygen Evolution Reaction. Electrocatalysis 2018, 9, 762–769. [Google Scholar] [CrossRef] [Green Version]
Form | Name | Formula | Space Group | Structure (m × n, Dimension Tunnel Structure) | Cell [a] | Oxidation States of Mn |
---|---|---|---|---|---|---|
α–MnO2 | Hollandite | Ba(Mn4+6Mn3+2)O16 | Tetragonal/monoclinic I4/m | (2 × 2) tunnel | hcp | +4, +3 |
β–MnO2 | Pyrolusite | Mn4+O2 | Tetragonal, P42/mnm | (1 × 1) tunnel | +4 | |
γ–MnO2 | Nsutite | (Mn4+,Mn2+)(O,OH)2 | Hexagonal/Orthorombic, (n.d.) | (1 × 1)/(1 × 2) | +4, +2 | |
R–MnO2 | Ramsdellite | Mn4+O2 | Orthorombic, Pnma | (1 × 2) tunnel | +4 | |
ε–MnO2 | Akhtenskite | Mn4+O2 | Hexagonal, P63/mmc | dense | +4 | |
δ–MnO2 | Birnessite | Na0.5(Mn4+Mn3+)O4·1.5H2O | Monoclinic, P63/mmc | (1 × ∞) layer | hcp/fcc | +3, +4 |
λ–MnO2 | Spinel | (Li)Mn2O4 | Spinel, Fd3m | (1 × 1) tunnel | fcc | +3, +4 |
Metal Incorporated into the Framework | Synthesis | Composition Range (% wt.) | Surface Area Range, N2, 77K (m2/g) | Morphology | Reaction Examples | References |
---|---|---|---|---|---|---|
Ag | Hydrothermal, reflux, microwave assisted, solid state | 0–2 | 80–160 | Nanorod (50 nm–1 μm) | CO oxidation | [153,154] |
Ce | Reflux | 0–8 | 72–200 | Nanorod (500 nm) | VOC and ozone degradation | [106,155,156] |
Ru | Reflux | 0–4 | 84–131 [a] | Nanorod (150–500 nm) | Oxidation of alcohols | [108,133] |
Ti | Reflux | 0–2 | 152–155 | Nanorod (n.a.) | Oxidation of styrene | [157] |
Mo | Reflux | 0–10 | 100–210 | Nanorod (50–200) | CO oxidation | [150,158] |
W | Reflux | 0–10 | 110–190 | Nanorod (50–200) | CO oxidation | [151] |
V | Reflux | 0–10 | 120–190 | Nanorod (50–200) | CO oxidation | [159,160] |
Nb | Reflux | 0–30 | 147–220 | Nanorod (51–184) | Oxidation of methanol | [161,162] |
In | See Section 3.1.6, Section 3.1.7 and Section 3.1.8 | |||||
Zn | ||||||
Zr |
Sample | Incorporated Ag Content (% wt.) | BET Surface Value (m2/g) |
---|---|---|
1 [a] | 0 | 76.9 |
2 | 0.1 | 79.1 |
3 | 0.5 | 79.7 |
4 | 1.5 | 81.2 |
5 | 2.0 | 81.8 |
Sample | Desorption Temperature (°C) | Peak Area (a.u.) | |||||
---|---|---|---|---|---|---|---|
Peak I | Peak II | Peak III | Peak I | Peak II | Peak III | Total | |
K–OMS–2 | 108 | 492 | 581 | 302 | 422 | 448 | 1172 |
[Ce]–K–OMS–2 | 132 | 340 | 650 | 305 | 903 | 723 | 1931 |
K–OMS–2 | [W(1.33%)]–K–OMS–2 | [W(2%)]–K–OMS–2 | |
---|---|---|---|
a (Å), b (Å) | 9.815 | 9.804 | 9.816 |
c (Å) | 2.847 | 2.852 | 2.855 |
cell volume (Å3) | 274.3 | 274.1 | 275.1 |
Catalysts | K/Mn + Metal + K (%) [a] | Mn/Mn + Metal + K (%) [a] | Metallic Dopant Species (% abundance) [b] | Surface Area (m2/g) [c] |
---|---|---|---|---|
K–OMS–2 | 6.37 | 93.6 | - | 137 |
[Ce]–K–OMS–2 | 4.82 | 86.7 | Ce3+ (30%), Ce4+ (70%) | 200 |
[Co]–K–OMS–2 | 6.40 | 85.1 | Co3+ (95%) [d], Co2+(5%) [e] | 115 |
[Fe]–K–OMS–2 | 6.31 | 83.6 | Fe2+ (36%) [d], Fe3+(64%) [e], | 52 |
Dopant [M] | Material | Location of M [a] | Reference |
---|---|---|---|
Ag | [Ag]–K–OMS–2 | F, T, S | [164,204,205] |
Nb | [Nb]–K–OMS–2 | F | [206] |
Mo | [Mo]–K–OMS–2 | F | [207] |
V | [V]–K–OMS–2 | F | [159] |
Cu | [Cu]–K–OMS–2 | F, S | [136,141] |
Zn | [Zn]–K–OMS–2 | F | [208] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabaté, F.; Sabater, M.J. Recent Manganese Oxide Octahedral Molecular Sieves (OMS–2) with Isomorphically Substituted Cationic Dopants and Their Catalytic Applications. Catalysts 2021, 11, 1147. https://doi.org/10.3390/catal11101147
Sabaté F, Sabater MJ. Recent Manganese Oxide Octahedral Molecular Sieves (OMS–2) with Isomorphically Substituted Cationic Dopants and Their Catalytic Applications. Catalysts. 2021; 11(10):1147. https://doi.org/10.3390/catal11101147
Chicago/Turabian StyleSabaté, Ferran, and María J. Sabater. 2021. "Recent Manganese Oxide Octahedral Molecular Sieves (OMS–2) with Isomorphically Substituted Cationic Dopants and Their Catalytic Applications" Catalysts 11, no. 10: 1147. https://doi.org/10.3390/catal11101147
APA StyleSabaté, F., & Sabater, M. J. (2021). Recent Manganese Oxide Octahedral Molecular Sieves (OMS–2) with Isomorphically Substituted Cationic Dopants and Their Catalytic Applications. Catalysts, 11(10), 1147. https://doi.org/10.3390/catal11101147