The Influence of Si/Al Ratio on the Physicochemical and Catalytic Properties of MgO/ZSM-5 Catalyst in Transesterification Reaction of Rapeseed Oil
Abstract
:1. Introduction
2. Results and Discussion
2.1. Transesterification of Vegetable Oil with Methanol Reaction
2.2. Specific Surface Area Measurements of the Catalytic Materials
2.3. Phase Composition Studies of Catalysts
2.4. Basic Properties of the Synthesized Catalyst Systems
2.5. Sorption Properties of Magnesium Oxide Catalysts Supported on ZSM-5 Zeolites in Relation to Methanol
3. Materials and Methods
3.1. Preparation of the Catalytic Materials
3.2. Characterization of the Catalytic Material
3.3. Catalytic Activity Measurements in Transesterification of the Vegetable Oil with Methanol
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shankar, V.; Jambulingam, R. Waste crab shell derived CaO impregnated Na-ZSM-5 as a solid base catalyst for the transesterification of neem oil into biodiesel. Sustain. Environ. Res. 2017, 27, 273–278. [Google Scholar] [CrossRef]
- Purnamasari, A.P.; Sari, M.E.F.; Kusumaningtyas, D.T.; Suprapto, S.; Hamid, A.; Prasetyoko, D. The effect of mesoporous H-ZSM-5 Crystallinity as a CaO support on the transesterification of used cooking OIL. Bull. Chem. React. Eng. Catal. 2017, 12, 329. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-Y.; Chen, B.-H. High-silica zeolite beta as a heterogeneous catalyst in transesterification of triolein for biodiesel production. Catal. Today 2016, 278, 335–343. [Google Scholar] [CrossRef]
- Rezayan, A.; Taghizadeh, M. Synthesis of magnetic mesoporous nanocrystalline KOH/ZSM-5-Fe3O4 for biodiesel pro-duction: Process optimization and kinetics study. Process Saf. Environ. Prot. 2018, 117, 711–721. [Google Scholar] [CrossRef]
- Niu, S.; Zhang, X.; Ning, Y.; Zhang, Y.; Qu, T.; Hu, X.; Gong, Z.; Lu, C. Dolomite incorporated with cerium to enhance the stability in catalyzing transesterification for biodiesel production. Renew. Energy 2020, 154, 107–116. [Google Scholar] [CrossRef]
- Pang, H.; Yang, G.; Li, L.; Yu, J. Efficient transesterification over two-dimensional zeolites for sustainable biodiesel pro-duction. Green Energy Environ. 2020, 5, 405–413. [Google Scholar] [CrossRef]
- Teo, S.; Taufiq-Yap, Y.; Ng, F. Alumina supported/unsupported mixed oxides of Ca and Mg as heterogeneous catalysts for transesterification of Nannochloropsis sp. microalga’s oil. Energy Convers. Manag. 2014, 88, 1193–1199. [Google Scholar] [CrossRef]
- Yan, S.; Lu, H.; Liang, B. Supported CaO Catalysts used in the transesterification of rapeseed oil for the purpose of biodiesel production. Energy Fuels 2008, 22, 646–651. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Đăng, T.H.; Chen, B.-H.; Lee, D.-J. Transesterification of triolein to biodiesel using sodium-loaded catalysts prepared from zeolites. Ind. Eng. Chem. Res. 2012, 51, 9959–9965. [Google Scholar] [CrossRef]
- Luz Martinez, S.; Romero, R.; López, J.C.; Romero, A.; Sanchez Mendieta, V.; Natividad, R. Preparation and characteri-zation of CaO nanoparticles/NaX zeolite catalysts for the transesterification of sunflower oil. Ind. Eng. Chem. Res. 2011, 50, 2665–2670. [Google Scholar] [CrossRef]
- Georgogianni, K.; Katsoulidis, A.; Pomonis, P.; Manos, G.; Kontominas, M. Transesterification of rapeseed oil for the pro-duction of biodiesel using homogeneous and heterogeneous catalysis. Fuel Process. Technol. 2009, 90, 1016–1022. [Google Scholar] [CrossRef]
- Alismaeel, Z.T.; Abbas, A.; Albayati, T.; Doyle, A.M. Biodiesel from batch and continuous oleic acid esterification using zeolite catalysts. Fuel 2018, 234, 170–176. [Google Scholar] [CrossRef]
- Bhagiyalakshmi, M.; Vinoba, M.; Grace, A.N. Transesterification of Jatropha Oil over Ceria-Impregnated ZSM-5 for the Production of Bio-Diesel. Bull. Korean Chem. Soc. 2013, 34, 3059–3064. [Google Scholar] [CrossRef] [Green Version]
- Mohammadpour, M.; Najafpour, G.; Rahimnejad, M.; Kiakojouri, M. Heterogeneous Catalyst HZSM5 in biodiesel pro-duction from rapeseed oil in batch process. Iran. J. Energy Environ. 2017, 8, 95–101. [Google Scholar]
- Borges, M.E.; Díaz, L. Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renew. Sustain. Energy Rev. 2012, 16, 2839–2849. [Google Scholar] [CrossRef]
- Tariq, M.; Ali, S.; Khalid, N. Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: A review. Renew. Sustain. Energy Rev. 2012, 16, 6303–6316. [Google Scholar] [CrossRef]
- Boz, N.; Kara, M. Solid base catalyzed transesterification of canola oil. Chem. Eng. Commun. 2008, 196, 80–92. [Google Scholar] [CrossRef]
- Kim, M.; Yan, S.; Salley, S.O.; Ng, K.S. The effect of sodium on the catalytic activity of ZnO–Al2O3/ZSM-5 and SnO–Al2O3/ZSM-5 for the transesterification of vegetable oil with methanol. Catal. Commun. 2009, 10, 1913–1919. [Google Scholar] [CrossRef] [Green Version]
- Galia, A.; Scialdone, O.; Tortorici, E. Transesterification of rapeseed oil over acid resins promoted by supercritical carbon dioxide. J. Supercrit. Fluids 2011, 56, 186–193. [Google Scholar] [CrossRef] [Green Version]
- Sasidharan, M.; Kumar, R. Transesterification over various zeolites under liquid-phase conditions. J. Mol. Catal. A Chem. 2004, 210, 93–98. [Google Scholar] [CrossRef]
- Chouhan, A.S.; Sarma, A. Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renew. Sustain. Energy Rev. 2011, 15, 4378–4399. [Google Scholar] [CrossRef]
- Sihombing, J.L.; Gea, S.; Pulungan, A.N.; Agusnar, H.; Wirjosentono, B.; Hutapea, Y.A. The characterization of Sarulla natural zeolite crystal and its morphological structure. In Proceedings of the AIP Conference Proceedings, Surabaya, Indonesia, 18–19 July 2018; Volume 2049, p. 020062. [Google Scholar]
- Mostafavi, A.; Afzali, D.; Taher, M.A. Atomic absorption spectrometric determination of trace amounts of copper and zinc after simultaneous solid-phase extraction and preconcentration onto modified natrolite zeolite. Anal. Sci. 2006, 22, 849–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.-W.; Park, Y.-M.; Lee, K.-Y. Heterogeneous base catalysts for transesterification in biodiesel synthesis. Catal. Surv. Asia 2009, 13, 63–77. [Google Scholar] [CrossRef]
- Qu, S.; Chen, C.; Guo, M.; Lu, J.; Yi, W.; Ding, J.; Miao, Z. Synthesis of MgO/ZSM-5 catalyst and optimization of process parameters for clean production of biodiesel from Spirulina platensis. J. Clean. Prod. 2020, 276, 123382. [Google Scholar] [CrossRef]
- Qu, S.; Chen, C.; Guo, M.; Jiang, W.; Lu, J.; Yi, W.; Ding, J. Microwave-assisted in-situ transesterification of Spirulina platensis to biodiesel using PEG/MgO/ZSM-5 magnetic catalyst. J. Clean. Prod. 2021, 311, 127490. [Google Scholar] [CrossRef]
- Li, E.; Rudolph, V. Transesterification of Vegetable Oil to Biodiesel over MgO-Functionalized Mesoporous Catalysts. Energy Fuels 2008, 22, 145–149. [Google Scholar] [CrossRef]
- Sithole, T.; Jalama, K.; Meijboom, R. Biodiesel production from waste vegetable oils over MgO/Al2O3 Catalyst. Appl. Mech. Mater. 2014, 492, 350–355. [Google Scholar] [CrossRef]
- Mohadesi, M.; Hojabri, Z.; Moradi, G. Biodiesel production using alkali earth metal oxides catalysts synthesized by sol-gel method. Biofuel Res. J. 2014, 1, 30–33. [Google Scholar] [CrossRef]
- Shijian, Z.; Yuming, Z.; Xiaoli, S.; Yiwei, Z.; Zewu, Z.; Junjun, S.; Jie, K. Synthesis of MgO-Al2O3/ZSM-5 by solid state reaction for propane dehydrogenation. China Pet. Process. Petrochem. Technol. 2013, 15, 50–56. [Google Scholar]
- Shaheen, A.; Sultana, S.; Lu, H.; Ahmad, M.; Asma, M.; Mahmood, T. Assessing the potential of different nano-composite (MgO, Al2O3 -CaO and TiO2) for efficient conversion of Silybum eburneum seed oil to liquid biodiesel. J. Mol. Liq. 2018, 249, 511–521. [Google Scholar] [CrossRef]
- Abimanyu, H.; Kim, C.S.; Ahn, B.S.; Yoo, K.S. Synthesis of dimethyl carbonate by transesterification with various MgO–CeO2 mixed oxide catalysts. Catal. Lett. 2007, 118, 30–35. [Google Scholar] [CrossRef]
- Noiroj, K.; Intarapong, P.; Luengnaruemitchai, A.; Jai-In, S. A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil. Renew. Energy 2009, 34, 1145–1150. [Google Scholar] [CrossRef]
- Boz, N.; Degirmenbasi, N.; Kalyon, D. Conversion of biomass to fuel: Transesterification of vegetable oil to biodiesel using KF loaded nano-γ-Al2O3 as catalyst. Appl. Catal. B Environ. 2009, 89, 590–596. [Google Scholar] [CrossRef]
- Di Serio, M.; Ledda, M.; Cozzolino, M.; Minutillo, G.; Tesser, R.; Santacesaria, E. Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts. Ind. Eng. Chem. Res. 2006, 45, 3009–3014. [Google Scholar] [CrossRef]
- Mirth, G.; Lercher, J.A.; Anderson, M.W.; Klinowski, J. Adsorption complexes of methanol on zeolite ZSM-5. J. Chem. Soc. Faraday Trans. 1990, 86, 3039–3044. [Google Scholar] [CrossRef]
- Bleken, B.-T.L.; Mino, L.; Giordanino, F.; Beato, P.; Svelle, S.; Lillerud, K.P.; Bordiga, S. Probing the surface of nanosheet H-ZSM-5 with FTIR spectroscopy. Phys. Chem. Chem. Phys. 2013, 15, 13363–13370. [Google Scholar] [CrossRef]
- Forester, T.R.; Howe, R.F. In situ FTIR studies of methanol and dimethyl ether in ZSM-5. J. Am. Chem. Soc. 1987, 109, 5076–5082. [Google Scholar] [CrossRef]
- Hadjiivanov, K.; Saussey, J.; Freysz, J.; LaValley, J. FT-IR study of NO + O2 co-adsorption on H-ZSM-5: Re-assignment of the 2133 cm−1 band to NO+ species. Catal. Lett. 1998, 52, 103–108. [Google Scholar] [CrossRef]
- Mierczynski, P.; Szkudlarek, L.; Chalupka, K.; Maniukiewicz, W.; Wahono, S.; Vasilev, K.; Szynkowska-Jozwik, M. The Effect of the Activation Process and Metal Oxide Addition (CaO, MgO, SrO) on the Catalytic and Physicochemical Properties of Natural Zeolite in Transesterification Reaction. Materials 2021, 14, 2415. [Google Scholar] [CrossRef]
Catalyst | Reaction Temperature (°C) | Reaction Time (h) | Molar Ratio Methanol: Oil | Calcination Temperature (°C) | Catalyst Weight (g) | Triglycerides Conversion (%) | FAME Yield (%) |
---|---|---|---|---|---|---|---|
10% MgO/Al2O3 | 220 | 2 | 9:1 | 500 | 0.5 | 88.9 (0.7) | 79.3 (1.5) |
10% MgO/ZSM-5 (23) | 220 | 2 | 9:1 | 500 | 0.5 | 92.7 (0.8) | 86.1 (0.8) |
10% MgO/ZSM-5 (50) | 220 | 2 | 9:1 | 500 | 0.5 | 94.0 (1.3) | 92.0 (0.6) |
10% MgO/ZSM-5 (280) | 220 | 2 | 9:1 | 500 | 0.5 | 92.9 (0.7) | 94.6 (1.0) |
10% MgO/SiO2 | 220 | 2 | 9:1 | 500 | 0.5 | 94.0 (0.6) | 83.3 (0.6) |
10% MgO/HZSM-5 (50) | 220 | 2 | 9:1 | 500 | 0.5 | 88.9 (0.5) | 81.7 (1.5) |
10% MgO/HZSM-5 (280) | 220 | 2 | 9:1 | 500 | 0.5 | 89.0 (1.0) | 86.0 (1.5) |
Material | MgO Content (%) |
---|---|
10% MgO/ZSM-5 (Si/Al = 23) | 9.7779 |
10% MgO/ZSM-5 (Si/Al = 50) | 9.3104 |
10% MgO/ZSM-5 (Si/Al = 280) | 8.6448 |
10% MgO/HZSM-5 (Si/Al = 50) | 9.2732 |
10% MgO/HZSM-5 (Si/Al = 280) | 8.9759 |
Materials | BET Surface Area (m2/g) | Pore Volume (cm3/g) | Average Pore Radius (nm) |
---|---|---|---|
10% MgO/Al2O3 | 122.81 | 0.18 | 6.02 |
10% MgO/ZSM-5 (Si/Al = 50) | 259.78 | 0.22 | 3.34 |
10% MgO/ZSM-5 (Si/Al = 280) | 278.40 | 0.17 | 2.44 |
10% MgO/HZSM-5 (Si/Al = 50) | 244.33 | 0.20 | 3.27 |
10% MgO/HZSM-5 (Si/Al = 280) | 307.24 | 0.19 | 2.49 |
10% MgO/SiO2 | 203.44 | 0.93 | 18.23 |
Catalyst | MgO Crystallite Size (nm) |
---|---|
10% MgO/Al2O3 | 16 |
10% MgO/ZSM-5 (Si/Al = 23) | 8 |
10% MgO/ZSM-5 (Si/Al = 50) | 10 |
10% MgO/ZSM-5 (Si/Al = 280) | 15 |
10% MgO/SiO2 | *** |
10% MgO/HZSM-5 (Si/Al = 50) | 17 |
10% MgO/HZSM-5 (Si/Al = 280) | 15 |
Catalytic Systems | Weak Centers (mmol/g) 100–300 °C | Medium Centers (mmol/g) 300–450 °C | Strong Centers (mmol/g) 450–600 °C | Total Basicity (mmol/g) 100–600 °C |
---|---|---|---|---|
10% MgO/Al2O3 | 0.31 | 0.15 | 0.11 | 0.57 |
10% MgO/ZSM-5 (23) | 0.22 | 0.17 | 0.13 | 0.51 |
10% MgO/ZSM-5 (50) | 0.16 | 0.23 | 0.10 | 0.49 |
10% MgO/ZSM-5 (280) | 0.27 | 0.10 | 0.08 | 0.46 |
10% MgO/SiO2 | 0.17 | 0.10 | 0.08 | 0.35 |
10% MgO/HZSM-5 (50) | 0.42 | 0.22 | 0.05 | 0.69 |
10% MgO/HZSM-5 (280) | 0.27 | 0.12 | 0.09 | 0.48 |
Step | Time (min) | T1 (°C) | T2 (°C) | Pressure (bar) | Power (W) |
---|---|---|---|---|---|
1 | 25 | 240 | 70 | 110 | 1500 |
2 | 10 | 240 | 70 | 110 | 1500 |
Mobile Phase Gradient | Flow Rate (mL∙min−1) | ||
---|---|---|---|
Time (min) | Solvent A (%) | Solvent B (%) | |
0 | 100 | 0 | 0.9 |
20 | 100 | 0 | 0.9 |
45 | 0 | 100 | 0.9 |
70 | 0 | 100 | 0.9 |
75 | 100 | 0 | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szkudlarek, Ł.; Chałupka, K.; Maniukiewicz, W.; Albińska, J.; Szynkowska-Jóźwik, M.I.; Mierczyński, P. The Influence of Si/Al Ratio on the Physicochemical and Catalytic Properties of MgO/ZSM-5 Catalyst in Transesterification Reaction of Rapeseed Oil. Catalysts 2021, 11, 1260. https://doi.org/10.3390/catal11111260
Szkudlarek Ł, Chałupka K, Maniukiewicz W, Albińska J, Szynkowska-Jóźwik MI, Mierczyński P. The Influence of Si/Al Ratio on the Physicochemical and Catalytic Properties of MgO/ZSM-5 Catalyst in Transesterification Reaction of Rapeseed Oil. Catalysts. 2021; 11(11):1260. https://doi.org/10.3390/catal11111260
Chicago/Turabian StyleSzkudlarek, Łukasz, Karolina Chałupka, Waldemar Maniukiewicz, Jadwiga Albińska, Malgorzata I. Szynkowska-Jóźwik, and Paweł Mierczyński. 2021. "The Influence of Si/Al Ratio on the Physicochemical and Catalytic Properties of MgO/ZSM-5 Catalyst in Transesterification Reaction of Rapeseed Oil" Catalysts 11, no. 11: 1260. https://doi.org/10.3390/catal11111260
APA StyleSzkudlarek, Ł., Chałupka, K., Maniukiewicz, W., Albińska, J., Szynkowska-Jóźwik, M. I., & Mierczyński, P. (2021). The Influence of Si/Al Ratio on the Physicochemical and Catalytic Properties of MgO/ZSM-5 Catalyst in Transesterification Reaction of Rapeseed Oil. Catalysts, 11(11), 1260. https://doi.org/10.3390/catal11111260