Local Structure of Pd1 Single Sites on the Surface of PdIn Intermetallic Nanoparticles: A Combined DFT and CO-DRIFTS Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Choice of Catalytic System
2.2. Transmission Electron Microscopy
2.3. X-ray Diffraction
2.4. CO-DRIFTS
2.5. DFT Calculations
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hannagan, R.T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E.C.H. Single-Atom Alloy Catalysis. Chem. Rev. 2020, 120, 12044–12088. [Google Scholar] [CrossRef] [PubMed]
- Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E.C.H. Single-Atom alloys as a Reductionist approach to the Rational Design of Heterogeneous Catalysis. Acc. Chem. Res. 2019, 52, 237–247. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, M.; Wang, A.; Zhang, T. Selective Hydrogenation over Supported Metal Catalysts: From Nanoparticles to Single Atoms. Chem. Rev. 2020, 120, 683–733. [Google Scholar] [CrossRef]
- Wang, A.; Jun, L.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81. [Google Scholar] [CrossRef]
- McCue, A.J.; Anderson, J.A. CO induced surface segregation as a means of improving surface composition and enhancing performance of CuPd bimetallic catalysts. J. Catal. 2015, 329, 538–546. [Google Scholar] [CrossRef]
- Bukhtiyarov, A.V.; Panafidin, M.A.; Chetyrin, I.A.; Prosvirin, I.P.; Mashkovsky, I.S.; Smirnova, N.S.; Markov, P.V.; Zubavichus, Y.V.; Stakheev, A.Y.; Bukhtiyarov, V.I. Intermetallic Pd-In/HOPG model catalysts: Reversible tuning the surface structure by O2-induced segregation. Appl. Surf. Sci. 2020, 525, 146493. [Google Scholar] [CrossRef]
- Stakheev, A.Y.; Smirnova, N.S.; Markov, P.V.; Baeva, G.N.; Bragina, G.O.; Rassolov, A.V.; Mashkovsky, I.S. Adsorption-Induced Segregation as a Method for the Target-Oriented Modification of the Surface of a Bimetallic Pd-Ag Catalyst. Kinet. Catal. 2018, 59, 610–617. [Google Scholar] [CrossRef]
- Smirnova, N.S.; Markov, P.V.; Baeva, G.N.; Rassolov, A.V.; Mashkovsky, I.S.; Bukhtiyarov, A.V.; Prosvirin, I.P.; Panafidin, M.A.; Zubavichus, Y.V.; Bukhtiyarov, V.I.; et al. CO-induced segregation as an efficient tool to control the surface composition and catalytic performance of PdAg/Al2O3 catalyst. Mendeleev Commun. 2019, 29, 547–549. [Google Scholar] [CrossRef]
- Meyer, R.J.; Zhang, Q.; Kryczka, A.; Gomez, C.; Todorovic, R. Perturbation of Reactivity with Geometry: How Far Can We Go? ACS Catal. 2018, 8, 566–570. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, S.; Komatsu, T. Intermetallic Compounds: Promising Inorganic Materials for Well-Structured and Electronically Modified Reaction Environments for Efficient Catalysis. ACS Catal. 2017, 7, 735–765. [Google Scholar] [CrossRef]
- Marakatti, V.S.; Peter, S.C. Synthetically tuned electronic and geometrical properties of intermetallic compounds as effective heterogeneous catalysts. Prog. Solid State Chem. 2018, 52, 1–30. [Google Scholar] [CrossRef]
- Armbrüster, M.; Behrens, M.; Cinquini, F.; Föttinger, K.; Grin, Y.; Haghofer, A.; Klötzer, B.; Knop-Gericke, A.; Lorenz, H.; Ota, A.; et al. How to Control the Selectivity of Palladium-based Catalysts in Hydrogenation Reactions: The Role of Subsurface Chemistry. ChemCatChem 2012, 4, 1048–1063. [Google Scholar] [CrossRef]
- Yoo, J.S.; Abild-Pedersen, F.; Nørskov, J.K.; Studt, F. Theoretical Analysis of Transition-Metal Catalysts for Formic Acid Decomposition. ACS Catal. 2014, 4, 1226–1233. [Google Scholar] [CrossRef]
- Shen, Y.G.; O’Connor, D.J.; Wandelt, K.; MacDonald, R.J. Studies of Surface Composition and Structure of Cu3Pt(111) by Low Energy Alkali Ion Scattering. Surf. Sci. 1995, 328, 21–31. [Google Scholar] [CrossRef]
- Schneider, U.; Castro, G.R.; Wandelt, K. Adsorption on Ordered Cu3Pt(111): Site Selectivity. Surf. Sci. 1993, 287−288, 146–150. [Google Scholar] [CrossRef]
- Shen, Y.; O’Connor, J.; MacDonald, R.J. The Interaction of CO with the Cu3Pt(111) Surface. Surf. Sci. 1992, 269−270, 321–325. [Google Scholar]
- Feng, Q.; Zhao, S.; Wang, Y.; Dong, J.; Chen, W.; He, D.; Wang, D.; Yang, J.; Zhu, Y.; Zhu, H.; et al. Isolated Single-Atom Pd Sites in Intermetallic Nanostructures: High Catalytic Selectivity for Semihydrogenation of Alkynes. J. Am. Chem. Soc. 2017, 139, 7294–7301. [Google Scholar] [CrossRef] [PubMed]
- Mashkovsky, I.S.; Markov, P.V.; Bragina, G.O.; Baeva, G.N.; Rassolov, A.V.; Yakushev, I.A.; Vargaftik, M.N.; Stakheev, A.Y. Highly-Ordered PdIn Intermetallic Nanostuctures Obtained from Heterobimetallic Acetate Complex: Formation and Catalytic Properties in Diphenylacetylene hydrogenation. Nanomaterials 2018, 8, 769. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Peng, M.; Ling, L.; Wang, B. PdIn Intermetallic Material with Isolated Single-Atom Pd Sites—A Promising Catalyst for Direct Formic Acid Fuel Cell. Chem. Eng. Sci. 2019, 199, 64–78. [Google Scholar] [CrossRef]
- Burueva, D.B.; Kovtunov, K.V.; Bukhtiyarov, A.V.; Barskiy, D.A.; Prosvirin, I.P.; Mashkovsky, I.S.; Baeva, G.N.; Bukhtiyarov, V.I.; Stakheev, A.Y.; Koptyug, I.V. Selective Single-Site Pd−In Hydrogenation Catalyst for Production of Enhanced Magnetic Resonance Signals Using Parahydrogen. Chem. Eur. J. 2018, 24, 2547–2553. [Google Scholar] [CrossRef]
- Wencka, M.; Hahne, M.; Kocjan, A.; Vrtnik, S.; Koželj, P.; Korže, D.; Jagličić, Z.; Sorić, M.; Popčević, P.; Ivkov, J.; et al. Physical properties of the InPd intermetallic catalyst. Intermetallics 2014, 55, 56–65. [Google Scholar] [CrossRef]
- Kovnir, K.; Armbrüster, M.; Teschner, D.; Venkov, T.V.; Szentmiklósi, L.; Jentoft, F.C.; Knop-Gericke, A.; Grin, Y.; Schlögl, R. In situ surface characterization of the intermetallic compound PdGa—A highly selective hydrogenation catalyst. Surf. Sci. 2009, 603, 1784–1792. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Villaseca, S.A.; Friedrich, M.; Teschner, D.; Knop-Gericke, A.; Armbrüster, M. Addressing electronic effects in the semi-hydrogenation of ethyne by InPd2 and intermetallic Ga–Pd compounds. J. Catal. 2016, 338, 265–272. [Google Scholar] [CrossRef]
- Ryczkowski, J. IR spectroscopy in catalysis. Catal. Today 2001, 68, 263–381. [Google Scholar] [CrossRef]
- Yudanov, I.V.; Sahnoun, R.; Neyman, K.M.; Rösch, N.; Hoffmann, J.; Schauermann, S.; Johánek, V.; Unterhalt, H.; Rupprechter, G.; Libuda, J.; et al. CO Adsorption on Pd Nanoparticles: Density Functional and Vibrational Spectroscopy Studies. J. Phys. Chem. B. 2003, 107, 255–264. [Google Scholar] [CrossRef]
- Garcia-Trenco, A.; Regoutz, A.; White, E.R.; Payne, D.J.; Shaffer, M.S.P.; Williams, C.K. PdIn intermetallic nanoparticles for the Hydrogenation of CO2 to Methanol. Appl. Catal. B. Env. 2018, 220, 9–18. [Google Scholar] [CrossRef]
- Furukawa, S.; Endo, M.; Komatsu, T. Bifunctional Catalytic System Effective for Oxidative Dehydrogenation of 1-Butene and n-Butane Using Pd-Based Intermetallic Compounds. ACS Catal. 2014, 4, 3533–3542. [Google Scholar] [CrossRef]
- Cao, Y.; Sui, Z.; Zhu, Y.; Zhou, X.; Chen, D. Selective Hydrogenation of Acetylene over Pd-In/Al2O3 Catalyst: Promotional Effect of Indium and Composition-Dependent Performance. ACS Catal. 2017, 7, 7835–7846. [Google Scholar] [CrossRef]
- Chauruka, S.R.; Hassanpour, A.; Brydson, R.; Roberts, K.J.; Ghadiri, M.; Stitt, H. Effect of mill type on the size reduction and phase transformation of gamma alumina. Chem. Eng. Sci. 2015, 134, 774–783. [Google Scholar] [CrossRef] [Green Version]
- Markov, P.V.; Smirnova, N.S.; Baeva, G.N.; Bukhtiyarov, A.V.; Mashkovsky, I.S.; Stakheev, A.Y. Intermetallic PdxIny/Al2O3 catalysts with isolated single-atom Pd sites for one-pot hydrogenation of diphenylacetylene into trans-stilbene. Mendeleev Commun. 2020, 30, 468–471. [Google Scholar] [CrossRef]
- Mashkovsky, I.S.; Smirnova, N.S.; Markov, P.V.; Baeva, G.N.; Bragina, G.O.; Bukhtiyarov, A.V.; Prosvirin, I.P.; Stakheev, A.Y. Tuning the surface structure and catalytic performance of PdIn/Al2O3 in selective liquid-phase hydrogenation by mild oxidative-reductive treatments. Mendeleev Commun. 2018, 28, 603–605. [Google Scholar] [CrossRef]
- Markov, P.V.; Bukhtiyarov, A.V.; Mashkovsky, I.S.; Smirnova, N.S.; Prosvirin, I.P.; Vinokurov, Z.S.; Panafidin, M.A.; Baeva, G.N.; Zubavichus, Y.V.; Bukhtiyarov, V.I.; et al. PdIn/Al2O3 Intermetallic Catalyst: Structure and Catalytic Characteristics in Selective Hydrogenation of Acetylene. Kinet. Catal. 2019, 60, 842–850. [Google Scholar] [CrossRef]
- Hirano, T.; Kazahaya, Y.; Nakamura, A.; Miyao, T.; Naito, S. Remarkable effect of addition of In and Pb on the reduction of N2O by CO over SiO2 supported Pd catalysts. Catal. Lett. 2007, 117, 73–78. [Google Scholar] [CrossRef]
- Wu, Z.; Wegener, E.C.; Tseng, H.-T.; Gallagher, J.R.; Harris, J.W.; Diaz, R.E.; Ren, Y.; Ribeiro, F.H.; Miller, J.T. Pd–In intermetallic alloy nanoparticles: Highly selective ethane dehydrogenation catalysts. Catal. Sci. Technol. 2016, 6, 6965–6976. [Google Scholar] [CrossRef]
- Stakheev, A.Y.; Smirnova, N.S.; Krivoruchenko, D.S.; Baeva, G.N.; Mashkovsky, I.S.; Yakushev, I.A.; Vargaftik, M.N. Single-atom Pd sites on the surface of Pd–In nanoparticles supported on γ-Al2O3: A CO-DRIFTS study. Mendeleev Commun. 2017, 27, 515–517. [Google Scholar] [CrossRef]
- Matori, K.A.; Wah, L.C.; Hashim, M.; Ismail, I.; Hafiz, M.; Zaid, M. Phase Transformations of α-Alumina Made from Waste Aluminum via a Precipitation Technique. Int. J. Mol. Sci. 2012, 13, 16812–16821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Wu, K.; Cao, J.; Wang, Y. Controlled synthesis of α-Al2O3 via the hydrothermal-pyrolysis method. IOP Conf. Ser. Mater. Sci. Eng. 2017, 207, 012004. [Google Scholar] [CrossRef]
- Lorenz, H.; Turner, S.; Lebedev, O.I.; Tendeloo, G.V.; Klötzer, B.; Rameshan, C.; Pfaller, K.; Penner, S. Pd–In2O3 interaction due to reduction in hydrogen: Consequences for methanol steam reforming. Appl. Catal. A Gen. 2010, 374, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Yea, J.; Gea, Q.; Liu, C. Effect of PdIn bimetallic particle formation on CO2 reduction over the Pd–In/SiO2 catalyst. Chem. Eng. Sci. 2015, 135, 193–201. [Google Scholar] [CrossRef]
- Smirnova, N.S.; Khramov, E.V.; Baeva, G.N.; Markov, P.V.; Bukhtiyarov, A.V.; Zubavichus, Y.V.; Stakheev, A.Y. An Investigation into the Bulk and Surface Phase Transformations of Bimetallic Pd-In/Al2O3 Catalyst during Reductive and Oxidative Treatments In Situ. Catalysts 2021, 11, 859. [Google Scholar] [CrossRef]
- Lentz, C.; Panahian Jand, S.; Melke, J.; Roth, C.; Kaghazchi, P. DRIFTS study of CO adsorption on Pt nanoparticles supported by DFT calculations. J. Mol. Catal. A Chemical. 2017, 426, 1–9. [Google Scholar] [CrossRef]
- Meunier, F.C. Relevance of IR Spectroscopy of Adsorbed CO for the Characterization of Heterogeneous Catalysts Containing Isolated Atoms. J. Phys. Chem. C. 2021, 125, 21810–21823. [Google Scholar] [CrossRef]
- Lear, T.; Marshall, R.; Lopez-Sanchez, A.J.; Jackson, S.D. The application of infrared spectroscopy to probe the surface morphology of alumina-supported palladium catalysts. J. Chem. Phys. 2005, 123, 174706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Tads, °C | CO Chemisorbed on PdIn (110), cm−1 | CO Chemisorbed on PdIn (111), cm−1 | ICO(111)/ICO(110) * |
---|---|---|---|
50 | 2055 | 2064 | 0.61 |
100 | 2051 | 2062 | 1.17 |
150 | 2046 | 2058 | 2.23 |
Surface | Site | Eads (eV) | n(CO), cm−1 | |
---|---|---|---|---|
Calculated | Experimental | |||
Pd(111) | linear | −1.17 | 2092 | 2086 |
Pd(111) | bridge | −1.51 | 1925 | 1942 |
Pd(111) | hollow | −1.62 | 1848 | 1896 |
Pd(100) | linear | −1.33 | 2122 | not observed |
Pd(100) | bridge | −1.71 | 1949 | 1977 |
Pd(100) | hollow | −1.58 | 1756 | not observed |
PdIn(110) | linear | −0.39 | 2058 | 2055 |
PdIn(110) | bridge | −0.09 | - | - |
PdIn(111) | linear | −0.77 | 2065 | 2064 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smirnova, N.S.; Mashkovsky, I.S.; Markov, P.V.; Bukhtiyarov, A.V.; Baeva, G.N.; Falsig, H.; Stakheev, A.Y. Local Structure of Pd1 Single Sites on the Surface of PdIn Intermetallic Nanoparticles: A Combined DFT and CO-DRIFTS Study. Catalysts 2021, 11, 1376. https://doi.org/10.3390/catal11111376
Smirnova NS, Mashkovsky IS, Markov PV, Bukhtiyarov AV, Baeva GN, Falsig H, Stakheev AY. Local Structure of Pd1 Single Sites on the Surface of PdIn Intermetallic Nanoparticles: A Combined DFT and CO-DRIFTS Study. Catalysts. 2021; 11(11):1376. https://doi.org/10.3390/catal11111376
Chicago/Turabian StyleSmirnova, Nadezhda S., Igor S. Mashkovsky, Pavel V. Markov, Andrey V. Bukhtiyarov, Galina N. Baeva, Hanne Falsig, and Alexander Y. Stakheev. 2021. "Local Structure of Pd1 Single Sites on the Surface of PdIn Intermetallic Nanoparticles: A Combined DFT and CO-DRIFTS Study" Catalysts 11, no. 11: 1376. https://doi.org/10.3390/catal11111376
APA StyleSmirnova, N. S., Mashkovsky, I. S., Markov, P. V., Bukhtiyarov, A. V., Baeva, G. N., Falsig, H., & Stakheev, A. Y. (2021). Local Structure of Pd1 Single Sites on the Surface of PdIn Intermetallic Nanoparticles: A Combined DFT and CO-DRIFTS Study. Catalysts, 11(11), 1376. https://doi.org/10.3390/catal11111376