Influence of Synthesis Approach on Controlled Microstructures and Photocatalytic Properties of Ag/AgBr-Activated Carbon Composites on Visible Light Degradation of Tetracycline
Abstract
:1. Introduction
2. Results and Discussions
3. Experimental Section
3.1. Materials
3.2. Activated Carbon (ACK)
3.2.1. Preparation of TP-AABR-ACK through Thermal Polyol Route
3.2.2. Preparation of DP-AABR-ACK through Deposition-Precipitation Route
3.3. Characterization
3.4. Measurement of Photocatalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Liu, P.; Feng, Y.; Yang, F. Fate of antibiotics during wastewater treatment and antibiotic distribution in the effluent-receiving waters of the Yellow Sea, northern China. Mar. Poll. Bull. 2013, 73, 282–290. [Google Scholar] [CrossRef]
- Fernandes, A.; Oliveira, C.; Pacheco, M.J.; Ciríaco, L.; Lopes, A. Anodic oxidation of oxytetracycline: Influence of the experimental conditions on the degradation rate and mechanism. J. Electrochem. Sci. Eng. 2014, 4, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Han, Z.; Zhao, S.; Zhang, Q.; Shen, X.; Lv, H.; Liu, J.; Li, B. In-situ growth of Ag/AgBr nanoparticles on a metal organic framework with enhanced visible light photocatalytic performance. Mater. Sci. Semicond. Process. 2021, 133, 105973. [Google Scholar] [CrossRef]
- Chao, Y.; Zhu, W.; Yan, B.; Lin, Y.; Xun, S.; Ji, H.; Wu, X.; Li, H.; Han, C. Macroporous polystyrene resins as adsorbents for the removal of tetracycline antibiotics from an aquatic environment. J. Appl. Polym. Sci. 2014, 131, 40561. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, Y.; Shen, M.; Li, W.; Xia, W. The facile synthesis and enhanced photocatalytic properties of ZnO@ ZnS modified with Ag0 via in-situ ion exchange. Colloids. Surf. A Physicochem. Eng. Aspects 2020, 591, 124556. [Google Scholar] [CrossRef]
- Fang, Y.; Li, Y.; Zhou, F.; Gu, P.; Liu, J.; Chen, D.; Li, N.; Xu, Q.; Lu, J. An Efficient Photocatalyst Based on Black TiO2 Nanoparticles and Porous Carbon with High Surface Area: Degradation of Antibiotics and Organic Pollutants in Water. Chem. Plus Chem. 2019, 84, 474–480. [Google Scholar]
- Zhao, X.; Lu, Z.; Wei, M.; Zhang, M.; Dong, H.; Yi, C.; Ji, R.; Yan, Y. Synergetic effect of carbon sphere derived from yeast with magnetism and cobalt oxide nanochains towards improving photodegradation activity for various pollutants. Appl. Catal. B Environ. 2018, 220, 137–147. [Google Scholar] [CrossRef]
- Ye, Y.; Zang, Z.; Zhou, T.; Dong, F.; Lu, S.; Tang, X.; Wei, W.; Zhang, Y. Theoretical and experimental investigation of highly photocatalytic performance of CuInZnS nanoporous structure for removing the NO gas. J. Catal. 2018, 357, 100–107. [Google Scholar] [CrossRef]
- Bhachu, D.S.; Moniz, S.J.; Sathasivam, S.; Scanlon, D.O.; Walsh, A.; Bawaked, S.M.; Mokhtar, M.; Obaid, A.Y.; Parkin, I.P.; Tang, J. Bismuth oxyhalides: Synthesis, structure and photoelectrochemical activity. Chem. Sci. 2016, 7, 4832–4841. [Google Scholar] [CrossRef] [Green Version]
- Bano, Z.; Saeed, R.Y.; Zhu, S.; Xia, M.; Mao, S.; Lei, W.; Wang, F. Mesoporous CuS nanospheres decorated rGO aerogel for high photocatalytic activity towards Cr (VI) and organic pollutants. Chemosphere 2020, 246, 125846. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Chen, P.; Liu, M. High-performance visible-light-driven plasmonic photocatalysts Ag/AgCl with controlled size and shape using graphene oxide as capping agent and catalyst promoter. Langmuir 2013, 29, 9259–9268. [Google Scholar] [CrossRef]
- Yan, T.; Zhang, H.; Luo, Q.; Ma, Y.; Lin, H.; You, J. Controllable synthesis of plasmonic Ag/AgBr photocatalysts by a facile one-pot solvothermal route. Chem. Eng. J. 2013, 232, 564–572. [Google Scholar] [CrossRef]
- Errokh, A.; Cheikhrouhou, W.; Ferraria, A.M.; do Rego, A.M.B.; Boufi, S. Cotton decorated with Cu2O-Ag and Cu2O-Ag-AgBr NPs via an in-situ sacrificial template approach and their antibacterial efficiency. Colloids Surf. B Biointerface 2021, 200, 111600. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Wang, Q.; Liu, Z.; Zhang, H.; Wang, Y.; Jin, R.; Gao, S. Enhanced the photoelectrocatalytic performance of TiO2 nanotube arrays by the synergistic sensitization of Ag–AgBr nanospheres. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 227, 117674. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.-Q.; Lin, K.-S.; Yu, Y. Novel Ag@ AgCl@ AgBr heterostructured nanotubes as high-performance visible-light photocatalysts for decomposition of dyes. Catal. Today 2018, 314, 10–19. [Google Scholar] [CrossRef]
- Li, B.; Wang, H.; Zhang, B.; Hu, P.; Chen, C.; Guo, L. Facile synthesis of one dimensional AgBr@ Ag nanostructures and their visible light photocatalytic properties. ACS Appl. Mater. Interface 2013, 5, 12283–12287. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, F.; Huang, Z.; Guo, C.-Y.; Qiao, H.; Qiu, X.; Wang, Z.; Jiang, W.; Yuan, G. Facile synthesis of Ag/AgBr/RGO nanocomposite as a highly efficient sunlight plasmonic photocatalyst. Catal. Commun. 2015, 59, 140–144. [Google Scholar] [CrossRef]
- Xu, X.; Shen, X.; Zhou, H.; Qiu, D.; Zhu, G.; Chen, K. Facile microwave-assisted synthesis of monodispersed ball-like Ag@ AgBr photocatalyst with high activity and durability. Appl. Catal. A Gen. 2013, 455, 183–192. [Google Scholar] [CrossRef]
- Parale, V.G.; Kim, T.; Phadtare, V.D.; Yadav, H.M.; Park, H.-H. Enhanced photocatalytic activity of a mesoporous TiO2 aerogel decorated onto three-dimensional carbon foam. J. Mol. Liq. 2019, 277, 424–433. [Google Scholar] [CrossRef]
- Li, G.; Huang, B.; Pan, Z.; Su, X.; Shao, Z.; An, L. Advances in three-dimensional graphene-based materials: Configurations, preparation and application in secondary metal (Li, Na, K, Mg, Al)-ion batteries. Energy Environ. Sci. 2019, 12, 2030–2053. [Google Scholar] [CrossRef]
- Ananthanarayanan, A.; Wang, X.; Routh, P.; Sana, B.; Lim, S.; Kim, D.H.; Lim, K.H.; Li, J.; Chen, P. Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing. Adv. Funct. Mater. 2014, 24, 3021–3026. [Google Scholar] [CrossRef]
- Che, H.; Che, G.; Zhou, P.; Liu, C.; Dong, H. Yeast-derived carbon sphere as a bridge of charge carriers towards to enhanced photocatalytic activity of 2D/2D Cu2WS4/g-C3N4 heterojunction. J. Colloid Interface Sci. 2019, 546, 262–275. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhou, S.; Ma, F.; Xu, Y. Synergistic effects and kinetics of rGO-modified TiO2 nanocomposite on adsorption and photocatalytic degradation of humic acid. J. Environ. Manag. 2019, 235, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Cen, C.; Zheng, M.; Wang, Y.; Wu, Z.; Teng, Z. A facile electrostatic droplets assisted synthesis of copper nanoparticles embedded magnetic carbon microspheres for highly effective catalytic reduction of 4-nitrophenol and Rhodamine B. Mater. Chem. Phys. 2020, 253, 123444. [Google Scholar] [CrossRef]
- Sanni, S.; Viljoen, E.; Ofomaja, A. Three-dimensional hierarchical porous carbon structure derived from pinecone as a potential catalyst support in catalytic remediation of antibiotics. RSC Adv. 2020, 10, 8717–8728. [Google Scholar] [CrossRef]
- Fu, Y.; Xu, P.; Huang, D.; Zeng, G.; Lai, C.; Qin, L.; Li, B.; He, J.; Yi, H.; Cheng, M. Au nanoparticles decorated on activated coke via a facile preparation for efficient catalytic reduction of nitrophenols and azo dyes. Appl. Surf. Sci. 2019, 473, 578–588. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, W.-S.; Lin, L.; Gao, G.-Q.; Guo, H.-L.; Du, H.; Xu, A.-W. Facile synthesis of the novel Ag3VO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability. J. Phys. Chem. C 2013, 117, 5894–5900. [Google Scholar] [CrossRef]
- Lou, Z.; Huang, B.; Qin, X.; Zhang, X.; Cheng, H.; Liu, Y.; Wang, S.; Wang, J.; Dai, Y. One-step synthesis of AgCl concave cubes by preferential overgrowth along <111> and <110> directions. Chem. Commun. 2012, 48, 3488–3490. [Google Scholar] [CrossRef]
- Lin, Z.; Xiao, J.; Yan, J.; Liu, P.; Li, L.; Yang, G. Ag/AgCl plasmonic cubes with ultrahigh activity as advanced visible-light photocatalysts for photodegrading dyes. J. Mater. Chem. A 2015, 3, 7649–7658. [Google Scholar] [CrossRef]
- Sanni, S.; Viljoen, E.; Ofomaja, A. Accelerated electron transport and improved photocatalytic activity of Ag/AgBr under visible light irradiation based on conductive carbon derived biomass. Catal. Lett. 2019, 149, 3027–3040. [Google Scholar] [CrossRef]
- Sanni, S.; Viljoen, E.; Ofomaja, A. Tailored synthesis of Ag/AgBr nanostructures coupled activated carbon with intimate interface interaction for enhanced photodegradation of tetracycline. Process Saf. Environ. Prot. 2021, 146, 20–34. [Google Scholar] [CrossRef]
- He, J.; Yang, J.; Jiang, F.; Liu, P.; Zhu, M. Photo-assisted peroxymonosulfate activation via 2D/2D heterostructure of Ti3C2/g-C3N4 for degradation of diclofenac. Chemosphere 2020, 258, 127339. [Google Scholar] [CrossRef]
- Guo, H.; Niu, C.-G.; Wen, X.-J.; Zhang, L.; Liang, C.; Zhang, X.-G.; Guan, D.-L.; Tang, N.; Zeng, G.-M. Construction of highly efficient and stable ternary AgBr/Ag/PbBiO2Br Z-scheme photocatalyst under visible light irradiation: Performance and mechanism insight. J. Colloid Interface Sci. 2018, 513, 852–865. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Z.-R.; Fu, X.; Xu, Y.-J. Nanocomposite of Ag–AgBr–TiO2 as a photoactive and durable catalyst for degradation of volatile organic compounds in the gas phase. App. Catal. B Environ. 2011, 106, 445–452. [Google Scholar] [CrossRef]
- He, F.; Wang, Z.; Li, Y.; Peng, S.; Liu, B. The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts. App. Catal. B Environ. 2020, 269, 118828. [Google Scholar] [CrossRef]
- Madigasekara, I.H.K.; Perera, H.C.S.; Kumari, J.M.K.W.; Senadeera, G.K.R.; Dissanayake, M.A.K.L. Photoanode modification of dye-sensitized solar cells with Ag/AgBr/TiO2 nanocomposite for enhanced cell efficiency. Sol. Energy 2021, 230, 59–72. [Google Scholar] [CrossRef]
- Sui, Y.; Su, C.; Yang, X.; Hu, J.; Lin, X. Ag-AgBr nanoparticles loaded on TiO2 nanofibers as an efficient heterostructured photocatalyst driven by visible light. J. Mol. Catal. A Chem. 2015, 410, 226–234. [Google Scholar] [CrossRef]
- López-Peñalver, J.J.; Sánchez-Polo, M.; Gómez-Pacheco, C.V.; Rivera-Utrilla, J. Photodegradation of tetracyclines in aqueous solution by using UV and UV/H2O2 oxidation processes. J. Chem. Technol. Biotechnol. 2010, 85, 1325–1333. [Google Scholar] [CrossRef]
- Feng, Y.; Zhou, H.; Liu, G.; Qiao, J.; Wang, J.; Lu, H.; Yang, L.; Wu, Y. Methylene blue adsorption onto swede rape straw (Brassica napus L.) modified by tartaric acid: Equilibrium, kinetic and adsorption mechanisms. Bioresour. Technol. 2012, 125, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Petroski, J.; El-Sayed, M.A. FTIR study of the adsorption of the capping material to different platinum nanoparticle shapes. J. Phys. Chem. A 2003, 107, 8371–8375. [Google Scholar] [CrossRef]
- Zhu, M.; Chen, P.; Liu, M. Graphene oxide enwrapped Ag/AgX (X= Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst. ACS Nano 2011, 5, 4529–4536. [Google Scholar] [CrossRef] [PubMed]
- Sanni, S.; Viljoen, E.; Ofomaja, A. Design of ordered Ag/AgBr nanostructures coupled activated carbon with enhanced charge carriers separation efficiency for photodegradation of tetracycline under visible light. J. Mol. Liq. 2020, 299, 112032. [Google Scholar] [CrossRef]
- Attia, Y.A.; Mohamed, Y.M.A. Silicon-grafted Ag/AgX/rGO nanomaterials (X = Cl or Br) as dip-photocatalysts for highly efficient p-nitrophenol reduction and paracetamol production. Appl. Organomet. Chem. 2019, 33, e4757. [Google Scholar] [CrossRef]
- Singh, Y.D.; Mahanta, P.; Bora, U. Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renew. Energy 2017, 103, 490–500. [Google Scholar] [CrossRef]
- Jiang, J.; Li, H.; Zhang, L. New insight into daylight photocatalysis of AgBr@ Ag: Synergistic effect between semiconductor photocatalysis and plasmonic photocatalysis. Chem. A Eur. J. 2012, 18, 6360–6369. [Google Scholar] [CrossRef] [PubMed]
- Sanni, S.; Modise, S.; Viljoen, E.; Ofomaja, A. Enhanced degradation of dye mixtures: Physicochemical and electrochemical properties of titania dispersed on clinoptilolite, synergistic influence. SN Appl. Sci. 2020, 2, 1–10. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.; Wang, S.; Li, L.; Liu, X. Influence of tunable pore size on photocatalytic and photoelectrochemical performances of hierarchical porous TiO2/C nanocomposites synthesized via dual-Templating. Appl. Catal. B Environ. 2018, 224, 341–349. [Google Scholar] [CrossRef]
- Bhatt, D.K.; Patel, U.D. Mechanism underlying visible-light photocatalytic activity of Ag/AgBr: Experimental and theoretical approaches. J. Phys. Chem. Solids 2019, 135, 109118. [Google Scholar] [CrossRef]
- Deng, F.; Zhao, L.; Luo, X.; Luo, S.; Dionysiou, D.D. Highly efficient visible-light photocatalytic performance of Ag/AgIn5S8 for degradation of tetracycline hydrochloride and treatment of real pharmaceutical industry wastewater. Chem. Eng. J. 2018, 333, 423–433. [Google Scholar] [CrossRef]
- Soltani, T.; Tayyebi, A.; Lee, B.-K. Photolysis and photocatalysis of tetracycline by sonochemically heterojunctioned BiVO4/reduced graphene oxide under visible-light irradiation. J. Environ. Manag. 2019, 232, 713–721. [Google Scholar] [CrossRef]
- Hu, P.; Cao, Y.J.D.T. A new chemical route to a hybrid nanostructure: Room-temperature solid-state reaction synthesis of Ag@ AgCl with efficient photocatalysis. Dalton Trans. 2012, 41, 8908–8912. [Google Scholar] [CrossRef]
- Ren, Y.; Dong, T.; Ding, S.; Liu, X.; Zheng, H.; Gao, L.; Hu, J. AgBr Nanoparticles Anchored on CdS Nanorods as Photocatalysts for H2 Evolution. ACS Appl. Nano Mater. 2021, 4, 9274–9282. [Google Scholar] [CrossRef]
- De Moraes, N.P.; Valim, R.B.; da Silva Rocha, R.; da Silva, M.L.C.P.; Campos, T.M.B.; Thim, G.P.; Rodrigues, L.A. Effect of synthesis medium on structural and photocatalytic properties of ZnO/carbon xerogel composites for solar and visible light degradation of 4-chlorophenol and bisphenol A. Colloids Surf. A Physicochem. Eng. Asp. 2020, 584, 124034. [Google Scholar] [CrossRef]
- Xu, J.; Wang, W.; Shang, M.; Sun, S.; Ren, J.; Zhang, L. Efficient visible light induced degradation of organic contaminants by Bi2WO6 film on SiO2 modified reticular substrate. Appl. Catal. B Environ. 2010, 93, 227–232. [Google Scholar] [CrossRef]
- Yan, X.; Wang, X.; Gu, W.; Wu, M.; Yan, Y.; Hu, B.; Che, G.; Han, D.; Yang, J.; Fan, W. Single-crystalline AgIn (MoO4)2 nanosheets grafted Ag/AgBr composites with enhanced plasmonic photocatalytic activity for degradation of tetracycline under visible light. Appl. Catal. B Environ. 2015, 164, 297–304. [Google Scholar] [CrossRef]
- Xu, D.; Liu, K.; Shi, W.; Chen, M.; Luo, B.; Xiao, L.; Gu, W. Ag-decorated K2Ta2O6 nanocomposite photocatalysts with enhanced visible-light-driven degradation activities of tetracycline (TC). Ceram. Int. 2015, 41, 4444–4451. [Google Scholar] [CrossRef]
- Yang, S.-F.; Niu, C.-G.; Huang, D.-W.; Zhang, H.; Zeng, G.-M. Ag/AgCl nanoparticles-modified CdSnO3·3H2O nanocubes photocatalyst for the degradation of methyl orange and antibiotics under visible light irradiation. J. Colloid Interface Sci. 2017, 505, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Jiang, L.; Chen, X.; Leng, L.; Wang, H.; Wu, Z.; Xiong, T.; Liang, J.; Zeng, G. Highly efficient visible-light-induced photoactivity of Z-scheme Ag2CO3/Ag/WO3 photocatalysts for organic pollutant degradation. Environ. Sci. Nano 2017, 4, 2175–2185. [Google Scholar] [CrossRef]
- Wang, T.; Quan, W.; Jiang, D.; Chen, L.; Li, D.; Meng, S.; Chen, M. Synthesis of redox-mediator-free direct Z-scheme AgI/WO 3 nanocomposite photocatalysts for the degradation of tetracycline with enhanced photocatalytic activity. Chem. Eng. J. 2016, 300, 280–290. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.; Ji, M.; Wang, B.; Yin, S.; Zhang, Q.; Chen, Z.; Li, H. Advanced photocatalytic performance of graphene-like BN modified BiOBr flower-like materials for the removal of pollutants and mechanism insight. Appl. Catal. B Environ. 2016, 183, 254–262. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Huang, L.; Zhang, F.; Wang, H.; Wang, C.; Zhang, Y.; Xie, M.; Li, H. Enhanced photocatalytic degradation and antibacterial performance by GO/CN/BiOI composites under LED light. Appl. Surf. Sci. 2019, 497, 143753. [Google Scholar] [CrossRef]
- Majumdar, A.; Pal, A. Optimized synthesis of Bi4NbO8Cl perovskite nanosheets for enhanced visible light assisted photocatalytic degradation of tetracycline antibiotics. J. Environ. Chem. Eng. 2020, 8, 103645. [Google Scholar] [CrossRef]
- Zhang, T.; Yin, Q.; Zhang, M.; Zhang, S.; Shao, Y.; Fang, L.; Yan, Q.; Sun, X. Enhanced photocatalytic activity of AgBr photocatalyst via constructing heterogeneous junctions with reduced graphene. J. Mater. Sci. Mater. Electron. 2021, 32, 15331–15342. [Google Scholar] [CrossRef]
- Obregón, S.; Zhang, Y.; Colón, G. Cascade charge separation mechanism by ternary heterostructured BiPO4/TiO2/gC3N4 photocatalyst. Appl. Catal. B Environ. 2016, 184, 96–103. [Google Scholar] [CrossRef]
Catalyst | Catalyst Mass (g), TC Concentration (ppm) | Light Source | % Degradation | References |
---|---|---|---|---|
Ag/AgBr/AgIn(MoO4)2 | 0.1, 10 | 500 W Xe lamp | 42 after 40 min | [55] |
AgI-WO3 | 0.04, 35 | 300 W Xe lamp | 75 after 60 min | [56] |
Ag-K2Ta2O6 | 0.1, 20 | 300 W Xe lamp | 50 after 270 min | [57] |
Ag/Bi3TaO7 | 0.05, 10 | 250 W Xe lamp | 85 after 60 min | [58] |
Ag2CO3/Ag/WO3 | 0.1, 10 | 300 W Xe lamp | 81 after 90 min | [59] |
graphene-like BN/BiOBr | 0.05, 20 | 300 W Xe lamp | 75 after 80 min | [60] |
GO/CN/BiOI | 0.03, 20 | 35 W LED track light | 74, after 100 min | [61] |
Bi4NbO8Cl perovskite | 0.01, 20 | 18-W LED bulb | 79, after 60 min | [62] |
TP-AABR-ACKDP-AABR-ACK | 0.045, 15 | 36 W Visible LED Light | 92 after 180 min 81 after 180 min | This Study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanni, S.O.; Brink, H.G.; Viljoen, E.L. Influence of Synthesis Approach on Controlled Microstructures and Photocatalytic Properties of Ag/AgBr-Activated Carbon Composites on Visible Light Degradation of Tetracycline. Catalysts 2021, 11, 1396. https://doi.org/10.3390/catal11111396
Sanni SO, Brink HG, Viljoen EL. Influence of Synthesis Approach on Controlled Microstructures and Photocatalytic Properties of Ag/AgBr-Activated Carbon Composites on Visible Light Degradation of Tetracycline. Catalysts. 2021; 11(11):1396. https://doi.org/10.3390/catal11111396
Chicago/Turabian StyleSanni, Saheed O., Hendrik G. Brink, and Elvera L. Viljoen. 2021. "Influence of Synthesis Approach on Controlled Microstructures and Photocatalytic Properties of Ag/AgBr-Activated Carbon Composites on Visible Light Degradation of Tetracycline" Catalysts 11, no. 11: 1396. https://doi.org/10.3390/catal11111396
APA StyleSanni, S. O., Brink, H. G., & Viljoen, E. L. (2021). Influence of Synthesis Approach on Controlled Microstructures and Photocatalytic Properties of Ag/AgBr-Activated Carbon Composites on Visible Light Degradation of Tetracycline. Catalysts, 11(11), 1396. https://doi.org/10.3390/catal11111396