Chemoenzymatic Stereodivergent Synthesis of All the Possible Stereoisomers of the 2,3-Dimethylglyceric Acid Ethyl Ester
Abstract
:1. Introduction
2. Results and Discussion
2.1. Enzymatic Kinetic Resolution of the Racemic α-Acetolactate: Synthesis of Ethyl (2R,3S)-2,3-Dimethylgycerate (2R,3S)-4
2.2. Baker’s Yeast Catalyzed Reduction of the (R)-α-Acetolactate (2S)-3: Synthesis of Ethyl (2S,3S)-2,3-Dimethylgycerate (2S,3S)-4
2.3. Chemoenzymatic Synthesis of the Enantiopure ethyl (2S,3R)-2,3-Dimethylgycerate (2S,3R)-4
2.4. Synthesis of the Ethyl (2R,3R)-2,3-Dimethylgycerate (2R,3R)-4 by Chemoenzymatic C3 Epimerization of the (2R,3S)-4
3. Materials and Methods
3.1. General Information
3.2. AAR Activity Assay
3.3. Synthesis of Racemic Ethyl α-Acetolactate 3
3.4. Synthesis of Ethyl (2R,3S)-2-Methyl-2,3-Dihydroxybutyrate (2R,3S)-4
3.5. Synthesis of Ethyl (2S,3S)-2-Methyl-2,3-Dihydroxybutyrate (2S,3S)-4
3.6. Synthesis of Ethyl (2S,3R)-2-Methyl-2,3-Dihydroxybutyrate (2S,3R)-4
3.7. Synthesis of Ethyl (2R,3R)-2-Methyl-2,3-Dihydroxybutyrate (2R,3S)-4
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 2015, 14, 111–129. [Google Scholar] [CrossRef] [Green Version]
- Batista, A.N.L.; dos Santos, F.M.J.; Batista, M.J.; Cass, Q.B. Enantiomeric Mixtures in Natural Product Chemistry: Separation and Absolute Configuration Assignment. Molecules 2018, 23, 492. [Google Scholar] [CrossRef] [Green Version]
- Hagen, T.J.; Helgren, T.R. Chirality and Drug Discovery. In Burger’s Medicinal Chemistry, Drug Discovery and Development, 8th ed.; Abraham, D.J., Myers, M., Eds.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2021; pp. 1–45. [Google Scholar] [CrossRef]
- Smith, S.W. Chiral Toxicology: It’s the Same Thing … Only Different. Toxicol. Sci. 2009, 110, 4–30. [Google Scholar] [CrossRef] [PubMed]
- De Joardera, D.; Sarkar, R.; Mukhopadhyay, C. Sustainable green technologies for synthesis of potential drugs targeted toward tropical diseases. In Green Approaches in Medicinal Chemistry for Sustainable Drug Design, 1st ed.; Banik, B., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 75–93. [Google Scholar] [CrossRef]
- Arnold, F.H. Innovation by Evolution: Bringing New Chemistry to Life (Nobel Lecture). Angew. Chem. Int. Ed. 2019, 58, 14420–14426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, J.; Rosenthal, K.; Snajdrova, R.; Kittelmann, M.; Lütz, S. The Development of Biocatalysis as a Tool for Drug Discovery. Chimia 2020, 74, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Iqbal, H.M.N. Tailoring Multipurpose Biocatalysts via Protein Engineering Approaches: A Review. Catal. Lett. 2019, 149, 2204–2217. [Google Scholar] [CrossRef]
- Fryszkowska, A.; Devine, P.N. Biocatalysis in drug discovery and development. Curr. Opin. Chem. Biol. 2020, 55, 151–160. [Google Scholar] [CrossRef]
- Goodwin, N.C.; Morrison, J.P.; Fuerst, D.E.; Hadi, T. Biocatalysis in medicinal chemistry: Challenges to access and drivers for adoption. ACS Med. Chem. Lett. 2019, 10, 1363–1366. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarty, S.; Romero, E.O.; Pyser, J.B.; Yazarians, J.A.; Narayan, A.R.H. Chemoenzymatic total synthesis of natural products. Acc. Chem. Res. 2021, 54, 1374–1384. [Google Scholar] [CrossRef]
- Huffman, M.A.; Fryszkowska, A.; Alvizo, O.; Borra-Garske, M.; Campos, K.R.; Canada, K.A.; Devine, P.N.; Duan, D.; Forstater, J.H.; Grosser, S.T.; et al. Design of an in vitro biocatalytic cascade for the manufacture of islatravir. Science 2019, 366, 1255–1259. [Google Scholar] [CrossRef]
- Giovannini, P.P.; Müller, M.; Presini, F.; Baraldi, S.; Ragno, D.; Di Carmine, G.; Jacoby, C.; Bernacchia, G.; Bortolini, O. A one-pot two-step enzymatic pathway for the synthesis of enantiomerically enriched vicinal diols. Eur. J. Org. Chem. 2021, 2021, 973–978. [Google Scholar] [CrossRef]
- Mayorga, H.; Knapp, H.; Winterhalter, P.; Duque, C. Glycosidically bound flavor compounds of cape gooseberry (Physalis peruviana L.). J. Agric. Food Chem. 2001, 49, 1904–1908. [Google Scholar] [CrossRef]
- Liu, N.; Luo, X.; Tian, Y.; Lai, D.; Zhang, L.; Lin, F.; Xu, H. The stereoisomeric Bacillus subtilis HN09 metabolite 3,4-dihydroxy-3-methyl-2-pentanone induces disease resistance in Arabidopsis via different signaling pathways. BMC Plant Biol. 2019, 19, 384. [Google Scholar] [CrossRef] [Green Version]
- Jang, M.-Y.; Cho, J.-Y.; Cho, J.-I.; Moon, J.-H.; Park, K.-H. Isolation of compounds with antioxidative activity from quickly fermented soy-based foods. Food Sci. Biotechnol. 2006, 15, 214–219. [Google Scholar]
- Vicart, N.; Ortholand, J.-Y.; Emeric, G.Y.; Greiner, A. Synthesis and Absolute configuration of Phomozin. Tetrahedron Lett. 1994, 35, 3917–3918. [Google Scholar] [CrossRef]
- Mazars, C.; Rossignol, M.; Auriol, P.; Klaebe, A. Phomozin, a phytotoxin from Phomopsis helianthi, the causal agent of steam canker of sunflower. Phytochemistry 1990, 29, 3441–3444. [Google Scholar] [CrossRef]
- Cheng, K.-C.; Chang, C.-I.; Lin, Y.-C.; Liu, C.-I.; Zeng, Y.-C.; Lin, Y.-S. Secoiridoids from the seed of Gonocaryum calleryanum and their inhibitory potential on LPS-induced tumor necrosis factor and nitric oxide production. Molecules 2018, 23, 1633. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, T.; Sakamoto, M.; Ohtani, K.; Ito, A.; Kasai, R.; Yamasaki, K.; Padorina, W.G. Secoiridoid and flavonoid glycosides from Gonocaryum calleryanum. Phytochemistry 1995, 39, 115–120. [Google Scholar] [CrossRef]
- Kawai, K.; Amano, T.; Nishida, R.; Kuwahara, Y.; Fukami, H. Clerodendrins from Clerodendron trichotomum and their feeding stimulant activity for the turnip sawfly. Phytochemistry 1998, 49, 1975–1980. [Google Scholar] [CrossRef]
- Kawai, K.; Nishida, R.; Fukami, H. Clerodendrin I, a new neoclerodane diterpenoid from Clerodendron trichotomum. Biotechnol. Biochem. 1999, 63, 1795–1797. [Google Scholar] [CrossRef] [PubMed]
- Castro, A.; Coll, J. Neo-Clerodane diterpenoids from Verbenaceae: Structural elucidation and biological activity. Nat. Prod. Commun. 2008, 3, 1021–1031. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-P.; Lai, R.; Yao, Y.G.; Zhang, Z.-K.; Pu, E.-T.; Cai, Y.-H.; Luo, X.-D. Induced furoeudesmanes: A defense mechanism against stress in Laggera pterodonta, a Chinese herbal plant. Org. Lett. 2013, 15, 4940–4943. [Google Scholar] [CrossRef]
- Jenett-Siems, K.; Kaloga, M.; Eich, E. Ipangulines, the first pyrrolizidine alkaloids from the convolvulaceae. Phytochemistry 1993, 34, 437–440. [Google Scholar] [CrossRef]
- Colegate, S.M.; Gardner, D.R.; Davis, T.Z.; Betz, J.M.; Panter, K.E. Dehydropyrrolizidine alkaloids in two Cryptantha species: Including Two New Open chain diesters one of which is amphoteric. Phytochem. Anal. 2013, 24, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Zalkow, L.H.; Glinski, J.A.; Gelbaum, L.T.; Fleischmann, T.J.; McGowan, L.S.; Gordon, M.M. Synthesis of pyrrolizidine alkaloids indicine, intermedine, lycopsamine, and analogues and their N-oxides. Potential antitumor agents. J. Med. Chem. 1985, 28, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Minatani, T.; Ohta, H.; Sakai, E.; Tanaka, T.; Goto, K.; Watanabe, D.; Miyaguchi, H. Analysis of toxic Veratrum alkaloids in plant samples from an accidental poisoning case. Forensic Toxicol. 2018, 36, 200–210. [Google Scholar] [CrossRef]
- Cong, Y.; Wu, Y.; Shen, S.; Liu, X.; Guo, J. A structure-activity relationship between the Veratrum alkaloids on the antihypertension and DNA damage activity in mice. Chem. Biodivers. 2020, 17, e1900473. [Google Scholar] [CrossRef] [PubMed]
- Niitsu, A.; Harada, M.; Yamagaki, T.; Tachibana, K. Conformations of 3-carboxylic esters essential for neurotoxicity in veratrum alkaloids are loosely restricted and fluctuate. Bioorg. Med. Chem. 2008, 16, 3025–3031. [Google Scholar] [CrossRef]
- Wei, J.; Wu, L.; Wang, H.-X.; Zhang, X.; Tse, C.W.; Zhou, C.-Y.; Huang, J.-S.; Che, C.-M. Iron-catalyzed highly enantioselective cis-dihydroxylation of trisubstituted alkenes with aqueous H2O2. Angew. Chem. Int. Ed. 2020, 59, 16561–16571. [Google Scholar] [CrossRef]
- Bortolini, O.; Fantin, G.; Fogagnolo, M.; Giovannini, P.P.; Venturi, V.; Pacifico, S.; Massi, A. α-Diketones as acyl anion equivalents: A non-enzymatic thiamine-promoted route to aldehyde-ketone coupling in PEG400 as recyclable medium. Tetrahedron 2011, 67, 8110–8115. [Google Scholar] [CrossRef]
- Buisson, D.; Baucherel, X.; Levoirier, E.; Juge, S. Baker’s yeast reduction of α-alkyl-α-hydroxy-β-keto esters. Tetrahedron Lett. 2000, 41, 1389–1392. [Google Scholar] [CrossRef]
- Cram, D.J.; Abd Elhafez, F.A. Studies in stereochemistry. X. The Rule of “Steric Control of Asymmetric Induction” in the syntheses of acyclic systems. J. Am. Chem. Soc. 1952, 74, 5828–5835. [Google Scholar] [CrossRef]
- Fishman, A.; Eroshov, M.; Sheffer Dee-Noor, S.; van Mil, J.; Cogan, U.; Effenberger, R. A two-Step enzymatic resolution process for large-scale production of (S)- and (R)-Ethyl-3-Hydroxybutyrate. Biotechnol. Bioeng. 2001, 74, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Henke, E.; Pleiss, J.; Bornscheuer, U.T. Activity of lipases and esterases towards tertiary alcohols: Insights into structure-function relationships. Angew. Chem. Int. Ed. 2002, 41, 3211–3213. [Google Scholar] [CrossRef]
- Shi, X.-X.; Shen, C.-L.; Yao, J.-Z.; Nie, L.-D.; Quan, N. Inversion of secondary chiral alcohols in toluene with the tunable complex of R3N–R’COOH. Tetrahedron Asymmetry 2010, 21, 277–284. [Google Scholar] [CrossRef]
- Anelli, P.L.; Biffi, C.; Montanari, F.; Quici, S. Fast and selective oxidation of primary alcohols to aldehydes or to carboxylic acids and of secondary alcohols to ketones mediated by oxoammonium salts under two-phase conditions. J. Org. Chem. 1987, 52, 2559–2562. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Presini, F.; Di Carmine, G.; Giovannini, P.P.; Cristofori, V.; Lerin, L.A.; Bortolini, O.; Trapella, C.; Fantinati, A. Chemoenzymatic Stereodivergent Synthesis of All the Possible Stereoisomers of the 2,3-Dimethylglyceric Acid Ethyl Ester. Catalysts 2021, 11, 1440. https://doi.org/10.3390/catal11121440
Presini F, Di Carmine G, Giovannini PP, Cristofori V, Lerin LA, Bortolini O, Trapella C, Fantinati A. Chemoenzymatic Stereodivergent Synthesis of All the Possible Stereoisomers of the 2,3-Dimethylglyceric Acid Ethyl Ester. Catalysts. 2021; 11(12):1440. https://doi.org/10.3390/catal11121440
Chicago/Turabian StylePresini, Francesco, Graziano Di Carmine, Pier Paolo Giovannini, Virginia Cristofori, Lindomar Alberto Lerin, Olga Bortolini, Claudio Trapella, and Anna Fantinati. 2021. "Chemoenzymatic Stereodivergent Synthesis of All the Possible Stereoisomers of the 2,3-Dimethylglyceric Acid Ethyl Ester" Catalysts 11, no. 12: 1440. https://doi.org/10.3390/catal11121440
APA StylePresini, F., Di Carmine, G., Giovannini, P. P., Cristofori, V., Lerin, L. A., Bortolini, O., Trapella, C., & Fantinati, A. (2021). Chemoenzymatic Stereodivergent Synthesis of All the Possible Stereoisomers of the 2,3-Dimethylglyceric Acid Ethyl Ester. Catalysts, 11(12), 1440. https://doi.org/10.3390/catal11121440