Catalytic Reaction of Carbon Dioxide with Methane on Supported Noble Metal Catalysts
Abstract
:1. Introduction
2. The Thermodynamics of the CO2 + CH4 Reaction
3. Comparing the Activity of Different Catalysts in the CO2 + CH4 Reaction
4. Dry Reforming of Methane on Supported Noble Metal Catalysts
4.1. Supported Rhodium
4.2. Supported Ruthenium
4.3. Supported Platinum
4.4. Supported Palladium and Iridium
5. Adsorption, Dissociation, and Activation of CO2 on Noble Metals and on Supported Noble Metal Catalysts
6. Interaction of Methane with the Noble Metals and Supported Noble Metal Catalysts
7. Surface Species Formed in the Interaction and in the Reaction of CO2 with CH4 on Supported Noble Metals
8. The Proposed Mechanism for the CO2 + CH4 Reaction on Supported Noble Metals Catalysts
9. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Earth System Research Laboratory Global Monitoring Division. Available online: https://www.esrl.noaa.gov/gmd/ccgg/trends/ (accessed on 17 December 2020).
- National Aeronautics and Space Administration Goddard Institute for Space Studies. Available online: https://data.giss.nasa.gov/gistemp/graphs/ (accessed on 17 December 2020).
- York, A.P.E.; Xiao, T.-C.; Green, M.L.H.; Claridge, J.B. Methane Oxyforming for Synthesis Gas Production. Catal. Rev. 2007, 49, 511–560. [Google Scholar] [CrossRef]
- Bradford, M.C.J.; Vannice, M.A. CO2 Reforming of CH4. Catal. Rev. Sci. Eng. 1999, 41, 1–42. [Google Scholar] [CrossRef]
- Istadi, I.; Saidina Amin, N.A. Co-Generation of C2 Hydrocarbons and Synthesis Gases from Methane and Carbon Dioxide: A Thermodynamic Analysis. J. Natural Gas. Chem. 2005, 14, 40–150. [Google Scholar]
- Nikoo, M.K.; Amin, N.A.S. Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Proc. Technol. 2011, 92, 678–691. [Google Scholar] [CrossRef] [Green Version]
- Fraenkel, D.; Levitan, R.; Levy, M. A solar thermochemical pipe based on the CO2-CH4 (1:1) system. Int. J. Hydrog. Energy 1986, 11, 267–277. [Google Scholar] [CrossRef]
- Pakhare, D.; Shaw, C.; Haynes, D.; Shekhawat, D.; Spivey, J. Effect of reaction temperature on activity of Pt- and Ru-substituted lanthanum zirconate pyrochlores (La2Zr2O7) for dry (CO2) reforming of methane (DRM). J. CO2 Util. 2013, 1, 37–42. [Google Scholar] [CrossRef]
- Wang, S.; Lu, G.Q.; Millar, G.J. Carbon Dioxide Reforming of Methane to Produce Synthesis Gas over Metal-Supported Catalysts: State of the Art. Energy Fuels 1996, 10, 896–904. [Google Scholar] [CrossRef]
- Lang, J. Experimentelle Beiträge zur Kenntnis der Vorgänge bei der Wasser-und Heizgasbereitung. Z. Phys. Chem. 1888, 2, 161–183. [Google Scholar] [CrossRef]
- Fischer, F.; Tropsch, H. Conversion of methane into hydrogen and carbon monoxide. Brennst. Chem. 1928, 3, 29. [Google Scholar]
- Pakhare, D.; Spivey, J.J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 2014, 43, 7813–7837. [Google Scholar] [CrossRef]
- Aramouni, N.A.K.; Touma, J.G.; Abu Tarboush, B.; Zeaiter, J.; Ahmad, M. Catalyst design for dry reforming of methane: Analysis review. Renew. Sustain. Energy Rev. 2018, 82, 2570–2585. [Google Scholar] [CrossRef]
- Papadopoulou, C.; Matralis, H.; Verykios, X. Utilization of Biogas as a Renewewable Carbon Source: Dry Reforming of Methane, Catalysis for Alternative Energy Generation; Guczi, L., Erdőhelyi, A., Eds.; Springer: Cham, Switzerland, 2012; pp. 57–127. [Google Scholar]
- Singh, R.; Dhir, A.; Mohapatra, S.K.; Mahla, S.K. Dry reforming of methane using various catalysts in the process: Review. Biomass Convers. Biorefinery 2019, 10, 567–587. [Google Scholar] [CrossRef]
- Papp, H.; Schuler, P.; Zhuang, Q. CO2 reforming and partial oxidation of methane. Top. Catal. 1996, 3, 299–311. [Google Scholar] [CrossRef]
- Mark, M.F.; Maier, W.F. CO2-Reforming of Methane on Supported Rh and Ir Catalysts. J. Catal. 1996, 164, 122–130. [Google Scholar] [CrossRef]
- Solymosi, F.; Kutsán, G.; Erdöhelyi, A. Catalytic reaction of CH4 with CO2 over alumina-supported Pt metals. Catal. Lett. 1991, 11, 149–156. [Google Scholar] [CrossRef]
- Rostrup-Nielsen, J.R.; Hansen, J.H.B. CO2-Reforming of Methane over Transition Metals. J. Catal. 1993, 144, 38–49. [Google Scholar] [CrossRef]
- Ferreira-Aparicio, P.; Ruiz, A.G.; Rodriguez Ramos, I. Comparative study at low and medium reaction temperatures of syngas production by methane reforming with carbon dioxide over silica and alumina supported catalysts. Appl. Catal. A Gen. 1998, 170, 177–187. [Google Scholar] [CrossRef]
- Ashcroft, A.T.; Cheetham, A.K.; Green, M.L.H.; Vernon, P.D.F. Partial oxidation of methane to synthesis gas using carbon dioxide. Nature 1991, 352, 225–226. [Google Scholar] [CrossRef]
- Vernon, P.; Green, M.; Cheetham, A.; Ashcroft, A. Partial oxidation of methane to synthesis gas, and carbon dioxide as an oxidising agent for methane conversion. Catal. Today 1992, 13, 417–426. [Google Scholar] [CrossRef]
- Takayasu, O.; Sato, F.; Ota, K.; Hitomi, T.; Miyazaki, T.; Osawa, T.; Matsuura, I. Separate production of hydrogen and carbon monoxide by carbon dioxide reforming reaction of methane. Energy Convers. Manag. 1997, 38, S391–S396. [Google Scholar] [CrossRef]
- Qin, D.; Lapszewicz, J. Study of mixed steam and CO2 reforming of CH4 to syngas on MgO-supported metals. Catal. Today 1994, 21, 55l–560. [Google Scholar] [CrossRef]
- Basini, L.; Sanfilippo, D. Molecular Aspects in Syn-Gas Production: The CO2-Reforming Reaction Case. J. Catal. 1995, 157, 162–178. [Google Scholar] [CrossRef]
- Bradford, M.C.; Vannice, M.A. The role of metal–support interactions in CO2 reforming of CH4. Catal. Today 1999, 50, 87–96. [Google Scholar] [CrossRef]
- Barama, S.; Dupeyrat-Batiot, C.; Capron, M.; Bordes-Richard, E.; Bakhti-Mohammedi, O. Catalytic properties of Rh, Ni, Pd and Ce supported on Al-pillared montmorillonites in dry reforming of methane. Catal. Today 2009, 141, 385–392. [Google Scholar] [CrossRef]
- Khani, Y.; Shariatinia, Z.; Bahadoran, F. High catalytic activity and stability of ZnLaAlO4 supported Ni, Pt and Ru nanocatalysts applied in the dry, steam and combined dry-steam reforming of methane. Chem. Eng. J. 2016, 299, 353–366. [Google Scholar] [CrossRef]
- Sakai, Y.; Saito, H.; Sodesawa, T.; Nozaki, F. Catalytic reactions of hydrocarbon with carbon dioxide over metallic catalysts. React. Kinet. Catal. Lett. 1984, 24, 253–257. [Google Scholar] [CrossRef]
- Rezaei, M.; Alavi, S.M.; Sahebdelfar, S.; Yan, Z.-F. Syngas Production by Methane Reforming with Carbon Dioxide on Noble Metal Catalysts. J. Nat. Gas. Chem. 2006, 15, 327–334. [Google Scholar] [CrossRef]
- Masai, M.; Kado, H.; Miyake, A.; Nishiyama, S.; Tsuruya, S. Methane Reforming by Carbon Dioxide and Steam Over Supported Pd, Pt, and Rh Catalysts. Stud. Surf. Sci. Catal. 1988, 36, 67–71. [Google Scholar] [CrossRef]
- Tsyganok, A.I.; Inaba, M.; Tsunoda, T.; Hamakawa, S.; Suzuki, K.; Hayakawa, T. Dry reforming of methane over supported noble metals: A novel approach to preparing catalysts. Catal. Commun. 2003, 4, 493–498. [Google Scholar] [CrossRef]
- Nematollahi, B.; Rezaei, M.; Khajenoori, M. Combined dry reforming and partial oxidation of methane to synthesis gas on noble metal catalysts. Int. J. Hydrog. Energy 2011, 36, 2969–2978. [Google Scholar] [CrossRef]
- Vannice, M.A. The catalytic synthesis of hydrocarbons from H2 CO mixtures over the group VIII metals: I. The specific activities and product distributions of supported metals. J. Catal. 1975, 37, 449–461. [Google Scholar] [CrossRef]
- Solymosi, F.; Erdöhelyi, A. Hydrogenation of CO2 to CH4 over alumina-supported noble metals. J. Mol. Catal. 1980, 8, 471–474. [Google Scholar] [CrossRef] [Green Version]
- Van Keulen, A.N.J.; Hegarty, M.E.; Ross, J.R.; Oosterkamp, P.F.V.D. The development of platinum-zirconia catalysts for the CO2 reforming of methane. Stud. Surf. Sci. Catal. 1997, 107, 537–546. [Google Scholar] [CrossRef]
- Anil, C.; Modak, J.M.; Madras, G. Syngas production via CO2 reforming of methane over noble metal (Ru, Pt, and Pd) doped LaAlO3 perovskite catalyst. Mol. Catal. 2020, 484, 110805. [Google Scholar] [CrossRef]
- Ghelamallah, M.; Granger, P. Impact of barium and lanthanum incorporation to supported Pt and Rh on α-Al2O3 in the dry reforming of methane. Fuel 2012, 97, 269–276. [Google Scholar] [CrossRef]
- Tsyganok, A.I.; Inaba, M.; Tsunoda, T.; Suzuki, K.; Takehira, K.; Hayakawa, T. Combined partial oxidation and dry reforming of methane to synthesis gas over noble metals supported on Mg–Al mixed oxide. Appl. Catal. A Gen. 2004, 275, 149–155. [Google Scholar] [CrossRef]
- Perera, J.; Couves, J.W.; Sankar, G.; Thomas, J.M. The catalytic activity of Ru and Ir supported on Eu2O3 for the reaction, CO2 + CH4 ⇌ 2 H2 + 2 CO: A viable solar-thermal energy system. Catal. Lett. 1991, 11, 219–225. [Google Scholar] [CrossRef]
- De Caprariis, B.; de Filippis, P.; Palma, V.; Petrullo, A.; Ricca, A.; Ruocco, C.; Scarsella, M. Rh, Ru and Pt ternary perovskites type oxides BaZr(1-x)MexO3 for methane dry reforming. Appl. Catal. A Gen. 2016, 517, 47–55. [Google Scholar] [CrossRef]
- Yokota, S.; Okumura, K.; Niwa, M. Support Effect of Metal Oxide on Rh Catalysts in the CH4-CO2 Reforming Reaction. Catal. Lett. 2002, 84, 131–134. [Google Scholar] [CrossRef]
- Zhang, Z.; Tsipouriari, V.; Efstathiou, A.M.; Verykios, X.E. Reforming of Methane with Carbon Dioxide to Synthesis Gas over Supported Rhodium Catalysts. J. Catal. 1996, 158, 51–63. [Google Scholar] [CrossRef]
- Tsipouriari, V.; Efstathiou, A.; Zhang, Z.; Verykios, X. Reforming of methane with carbon dioxide to synthesis gas over supported Rh catalysts. Catal. Today 1994, 21, 579–587. [Google Scholar] [CrossRef]
- Wang, H.Y.; Ruckenstein, E. Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalysts: The effect of support. Appl. Catal. A Gen. 2000, 204, 143–152. [Google Scholar] [CrossRef]
- Erdohelyi, A.; Cserenyi, J.; Solymosi, F. Activation of CH4 and Its Reaction with CO2 over Supported Rh Catalysts. J. Catal. 1993, 141, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Portugal, U.L.; Santos, A.C.S.F.; Damyanova, S.; Marques, C.M.P.; Bueno, J.M.C. CO2 reforming of CH4 over Rh-containing catalysts. J. Mol. Catal. A Chem. 2002, 184, 311–322. [Google Scholar] [CrossRef]
- Sigl, M.; Bradford, M.C.J.; Knözinger, H.; Vannice, M.A. CO2 reforming of methane over vanadia-promoted Rh/SiO2 catalysts. Top. Catal. 1999, 8, 211–222. [Google Scholar] [CrossRef]
- Bitter, J.H.; Seshan, K.; Lercher, J.A. Mono and Bifunctional Pathways of CO2/CH4 Reforming over Pt and Rh Based Catalysts. J. Catal. 1998, 176, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, J.; Aikawa, K.; Sato, K.; Uchijima, T. Role of support in reforming of CH4 with CO2 over Rh catalysts. Catal. Lett. 1994, 25, 265–270. [Google Scholar] [CrossRef]
- Nakamura, J.; Aikawa, K.; Sato, K.; Uchijima, T. The Role of Support in Methane Reforming with CO2 over Rhodium Catalysts. Stud. Surf. Sci. Catal. 1993, 90, 495–500. [Google Scholar]
- Drif, A.; Bion, N.; Brahmia, R.; Ojala, S.; Pirault-Roy, L.; Turpeinen, E.; Seelam, P.K.; Keiski, R.; Epron, F. Study of the dry reforming of methane and ethanol using Rh catalysts supported on doped alumina. Appl. Catal. A Gen. 2015, 504, 576–584. [Google Scholar] [CrossRef]
- Bhat, R.; Sachtler, W. Potential of zeolite supported rhodium catalysts for the CO2 reforming of CH4. Appl. Catal. A Gen. 1997, 150, 279–296. [Google Scholar] [CrossRef]
- Srimat, S.T.; Song, C. Effects of Pressure on CO2 Reforming of CH4 over Rh/Na-Y and Rh/Al2O3 Catalysts. ACS Symp. Ser. 2002, 809, 289–302. [Google Scholar]
- Verykios, X.E. Mechanistic aspects of the reaction of CO2 reforming of methane over Rh/Al2O3 catalyst. Appl. Catal. A Gen. 2003, 255, 101–111. [Google Scholar] [CrossRef]
- Richardson, J.T.; Paripatyadar, S.A. Carbon dioxide reforming of methane with supported rhodium. Appl. Catal. 1990, 61, 293–309. [Google Scholar] [CrossRef]
- Erdőhelyi, A.; Solymosi, F. Effect of the support on the adsorption and dissociation of CO and on the reactivity of surface carbon on Rh catalysts. J. Catal. 1983, 84, 446–460. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Iglesia, E. Structural requirements and reaction pathways in methane activation and chemical conversion catalyzed by rhodium. J. Catal. 2004, 225, 116–127. [Google Scholar] [CrossRef]
- Sarusi, I.; Fodor, K.; Baán, K.; Oszkó, A.; Pótári, G.; Erdőhelyi, A. CO2 reforming of CH4 on doped Rh/Al2O3 catalysts. Catal. Today 2011, 171, 132–139. [Google Scholar] [CrossRef]
- Wang, R.; Xu, H.; Liu, X.; Ge, Q.; Li, W. Role of redox couples of Rh0/Rhδ+ and Ce4+/Ce3+ in CH4/CO2 reforming over Rh–CeO2/Al2O3 catalyst. Appl. Catal. A Gen. 2006, 305, 204–210. [Google Scholar] [CrossRef]
- Djinovic, P.; Batista, J.; Pintar, A. Efficient catalytic abatement of greenhouse gases: Methane reforming with CO2 using a novel and thermally stable Rh-CeO2 catalyst. Int. J. Hydrog. Energy 2012, 37, 2699–2707. [Google Scholar] [CrossRef]
- Djinovic, P.; Črnivec, I.G.O.; Batista, J.; Levec, J.; Pintar, A. Catalytic syngas production from greenhouse gasses: Performance comparison of Ru-Al2O3 and Rh-CeO2 catalysts. Chem. Eng. Process. 2011, 50, 1054–1062. [Google Scholar] [CrossRef]
- Solymosi, F.; Szőke, A.; Egri, L. Decomposition of methane and its reaction with CO2 over Rh/ZSM-5 catalyst. Top. Catal. 1999, 8, 249–257. [Google Scholar] [CrossRef]
- Pritchard, M.L.; McCauley, R.L.; Gallaher, B.N.; Thomson, W.J. The effects of sulfur and oxygen on the catalytic activity of molybdenum carbide during dry methane reforming. Appl. Catal. A Gen. 2004, 275, 213–220. [Google Scholar] [CrossRef]
- Erdőhelyi, A.; Fodor, K.; Szailer, T. Effect of H2S on the reaction of methane with carbon dioxide over supported Rh catalysts. Appl. Catal. B Environ. 2004, 53, 153–160. [Google Scholar] [CrossRef]
- Szailer, T.; Novák, É.; Oszkó, A.; Erdőhelyi, A. Effect of H2S on the hydrogenation of carbon dioxide over supported Rh catalysts. Top. Catal. 2007, 46, 79–86. [Google Scholar] [CrossRef]
- Mancino, G.; Cimino, S.; Lisi, L. Sulphur poisoning of alumina supported Rh catalyst during dryreforming of methane. Catal. Today 2016, 277, 126–132. [Google Scholar] [CrossRef]
- Matsui, N.; Anzai, K.; Akamatsu, N.; Nakagawa, K.; Ikenaga, N.; Suzuki, T. Reaction mechanisms of carbon dioxide reforming of methane with Ru-loaded lanthanum oxide catalyst. Appl. Catal. A Gen. 1999, 179, 247–256. [Google Scholar] [CrossRef]
- Bradford, M.J.C.; Vannice, M.A. CO2 Reforming of CH4 over Supported Ru Catalysts. J. Catal. 1999, 183, 69–75. [Google Scholar] [CrossRef]
- Nagaoka, K.; Okamura, M.; Aika, K. Titania supported ruthenium as a coking-resistant catalyst for high pressure dry reforming of methane. Catal. Commun. 2001, 2, 255–260. [Google Scholar] [CrossRef]
- Ferreira-Aparicio, P.; Márquez-Alvarez, C.; Rodríguez-Ramos, I.; Schuurman, Y.; Guerrero-Ruiz, A.; Mirodatos, C. A Transient Kinetic Study of the Carbon Dioxide reforming of Methane over Supported Ru Catalysts. J. Catal. 1999, 184, 202–212. [Google Scholar] [CrossRef]
- Ferreira-Aparicio, P.; Rodríguez-Ramos, I.; Anderson, J.A.; Guerrero-Ruiz, A. Mechanistic aspects of the dry reforming of methane over ruthenium catalysts. Appl. Catal. A Gen. 2000, 202, 183–196. [Google Scholar] [CrossRef]
- Das, D.; Shah, M.; Gupta, R.K.; Bordoloi, A. Enhanced dry methane reforming over Ru decorated mesoporous silica and its kinetic study. J. CO2 Util. 2019, 29, 240–253. [Google Scholar] [CrossRef]
- Portugal, U.L., Jr.; Marques, C.M.P.; Araujo, E.C.C.; Morales, E.V.; Giotto, M.V.; Bueno, J.M.C. CO2 reforming of methane over zeolite-Y supported ruthenium catalysts. Appl. Catal. A Gen. 2000, 193, 173–183. [Google Scholar] [CrossRef]
- Safariamin, M.; Tidahy, L.H.; Abi-Aad, E.; Siffert, S.; Aboukaïs, A. Dry reforming of methane in the presence of ruthenium-based catalysts. Comptes Rendus Chim. 2009, 12, 748–753. [Google Scholar] [CrossRef]
- Li, D.; Li, R.; Lu, M.; Lin, X.; Zhan, Y.; Jiang, L. Carbon dioxide reforming of methane over Ru catalysts supported on Mg-Al oxides: A highly dispersed and stable Ru/Mg(Al)O catalyst. Appl. Catal. B Environ. 2017, 200, 566–577. [Google Scholar] [CrossRef]
- Kehres, J.; Jakobsen, J.G.; Andreasen, J.W.; Wagner, J.B.; Liu, H.; Molenbroek, A.; Sehested, J.; Chorkendorff, I.; Vegge, T. Dynamical Properties of a Ru/MgAl2O4 Catalyst during Reduction and Dry Methane Reforming. J. Phys. Chem. C 2012, 116, 21407–21415. [Google Scholar] [CrossRef]
- Zhang, J.-C.; Ge, B.-H.; Liu, T.-F.; Yang, Y.-Z.; Li, B.; Li, W.-Z. Robust Ruthenium-Saving Catalyst for High-Temperature Carbon Dioxide Reforming of Methane. ACS Catal. 2020, 10, 783–791. [Google Scholar] [CrossRef]
- Carrara, C.; Múnera, J.; Lombardo, E.A.; Cornaglia, L.M. Kinetic and Stability Studies of Ru/La2O3 Used in the Dry Reforming of Methane. Top. Catal. 2008, 51, 98–106. [Google Scholar] [CrossRef]
- Carvalho, D.C.; de Souza, H.S.A.; Filho, J.M.; Oliveira, A.C.; Campos, A.; Milet, É.R.C.; de Sousa, F.F.; Padron-Hernandez, E.; Oliveira, A.C. A study on the modification of mesoporous mixed oxides supports for dry reforming of methane by Pt or Ru. Appl. Catal. A Gen. 2014, 473, 132–145. [Google Scholar] [CrossRef]
- Gangwar, B.P.; Pentyala, P.; Tiwari, K.; Biswas, K.; Sharma, S.; Parag, A.; Deshpande, P.A. Dry reforming activity due to ionic Ru in La1.99Ru0.01O3: The role of specific carbonates. Phys. Chem. Chem. Phys. 2019, 30, 16726–16736. [Google Scholar] [CrossRef]
- Whang, H.S.; Choi, M.S.; Lim, J.; Kim, C.; Heo, I.; Chang, T.-S.; Lee, H. Enhanced activity and durability of Ru catalyst dispersed on zirconia for dry reforming of methane. Catal. Today 2017, 293–294, 122–128. [Google Scholar] [CrossRef]
- Yu, Z.; Choi, K.; Rosynek, M.P.; Lunsford, J.H. From CH4 reforming with CO2 to pyrolysis over a platinum catalyst. React. Kinet. Catal. Lett. 1993, 51, 143–149. [Google Scholar] [CrossRef]
- Bitter, J.H.; Hally, W.; Seshan, K.; van Ommen, J.G.; Lercher, J.A. The role of the oxidic support on the deactivation of Pt catalysts during the CO2 reforming of methane. Catal. Today 1996, 29, 349–353. [Google Scholar] [CrossRef] [Green Version]
- Bitter, J.H.; Seshan, K.; Lercher, J.A. Deactivation and Coke Accumulation during CO2/CH4 Reforming over Pt Catalysts. J. Catal. 1999, 183, 336–343. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M.J.C.; Vannice, M.A. CO2 Reforming of CH4 over Supported Pt Catalysts. J. Catal. 1998, 173, 157–171. [Google Scholar] [CrossRef]
- Bitter, J.H.; Seshan, K.; Lercher, J.A. The State of Zirconia Supported Platinum Catalysts for CO2/CH4 Reforming. J. Catal. 1997, 171, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Bitter, J.H.; Seshan, K.; Lercher, J.A. On the contribution of X-ray absorption spectroscopy to explore structure and activity relations of Pt/ZrO2 catalysts for CO2/CH4 reforming. Top. Catal. 2000, 10, 295–305. [Google Scholar] [CrossRef]
- Nagaoka, K.; Seshan, K.; Aika, K.; Lercher, J.A. Carbon Deposition during Carbon Dioxide Reforming of Methane—Comparison between Pt/Al2O3 and Pt/ZrO2. J. Catal. 2001, 197, 34–42. [Google Scholar] [CrossRef]
- Souza, M.M.V.M.; Aranda, D.A.G.; Schmal, M. Reforming of Methane with Carbon Dioxide over Pt/ZrO2/Al2O3 Catalysts. J. Catal. 2001, 204, 498–511. [Google Scholar] [CrossRef]
- Reddy, G.K.; Loridanta, S.; Takahashi, A.; Delichčre, P.; Reddy, B.M. Reforming of methane with carbon dioxide over Pt/ZrO2/SiO2 catalysts-Effect of zirconia to silica ratio. Appl. Catal. A Gen. 2010, 389, 92–100. [Google Scholar] [CrossRef]
- Özkara-Aydınoglu, S.; Özensoy, E.; Aksoylu, E. The effect of impregnation strategy on methane dry reforming activity of Ce promoted Pt/ZrO2. Int. J. Hydrog. Energy 2009, 34, 9711–9722. [Google Scholar] [CrossRef] [Green Version]
- Ballarini, A.D.; De Miguel, S.R.; Jablonski, E.L.; Scelza, O.A.; Castro, A.A. Reforming of CH4 with CO2 on Pt-supported catalysts Effect of the support on the catalytic behavior. Catal. Today 2005, 107–108, 481–486. [Google Scholar] [CrossRef]
- Van Keulen, A.N.J.; Seshan, K.; Hoebink, J.H.B.J.; Ross, J.R.H. TAP Investigations of the CO2 Reforming of CH4 over Pt/ZrO2. J. Catal. 1997, 166, 306–314. [Google Scholar] [CrossRef] [Green Version]
- Nagaoka, K.; Seshan, K.; Lercher, J.A.; Aika, K. Activation mechanism of methane-derived coke (CHx) by CO2 during dry reforming of methane—Comparison for Pt/Al2O3 and Pt/ZrO2. Catal. Lett. 2000, 70, 109–116. [Google Scholar] [CrossRef]
- O’Connor, A.M.; Schuurman, Y.; Ross, J.R.H.; Mirodatos, C. Transient studies of carbon dioxide reforming of methane over Pt/ZrO2 and Pt/Al2O3. Catal. Today 2006, 115, 191–198. [Google Scholar] [CrossRef]
- Souza, M.M.V.M.; Martin Schmal, M. Combination of carbon dioxide reforming and partial oxidation of methane over supported platinum catalysts. Appl. Catal. A Gen. 2003, 255, 83–92. [Google Scholar] [CrossRef]
- Damyanova, S.; Bueno, J.M.C. Effect of CeO2 loading on the surface and catalytic behaviors of CeO2-Al2O3-supported Pt catalysts. Appl. Catal. A Gen. 2003, 253, 135–150. [Google Scholar] [CrossRef]
- Stagg, S.M.; Romeo, E.; Padro, C.; Resasco, D.E. Effect of Promotion with Sn on Supported Pt Catalysts for CO2 Reforming of CH4. J. Catal. 1998, 78, 137–145. [Google Scholar] [CrossRef]
- García-Diéguez, M.; Pieta, I.S.; Herrera, M.C.; Larrubia, M.A.; Malpartida, I.; Alemany, L.J. Transient study of the dry reforming of methane over Pt supported on different γ-Al2O3. Catal. Today 2010, 149, 380–387. [Google Scholar] [CrossRef]
- Da Fonseca, R.O.; Rabelo-Neto, R.C.; Simões, R.C.C.; Mattos, L.V.; Noronha, F.B. Pt supported on doped CeO2/Al2O3 as catalyst for dry reforming of methane. Int. J. Hydrog. Energy 2020, 45, 5182–5191. [Google Scholar] [CrossRef]
- Singh, S.A.; Madras, G. Sonochemical synthesis of Pt, Ru doped TiO2 for methane reforming. Appl. Catal. A Gen. 2016, 518, 102–114. [Google Scholar] [CrossRef]
- Nakagawa, K.; Anzai, K.; Matsui, N.; Ikenaga, N.; Suzuki, T.; Teng, Y.; Kobayashi, T.; Haruta, M. Effect of support on the conversion of methane to synthesis gas over supported iridium catalysts. Catal. Lett. 1998, 51, 163–167. [Google Scholar] [CrossRef]
- Erdőhelyi, A.; Fodor, K.; Solymosi, F. Reaction of CH4 with CO2 and H2O over supported Ir catalyst. Stud. Surf. Sci. Catal. 1997, 107, 525–530. [Google Scholar]
- Maina, S.C.P.; Ballarini, A.D.; Vilella, J.I.; Sergio, R.; de Miguel, S.R. Study of the performance and stability in the dry reforming of methane of doped alumina supported iridium catalysts. Catal. Today 2020, 344, 129–142. [Google Scholar] [CrossRef]
- Wei, J.; Iglesia, E. Structural and Mechanistic Requirements for Methane Activation and Chemical Conversion on Supported Iridium Clusters. Angew. Chem. Int. Ed. 2004, 43, 3685–3688. [Google Scholar] [CrossRef] [PubMed]
- Wisniewski, M.; Boréave, A.; Gélin, P. Catalytic CO2 reforming of methane over Ir/Ce0.9Gd0.1O2−x. Catal. Commun. 2005, 6, 596–600. [Google Scholar] [CrossRef]
- Wang, F.; Xu, L.; Zhang, J.; Zhao, Y.; Li, H.; Li, H.X.; Wu, K.; Xu, G.Q.; Chen, W. Tuning the metal-support interaction in catalysts for highly efficient methane dry reforming reaction. Appl. Catal. B Environ. 2016, 180, 511–520. [Google Scholar] [CrossRef]
- Erdőhelyi, A.; Cserényi, J.; Papp, E.; Solymosi, F. Catalytic reaction of methane with carbon dioxide over supported palladium. Appl. Catal. A Gen. 1994, 108, 205–219. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Zhang, P. Effect of a second metal (Y, K, Ca, Mn or Cu) addition on the carbon dioxide reforming of methane over nanostructured palladium catalysts. Appl. Catal. B Environ. 2012, 115–116, 190–200. [Google Scholar] [CrossRef]
- Singha, R.K.; Yadav, A.; Shukla, A.; Kumar, M.; Bal, R. Low temperature dry reforming of methane over Pd-CeO2 nanocatalyst. Catal. Commun. 2017, 92, 19–22. [Google Scholar] [CrossRef]
- Al-Doghach, F.A.J.; Rashid, U.; Zaina, Z.; Saiman, M.I.; Yap, Y.H.T. Influence of the Ce2O3 and CeO2 promoters on the Pd/MgO catalyst in dry reforming of methane. RSC Adv. 2015, 5, 81739–81752. [Google Scholar] [CrossRef]
- Panagiotopoulou, P.; Kondarides, D.I.; Verykios, X.E. Mechanistic Study of the Selective Methanation of CO over Ru/TiO2 Catalyst: Identification of Active Surface Species and Reaction Pathways. J. Phys. Chem. C 2011, 115, 1220–1230. [Google Scholar] [CrossRef]
- Lambeets, S.V.; Barroo, C.; Owczarek, S.; Jacobs, L.; Genty, E.; Gilis, N.; Kruse, N.; De Bocarmé, T.V. Adsorption and Hydrogenation of CO2 on Rh Nanosized Crystals: Demonstration of the Role of Interfacet Oxygen Spillover and Comparative Studies with O2, N2O, and CO. J. Phys. Chem. C 2017, 121, 16238–16249. [Google Scholar] [CrossRef]
- Van Tol, M.F.H.; Gielbert, A.; Nieuwenhuys, B.E. The adsorption and dissociation of CO2 on Rh. Appl. Surf. Sci. 1993, 67, 166–178. [Google Scholar] [CrossRef]
- Solymosi, F. The bonding, structure and reactions of CO2 adsorbed on clean and promoted metal surfaces. J. Mol. Catal. 1991, 65, 337–358. [Google Scholar] [CrossRef] [Green Version]
- Freund, H.-J.; Roberts, M.W. Surface chemistry of carbon dioxide. Surf. Sci. Rep. 1996, 25, 225–273. [Google Scholar] [CrossRef] [Green Version]
- Campbell, C.T.; White, J.M. The adsorption, desorption, and reactions of CO and O2 on Rh. J. Catal. 1978, 54, 289–302. [Google Scholar] [CrossRef]
- Dubois, L.; Somorjai, G.A. The dissociative chemisorption of carbon dioxide on rhodium surfaces. Surf. Sci. 1979, 88, L13–L17. [Google Scholar] [CrossRef] [Green Version]
- Dubois, L.H.; Somorjai, G.A. The chemisorption of CO and CO2 on Rh (111) studied by high resolution electron energy loss spectroscopy. Surf. Sci. 1980, 91, 514–532. [Google Scholar] [CrossRef]
- Weinberg, W.H. Why CO2 does not dissociate on Rh at low temperature. Surf. Sci. 1983, 128, L224–L230. [Google Scholar] [CrossRef]
- Goodman, D.W.; Peebles, D.E.; White, J.M. CO2 dissociation on rhodium: Measurement of the specific rates on Rh(111). Surf. Sci. 1984, 140, L239–L243. [Google Scholar] [CrossRef]
- Bradford, M.C.J.; Vannice, M.A. Metal-support interactions during the CO2 reforming of CH4 over model TiOx/Pt catalysts. Catal. Lett. 1997, 48, 31–38. [Google Scholar] [CrossRef]
- Kiss, J.; Révész, K.; Solymosi, F. Photoelectron spectroscopic studies of the adsorption of CO2 on potassium-promoted Rh(111) surface. Surf. Sci. 1988, 207, 36–59. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.M.; Zhou, Y.; Solymosi, F.; White, J.M. Vibrational study of CO2 on potassium-promoted platinum (111). J. Phys. Chem. 1989, 93, 4383–4385. [Google Scholar] [CrossRef]
- Hoffmann, F.M.; Weisel, M.D.; Paul, J. The activation of CO2 by potassium-promoted Ru (001) I. FT-IRAS and TDMS study of oxalate and carbonate intermediates. Surf. Sci. 1994, 316, 277–293. [Google Scholar] [CrossRef]
- Berkó, A.; Solymosi, F. Effects of potassium on the chemisorption of CO2 and CO on the Pd (100) surface. Surf. Sci. 1986, 171, L498–L502. [Google Scholar] [CrossRef]
- Solymosi, F.; Erdőhelyi, A.; Bánsági, T. Infrared study of the surface interaction between H2 and CO2 over rhodium on various supports. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1981, 77, 2645–2657. [Google Scholar] [CrossRef]
- Heyl, D.; Rodemerck, U.; Bentrup, U. Mechanistic study of low-temperature CO2 hydrogenation over modified Rh/Al2O3 catalysts. ACS Catal. 2016, 6, 6275–6284. [Google Scholar] [CrossRef]
- Novák, É.; Fodor, K.; Szailer, T.; Oszkó, A.; Erdőhelyi, A. CO2 hydrogenation on Rh/TiO2 previously reduced at different temperatures. Top. Catal. 2002, 20, 107–117. [Google Scholar] [CrossRef]
- De Leitenburg, C.; Trovarelli, A.; Kašpar, J. A Temperature-Programmed and Transient Kinetic Study of CO2 Activation and Methanation over CeO2 Supported Noble Metals. J. Catal. 1997, 166, 98–107. [Google Scholar] [CrossRef]
- Beuls, A.; Swalus, C.; Jacquemin, M.; Hexen, G.; Karelovič, A.; Ruiz, P. Methanation of CO2: Further insight into the mechanism over Rh/γ-Al2O3 catalyst. Appl. Catal. B Environ. 2012, 113–114, 2–10. [Google Scholar] [CrossRef]
- Múnera, J.F.; Irusta, S.; Cornaglia, L.M.; Lombardo, E.A.; Ceesar, D.; Schmal, M. Kinetics and reaction pathway of the CO2 reforming of methane on Rh supported on lanthanum-based solid. J. Catal. 2007, 245, 25–34. [Google Scholar] [CrossRef]
- Pakhare, D.; Schwartz, V.; Abdelsayed, V.; Haynes, D.; Shekhawat, D.; Postonc, J.; Spivey, J. Kinetic and mechanistic study of dry (CO2) reforming of methane over Rh-substituted La2Zr2O7 pyrochlores. J. Catal. 2014, 316, 78–92. [Google Scholar]
- Frennet, A. Chemisorption and Exchange with Deuterium of Methane on Metals. Catal. Rev. Sci. Eng. 1974, 10, 37–68. [Google Scholar]
- Liao, M.-S.; Zhang, Q.-E. Dissociation of methane on different transition metals. J. Mol. Catal. A Chem. 1998, 136, 85–194. [Google Scholar] [CrossRef]
- Klier, K.; Hess, J.S.; Herman, R.G. Structure sensitivity of methane dissociation on palladium single crystal surfaces. J. Chem. Phys. 1997, 107, 4033–4043. [Google Scholar] [CrossRef]
- Belgued, M.; Pareja, P.; Amariglio, A.; Amariglio, H. Conversion of methane into higher hydrocarbons on platinum. Nature 1991, 352, 789–790. [Google Scholar] [CrossRef]
- Solymosi, F.; Erdőhelyi, A.; Cserényi, J. A comparative study on the activation and reactions of CH4 on supported metals. Catal. Lett. 1992, 16, 399–405. [Google Scholar]
- Solymosi, F.; Erdőhelyi, A.; Cserényi, J.; Felvégi, A. Decomposition of CH4 over supported Pd catalysts. J. Catal. 1994, 147, 272–278. [Google Scholar] [CrossRef]
- Fernandez, C.; Miranda, N.; Garcia, X.; Eloy, P.; Ruiz, P.; Gordon, A.; Jimenez, R. Insights into dynamic surface processes occurring in Rh supported on Zr-grafted γ-Al2O3 during dry reforming of methane. Appl. Catal. B Environ. 2014, 156–157, 202–212. [Google Scholar]
- Yamaguchi, A.; Iglesia, E. Catalytic activation and reforming of methane on supported palladium clusters. J. Catal. 2010, 274, 52–63. [Google Scholar] [CrossRef]
- Hou, Z.; Chen, P.; Fang, H.; Zheng, X.; Yashima, T. Production of synthesis gas via methane reforming with CO2 on noble metals and small amount of noble-(Rh-) promoted Ni catalysts. Int. J. Hydrog. Energy 2006, 31, 555–561. [Google Scholar] [CrossRef]
- Wei, J.; Iglesia, E. Isotopic and kinetic assessment of the mechanism of methane reforming and decomposition reactions on supported iridium catalysts. Phys. Chem. Chem. Phys. 2004, 6, 3754–3759. [Google Scholar] [CrossRef]
- Wei, J.; Iglesia, E. Reaction Pathways and Site Requirements for the Activation and Chemical Conversion of Methane on Ru-Based Catalysts. J. Phys. Chem. B 2004, 108, 7253–7262. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Iglesia, E. Mechanism and Site Requirements for Activation and Chemical Conversion of Methane on Supported Pt Clusters and Turnover Rate Comparisons among Noble Metals. J. Phys. Chem. B 2004, 108, 4094–4103. [Google Scholar] [CrossRef]
- Mark, M.F.; Maier, W.F. Active Surface Carbon—A Reactive Intermediate in the Production of Synthesis Gas from Methane and Carbon Dioxide. Angew. Chem. Int. Ed. Engl. 1994, 33, 1657–1660. [Google Scholar] [CrossRef]
- Matsui, N.; Nakagawa, K.; Ikenaga, N.; Suzuki, T. Reactivity of Carbon Species Formed on Supported Noble Metal Catalysts in Methane Conversion Reactions. J. Catal. 2000, 194, 115–121. [Google Scholar] [CrossRef]
- Wang, H.Y.; Au, C.T. Carbon dioxide reforming of methane to syngas over SiO2-supported rhodium catalysts. Appl. Catal. A Gen. 1997, 155, 239–252. [Google Scholar] [CrossRef]
- Solymosi, F.; Erdőhelyi, A.; Kocsis, M. Surface Interaction between H2 and CO2 on Rh/AI2O3, Studied by Adsorption and Infrared Spectroscopic Measurements. J. Catal. 1980, 65, 428–436. [Google Scholar] [CrossRef] [Green Version]
- Solymosi, F.; Erdőhelyi, A.; Lancz, M. Surface Interaction between H2 and CO2 over Palladium on Various Supports. J. Catal. 1985, 95, 567–577. [Google Scholar] [CrossRef]
- Efstathiou, A.M.; Kladi, A.; Tsipouriari, V.A.; Verykios, X.E. Reforming of Methane with Carbon Dioxide to Synthesis Gas over Supported Rhodium Catalysts II. A Steady-State Tracing Analysis: Mechanistic Aspects of the Carbon and Oxygen Reaction Pathways to Form CO. J. Catal. 1996, 158, 64–75. [Google Scholar] [CrossRef]
- Cornaglia, L.M.; Múnera, J.; Irusta, S.; Lombardo, E.A. Raman studies of Rh and Pt on La2O3 catalysts used in a membrane reactor for hydrogen production. Appl. Catal. A Gen. 2004, 263, 91–101. [Google Scholar] [CrossRef]
- Aramouni, N.A.K.; Zeaiter, J.; Kwapinski, W.; Ahmad, M.N. Thermodynamic analysis of methane dry reforming: Effect of the catalyst particle size on carbon formation. Energy Conv. Manag. 2017, 150, 614–622. [Google Scholar] [CrossRef]
- Tsipouriari, V.A.; Efstathiou, A.M.; Verykios, X.E. Transient Kinetic Study of the Oxidation and Hydrogenation of Carbon Species Formed during CH4/He, CO2/He, and CH4/CO2 Reactions over Rh/Al2O3 Catalyst. J. Catal. 1996, 161, 31–42. [Google Scholar] [CrossRef]
- Schulz, L.A.; Kahle, L.C.S.; Delgado, K.H.; Schunk, S.A.; Jentys, A.; Deutschmann, O.; Lercher, J.A. On the coke deposition in dry reforming of methane at elevated pressures. Appl. Catal. A Gen. 2015, 504, 599–607. [Google Scholar] [CrossRef]
- Rostrup-Nielsen, J.R. Aspects of CO2-reforming of Methane. Stud. Surf. Sci. Catal. 1994, 81, 24–41. [Google Scholar]
- Ferreira-Aparicio, P.; Fernandez-Garcia, M.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I. Evaluation of the Role of the Metal–Support Interfacial Centers in the Dry Reforming of Methane on Alumina-Supported Rhodium Catalysts. J. Catal. 2000, 190, 296–308. [Google Scholar] [CrossRef]
- Ghelamallah, M.; Granger, P. Supported-induced effect on the catalytic properties of Rh and Pt-Rh particles deposited on La2O3 and mixed α-Al2O3-La2O3 in the dry reforming of methane. Appl. Catal. A Gen. 2014, 485, 172–180. [Google Scholar] [CrossRef]
- Raskó, J.; Solymosi, F. Reaction of adsorbed CH3 species with CO2 on Rh/SiO2 catalyst. Catal. Lett. 1997, 46, 153–157. [Google Scholar] [CrossRef]
- Schuurman, Y.; Marquez-Alvarez, C.; Kroll, V.C.H.; Mirodatos, C. Unraveling mechanistic features for the methane reforming by carbon dioxide over different metals and supports by TAP experiments. Catal. Today 1998, 46, 185–192. [Google Scholar] [CrossRef]
Temperature K | CH4 Conversion % | CO2 Conversion % |
---|---|---|
673 | 6.9 | 9.9 |
773 | 25.6 | 32.9 |
873 | 57.7 | 66.8 |
973 | 84.0 | 89.6 |
1073 | 95.0 | 97.3 |
1173 | 98.3 | 99.2 |
1273 | 99.3 | 99.7 |
Al2O3 CO2/CH4 = 1/1.5 1073 K [16] | Al2O3 CO2/CH4 = 1/1 973 K [17] | Al2O3 CO2/CH4 = 1/1 823 K [18] | Alumina Stabilized Magnesia CO2/CH4 = 4/1 823 K [19] | Al2O3 CO2/CH4/He = 1/1/8 723 K [20] | |
---|---|---|---|---|---|
Ru | 4.0 | 2.0 | 1.36 | 2.9 | 0.2 |
Rh | 3.4 | 4.0 | 0.32 | 1.9 | 0.8 |
Pd | < 0.1 | 0.64 | 0.18 | ||
Ir | 2.0 | 2.0 | 0.18 | 0.44 | 0.5 |
Pt | 3.8 | < 0.1 | 0.36 | 0.36 | 0.2 |
Ni | 1.8 | 1.9 | 0.6 |
Catalyst | Temperature K | References | ||||
---|---|---|---|---|---|---|
Rh/Al2O3 | 723 | 0.52 | [47] | |||
Rh/TiO2 | 723 | 0.29 | [47] | |||
Rh/Nb2O5 | 723 | 0.48 | [47] | |||
Rh/NaY | 723 | 0.08 | [47] | |||
3.8% Rh/SiO2 | 723 | 0.08 | 0.18 | [48] | ||
3.3%Rh/VOx/SiO2 | 723 | 1.3 | 3.4 | [48] | ||
1% Rh/Al2O3 | 773 | 0.39 | 0.15 | [46] | ||
1% Rh/MgO | 773 | 0.85 | 0.5 | [46] | ||
1% Rh/TiO2 | 773 | 0.37 | 0.22 | [46] | ||
1% Rh/SiO2 | 773 | 0.32 | 0.2 | [46] | ||
1% Rh/α-Al2O3 | 873 | 1.5 | [17] | |||
1% Rh/ZrO2 | 873 | 0.9 | [17] | |||
1% Rh/TiO2 | 873 | 1.3 | [17] | |||
1% Rh/SiO2 | 873 | 1.2 | [17] | |||
Rh/γ-Al2O3 | 875 | 4.6 | [49] | |||
Rh/SiO2 | 875 | 1.2 | [49] | |||
0.5% Rh/Al2O3 | 893 | 25.5 | [50] | |||
0.5% Rh/SiO2 | 893 | 6.1 | [50] | |||
0.5% Rh/Al2O3 | 1013 | 6.35 | [45] | |||
Rh/α-Al2O3 | 1023 | 5.02 | 5.08 | [25] | ||
Rh/MgO | 1023 | 1.04 | 1.06 | [25] | ||
Rh/CeO2 | 1023 | 2.82 | 3.04 | [25] | ||
Rh/TiO2 | 1023 | 0.74 | 0.85 | [25] | ||
Rh/La2O3 | 1023 | 4.01 | 4.06 | [25] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erdőhelyi, A. Catalytic Reaction of Carbon Dioxide with Methane on Supported Noble Metal Catalysts. Catalysts 2021, 11, 159. https://doi.org/10.3390/catal11020159
Erdőhelyi A. Catalytic Reaction of Carbon Dioxide with Methane on Supported Noble Metal Catalysts. Catalysts. 2021; 11(2):159. https://doi.org/10.3390/catal11020159
Chicago/Turabian StyleErdőhelyi, András. 2021. "Catalytic Reaction of Carbon Dioxide with Methane on Supported Noble Metal Catalysts" Catalysts 11, no. 2: 159. https://doi.org/10.3390/catal11020159
APA StyleErdőhelyi, A. (2021). Catalytic Reaction of Carbon Dioxide with Methane on Supported Noble Metal Catalysts. Catalysts, 11(2), 159. https://doi.org/10.3390/catal11020159