Revisiting the Phenomenon of Cellulase Action: Not All Endo- and Exo-Cellulase Interactions Are Synergistic
Abstract
:1. Introduction
2. Results and Discussion
2.1. Enzyme Characterization and Substrate Specificity Studies
2.2. Exo–Exo Synergy between CBHI (TlCel7A) and CBHII (Microbial Cel6A/CtCel5A)
2.3. Synergism between Exo- and Endo-Glucanases
2.3.1. Synergy between CmixA1 (TlCel7A and Microbial Cel6A) or CmixA2 (TlCel7A and CtCel5A) and Various Endoglucanases
2.3.2. Synergy between CmixB1 (HjCel7A and Microbial Cel6A) or CmixB2 (HjCel7A and CtCel5A) and Various Endoglucanases
2.3.3. Synergy between CmixC1 (CsCel48A and Microbial Cel6A) or CmixC2 (CsCel48A and microbial Cel6A) and Various Endoglucanases
3. Materials and Methods
3.1. Materials
3.2. Protein Determination
3.3. Substrate Specificity Determination
3.4. Synergy Studies
3.4.1. Determination of the Optimal CBHI: CBHII Ratio (Exo–Exo Synergy) and the Effect of CBHII Swapping on Synergy
3.4.2. Synergistic Interactions between Endo- and Exo-Acting Cellulases from Different GH Families
3.4.3. CBHI Swapping
3.4.4. Calculation of the Degree of Synergy (DS)
3.5. Data Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lynd, L.R.; Weimer, P.J.; Van Zyl, W.H.; Pretorius, I.S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 2002, 66, 506–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Wang, S.; Wu, X.; Liu, S.; Li, D.; Xu, H.; Gao, P.; Chen, G.; Wang, L. Subsite-specific contributions of different aromatic residues in the active site architecture of glycoside hydrolase family 12. Sci. Rep. 2015, 4, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Leis, B.; Held, C.; Bergkemper, F.; Dennemarck, K.; Steinbauer, R.; Reiter, A.; Mechelke, M.; Moerch, M.; Graubner, S.; Liebl, W.; et al. Comparative characterization of all cellulosomal cellulases from Clostridium thermocellum reveals high diversity in endoglucanase product formation essential for complex activity. Biotechnol. Biofuels 2017, 10, 240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlasenko, E.; Schulein, M.; Cherry, J.; Xu, F. Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases. Bioresour. Technol. 2010, 101, 2405–2411. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Friedland, G.D.; Pereira, J.H.; Reveco, S.A.; Chan, R.; Park, J.I.; Thelen, M.P.; Adams, P.D.; Arkin, A.P.; Keasling, J.D.; et al. Tracing determinants of dual substrate specificity in glycoside hydrolase family 5. J. Biol. Chem. 2012, 287, 25335–25343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauwerdink, A.; Kazlauskas, R.J. How the same core catalytic machinery catalyzes 17 different reactions: The serine-histidine-aspartate catalytic triad of α/β-hydrolase fold enzymes. ACS Catal. 2015, 5, 6153–6176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horn, S.J.; Vaaje-Kolstad, G.; Westereng, B.; Eijsink, V.G. Novel enzymes for the degradation of cellulose. Biotechnol. Biofuels 2012, 5, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teeri, T.T. Crystalline cellulose degradation: New insight into the function of cellobiohydrolases. Trends Biotechnol. 1997, 15, 160–167. [Google Scholar] [CrossRef]
- Den Haan, R.; Van Zyl, J.M.; Harms, T.M.; Van Zyl, W.H. Modeling the minimum enzymatic requirements for optimal cellulose conversion. Environ. Res. Lett. 2013, 8, 025013. [Google Scholar] [CrossRef] [Green Version]
- Ganner, T.; Bubner, P.; Eibinger, M.; Maryhofer, C.; Plank, H.; Nidetzky, B. Dissecting and reconstructing synergism in situ visualization of cooperativity among cellulases. J. Biol. Chem. 2012, 287, 43215–43222. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Zhao, R.; Li, C.; Zhao, C. Simultaneous enhancement of the beta-exo synergism and exo-exo synergism in Trichoderma reesei cellulase to increase the cellulose degrading capability. Microb. Cell Fact. 2019, 18, 9. [Google Scholar] [CrossRef] [PubMed]
- Malgas, S.; Thoresen, M.; Van Dyk, J.S.; Pletschke, B.I. Time dependence of enzyme synergism during the degradation of model and natural lignocellulosic substrates. Enzyme Microb. Technol. 2017, 103, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Van Dyk, J.S.; Pletschke, B.I. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes- factors affecting enzymes, conversion and synergy. Biotechnol. Adv. 2012, 30, 1458–1480. [Google Scholar] [CrossRef] [PubMed]
- Arfi, Y.; Shamshoum, A.; Rogachev, I.; Peleg, T.; Bater, E.A. Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation. Proc. Natl. Acad. Sci. USA 2014, 111, 9109–9114. [Google Scholar] [CrossRef] [Green Version]
- Peciulyte, A.; Karlstrom, K.; Larsson, P.T.; Olson, L. Impact of supramolecular structure of cellulose on the efficiency of the enzymatic hydrolysis. Biotechnol. Biofeuls 2015, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Henrissat, B.; Driguez, H.; Viet, C.; SchÜlein, M. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Biotechnology 1985, 3, 722–726. [Google Scholar] [CrossRef]
- Jalak, J.; Kurašin, M.; Teugjas, H.; Väljamäe, P. Endo-exo synergism in cellulose hydrolysis revisited. J. Biol. Chem. 2012, 287, 28802–28815. [Google Scholar] [CrossRef] [Green Version]
- Väljamäe, P.; Sild, V.; Nutt, A.; Pettersson, G.; Johansson, G. Acid hydrolysis of bacterial cellulose reveals different modes of synergistic action between cellobiohydrolase I and endoglucanase. Eur. J. Biochem. 1999, 266, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.H.; Lynd, L.R. Toward an aggregated understanding of enzymatic hydrolysis of cellulose. Non-complexed cellulase systems. Biotechnol. Bioeng. 2004, 88, 797–824. [Google Scholar] [CrossRef]
- Kostylev, M.; Wilson, D. Synergistic interactions in cellulose hydrolysis. Biofuels 2012, 3, 61–70. [Google Scholar] [CrossRef]
- Adsul, M.; Sandhu, S.K.; Singhania, R.R.; Gupta, R.; Puri, S.K.; Mathur, A. Designing a cellulolytic enzyme cocktail for the efficient and economical conversion of lignocellulosic biomass to biofuels. Enzym. Microb. Technol. 2019, 133, 109442. [Google Scholar] [CrossRef] [PubMed]
- Kurašin, M.; Väljamäe, P. Processivity of cellobiohydrolases is limited by the substrate. J. Biol. Chem. 2011, 286, 169–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Zhang, Z.D.; Zhang, P.Y.; Zhou, X.; Ma, X.Q.; Li, F.L. Synergistic cellulose hydrolysis dominated by a multi modular processive endoglucanase from Clostridium cellulosi. Front. Microbiol. 2016, 7, 932. [Google Scholar] [CrossRef] [Green Version]
- Berger, E.; Zhang, D.; Zverlov, V.V.; Schwarz, W.H. Two noncellulosomal cellulases of Clostridium thermocellum, Cel9I and Cel48Y, hydrolyze crystalline cellulose synergistically. FEMS Microbiol. Lett. 2007, 268, 194–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irwin, D.C.; Zhang, A.; Wilson, D.B. Cloning, expression and characterization of a family 48 exocellulase, Cel48A, from Thermobifida fusca. Eur. J. Biochem. 2000, 267, 4988–4997. [Google Scholar] [CrossRef] [Green Version]
- Kostylev, M.; Wilson, D. A distinct model of synergism between processive endocellulases (TfCel9A) and exocellulase (TfCel48A) from Thermobifida fusca. Appl. Environ. Microbiol. 2014, 80, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, M.M.; Irwin, D.C.; Pastor, F.I.J.; Wilson, D.B.; Diaz, P. Synergistic activity of Paenibacillus sp. BP-23 cellobiohydrolase Cel48C in association with the contiguous endoglucanase Cel9B and with endo- or exo-acting glucanases from Thermobifida fusca. Biotechnol. Bioeng. 2004, 87, 161–169. [Google Scholar] [CrossRef]
- Guimarães, B.G.; Souchon, H.; Lytle, B.L.; David, W.; Alzari, P.M. The crystal structure and catalytic mechanism of cellobiohydroalse CelS, the major enzymatic component of Clostridium thermocellum cellulosome. J. Mol. Biol. 2002, 320, 587–596. [Google Scholar] [CrossRef]
- Parsiegla, G.; Juy, M.; Reverbel-Leroy, C.; Tardif, C.; Belai, J.P.; Driquez, H.; Haser, R. The crystal structure of the processive endocellulase CelF of Clostridium cellulolyticum in complex with a thio-oligosaccharide inhibitor at 2.0 Å resolution. EMBO J. 1998, 17, 5551–5562. [Google Scholar] [CrossRef] [Green Version]
- Reverbel-Leroy, C.; Pages, S.; Belaich, A.; Belaich, J.P.; Tardif, C. The processive endocellulase CelF, a major component of the Clostridium cellulolyticum cellulosome: Purification and characterization of the recombinant form. J. Bacteriol. 1997, 179, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Billard, H.; Faraj, A.; Ferreira, N.L.; Blanquet, S.H. Optimization of a synthetic mixture of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw. Biotechnol. Biofeuls 2012, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Tomme, P.; Van Tilbeurgh, H.; Pettersson, G.; Van Damme, J.; Vandekerckhove, J.; Knowles, J.; Teeri, T.; Claeyssens, M. Studies of the cellulolytic system of Trichoderma reesei QM 9414. FEBS J. 1988, 170, 575–581. [Google Scholar]
- Boer, H.; Teeri, T.T.; Koivula, A. Studies with wild-type and mutant Trichoerma reesei cellobiohydrolases Cel7A. The relationship between thermal stability and pH optimum. Eur. J. Biochem. 2003, 270, 841–848. [Google Scholar] [PubMed] [Green Version]
- Boisset, C.; Fraschini, C.; Schulein, M.; Henrissat, B.; Chanzy, H. Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7A. Appl. Environ. Microbiol. 2000, 66, 1444–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igarashi, K.; Koivula, A.; Wada, M.; Kimuru, S.; Penttila, M.; Samejima, M. High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J. Biol. Chem. 2009, 284, 3618–3619. [Google Scholar] [CrossRef] [Green Version]
- Aspeborg, H.; Coutinho, P.M.; Wang, Y.; Brummer, H., III; Henrissat, B. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC. Evol. Biol. 2012, 12, 186. [Google Scholar] [CrossRef] [Green Version]
- Kleywegt, G.J.; Zou, J.Y.; Divne, G.J.; Sinning, I.; Stahlberg, J.; Reinikainen, T.; Srisodsuk, M.; Teeri, T.T.; Jones, T.A. The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 2.6A resolution and comparison with related enzymes. J. Mol. Biol. 1997, 26, 383–397. [Google Scholar] [CrossRef]
- Varrot, A.; Schulein, M.; Davies, G.J. Structural changes of the active site tunnel of Humicola insolens cellobiohydrolase, Cel6A, upon oligosaccharide binding. J. Biochem. 1999, 38, 8884–8891. [Google Scholar] [CrossRef]
- Zverlov, V.V.; Velikodvorskave, G.A.; Schwarz, W.H. Two new cellulolosome components encoded downstream of CelI in the genome of Clostridium thermocellum: The non-processive endoglucanse CelN and the possibly structural protein CseP. Microbiology 2003, 149, 515–524. [Google Scholar] [CrossRef]
- Kim, C.H. Characterization and substrate specificity of an endo-β-1,4-d-glucanase I (Avicelase I) from an extracellular multienzyme complex of Bacillus circulans. Appl. Environ. Microbiol. 1995, 61, 959–965. [Google Scholar] [CrossRef] [Green Version]
- Zheng, F.; Ding, S. Processivity and enzymatic mode of a glycoside hydrolase family 5 endoglucanase from Volvariella volvaea. Appl. Environ. Microbiol. 2013, 3, 989–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fägerstam, L.G.; Pettersson, L.G. The 1,4-β-glucan cellobiohydrolases of Trichoderma reesei QM 9414. A new type of cellulolytic synergism. FEBS Lett. 1980, 119, 97–100. [Google Scholar] [CrossRef] [Green Version]
- Badino, S.F.; Christensen, S.J.; Kari, J.; Windahl, M.S.; Hvidt, S.; Borch, K.; Westh, P. Exo-exo synergy between Cel6A and Cel7A from Hypocrea jecorina: Role of carbohydrate binding module and the endo-lytic character of the enzymes. Biotechnol. Bioeng. 2017, 114, 1639–1647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nidetzky, B.; Steiner, W.; Hayn, M.; Claeyssens, M. Cellulose hydrolysis by the cellulases from Trichoderma reesei: A new model for synergistic interaction. Biochem. J. 1994, 298, 705–710. [Google Scholar] [CrossRef] [Green Version]
- Woodward, J.; Lima, M.; Lee, N.E. The role of cellulase concentration in determining the degree of synergism in the hydrolysis of microcrystalline cellulose. Biochem. J. 1988, 255, 895–899. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Li, P.; Sun, R.; Liu, M.; Jin, W.; Gou, L.; Chen, H.; Qu, Q.; Bu, T.; Li, C. Optimum mixture and synergy analysis of three main cellulases. Int. J. Agric. Biol. 2018, 20, 255–262. [Google Scholar] [CrossRef]
- Brás, J.L.; Cartmell, A.; Carvalho, A.L.; Verzé, G.; Bayer, E.A.; Vazana, Y.; Correia, M.A.; Prates, J.A.; Ratnaparkhe, S.; Boraston, A.B.; et al. Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis. Proc. Natl. Acad. Sci. USA 2011, 108, 5237–5242. [Google Scholar] [CrossRef] [Green Version]
- Converse, A.O.; Optekar, J.D. A synergistic kinetics model for enzymatic cellulose compared to degree-of-synergism experimental results. Biotechnol. Bioeng. 1993, 42, 145–148. [Google Scholar] [CrossRef]
- Mafa, M.; Malgas, S.M.; Rashamushe, K.; Pletschke, B.I. Delineating functional properties of a cello-oligosaccharide and β-glucan specific cellobiohydrolase (GH5_38): Its synergism with Cel6A and Cel7A for β-(1,3)-(1,4)-glucan degradation. Carbohydr. Res. 2020, 495, 108081. [Google Scholar] [CrossRef]
- Malgas, S.; Van Dyk, J.S.; Pletshcke, B.I. β-Mannanase (Man26A) and α-galactosidase (Aga27A) synergism—A key factor for the hydrolysis of galactomannan substrates. Enzyme Microb. Technol. 2015, 70, 1–8. [Google Scholar] [CrossRef]
- Wood, T.M.; McCrae, S.; Bhat, K.M. The mechanism of fungal cellulase action. Synergism between enzyme components of Penicillium pinophilum cellulase in solubilizing hydrogen bond ordered cellulose. Biochem. J. 1989, 260, 37–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irwin, D.C.; Spezio, M.; Walker, L.P.; Wilson, D.B. Activity studies of eight purified cellulases. Specificity, synergism, and binding domain effects. Biotechnol. Bioeng. 1983, 42, 1002–1013. [Google Scholar] [CrossRef]
- Andersen, N.; Johansen, K.S.; Michelsen, M.; Stenby, E.H.; Krogh, K.B.R.M.; Olsson, L. Hydrolysis of cellulose using mono-component enzymes shows synergy during hydrolysis of phosphoric acid swollen cellulose (PASC), but competition on Avicel. Enzyme Microb. Technol. 2008, 32, 362–370. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 7, 248–254. [Google Scholar] [CrossRef]
- Malgas, S.; Chandra, R.; Van Dyk, J.S.; Saddler, J.N.; Pletschke, B.I. Formulation of an optimized synergistic enzyme cocktail, Holomix, for effective degradation of various pre-treated hardwoods. Bioresour. Technol. 2017, 245, 52–65. [Google Scholar] [CrossRef]
- Miller, G.I. Use of dinitrosalicylic acid reagent for the determination of reducing sugars. Anal. Chem. 1959, 72, 426–428. [Google Scholar] [CrossRef]
Enzyme | Specific Activity (U/mg) | ||||
---|---|---|---|---|---|
CMC | Avicel | pNPC | pNPG | Cellopentaitol | |
Cellobiohydrolase I (CBHI) | |||||
(HjCel7A) | 0.35 ± 0.01 | 0.10 ± 0.00 | 0.25 ± 0.01 | 0.06 ± 0.01 | Nd |
(TlCel7A) | 0.70 ± 0.02 | 0.35 ± 0.01 | 0.15 ± 0.00 | 0.03 ± 0.01 | Nd |
(CsCel48A) | 0.70 ± 0.02 | 0.028 ± 0.00 | 0.02 ± 0.00 | 0.09 ± 0.00 | Nd |
Cellobiohydrolase II (CBHII) | |||||
(CtCel5A) | 4.90 ± 0.20 | 0.026 ± 0.00 | 0.017 ± 0.00 | 0.08 ± 0.00 | 0.50 ± 0.02 |
Microbial Cel6A | 0.08 ± 0.00 | 0.05 ± 0.00 | 0.023 ± 0.00 | 0.03 ± 0.00 | 0.48 ± 0.02 |
Endo-glucanase (EG) | |||||
(BaCel5A) | 21.30 ± 0.80 | 0.062 ± 0.00 | 5.59 ± 0.20 | 0.15 ± 0.00 | 0.55 ± 0.02 |
(TmCel5A) | 22.01 ± 0.05 | Nd | 0.85 ± 0.03 | 0.20 ± 0.01 | 1.04 ± 0.05 |
(TrCel7B) | 20.16 ± 1.00 | 0.16 ± 0.00 | 2.02 ± 0.09 | 0.05 ± 0.00 | 1.39 ± 0.06 |
AnEG (Cel 9, 12, 74) | 42.60 ± 1.80 | 0.41 ± 0.02 | 0.80 ± 0.03 | 4.90 ± 0.20 | 2.05 ± 0.10 |
Glucosidase | |||||
βgl | 0.30 ± 0.01 | Nd | 0.30 ± 0.01 | 53.2 ± 1.30 | Nd |
BaCel5A | TmCel7A | AnEG | TrCel7B | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cmix | Cmix/Endo (%) | RS (mg/ mL) | Glu (mg/mL) | DS RS | DS Glu | RS (mg/mL) | Glu (mg/mL) | DS RS | DS Glu | RS (mg/mL) | Glu (mg/mL) | DS RS | DS Glu | RS (mg/mL) | Glu (mg/mL) | DS RS | DS Glu |
A1 | 0/100 | 0.18 ± 0.00 | 0.23 ± 0.01 | – | – | 0.00 ± 0.00 | 0.00 ± 0.00 | – | – | 1.16 ± 0.06 | 1.10 ± 0.04 | – | – | 0.45± 0.01 | 0.47 ± 0.02 | – | – |
25/75 | 0.71 ± 0.03 | 0.70 ± 0.04 | 1.19 | 1.26 | 0.47 ± 0.01 | 0.49 ± 0.02 | 1.12 | 1.16 | 1.29 * ± 0.06 | 1.18 * ± 0.05 | 1.08 | 1.10 | 0.69 ± 0.02 | 0.65 ± 0.02 | 0.90 | 0.88 | |
50/50 | 0.95 * ± 0.03 | 0.90 * ± 0.04 | 1.30 | 1.28 | 0.61 ± 0.02 | 0.64 ± 0.02 | 1.09 | 1.09 | 1.27 * ± 0.05 | 1.13 ± 0.03 | 1.15 | 1.31 | 0.83 ± 0.03 | 0.82 ± 0.03 | 0.95 | 0.99 | |
75/25 | 1.13 * ± 0.05 | 1.07 * ± 0.04 | 1.38 | 1.40 | 0.80 ± 0.03 | 0.78 ± 0.04 | 1.11 | 1.14 | 1.26 * ± 0.04 | 1.10 ± 0.05 | 1.15 | 1.11 | 0.86 ± 0.03 | 0.83 ± 0.03 | 0.96 | 1.00 | |
100/0 | 0.84 ± 0.03 | 0.85 ± 0.04 | – | – | 0.84 ± 0.03 | 0.85 ± 0.04 | – | – | 0.84 ± 0.03 | 0.85 ± 0.04 | – | – | 0.84 ± 0.03 | 0.85 ± 0.04 | – | – | |
A2 | 0/100 | 0.18 ± 0.00 | 0.23 ± 0.01 | – | – | 0.00 ± 0.00 | 0.00 ± 0.00 | – | – | 1.16 ± 0.06 | 1.10 ± 0.04 | – | – | 0.45 ± 0.01 | 0.47 ± 0.02 | – | – |
25/75 | 0.80 ± 0.03 | 0.75 ± 0.02 | 1.35 | 1.37 | 0.50 ± 0.02 | 0.50 ± 0.02 | 1.26 | 1.2 | 1.43 * ±0.07 | 1.35 * ± 0.06 | 1.22 | 1.29 | 0.70 ± 0.02 | 0.69 ± 0.02 | 0.92 | 0.95 | |
50/50 | 1.06 * ± 0.05 | 0.95 * ± 0.04 | 1.38 | 1.37 | 0.73 ± 0.02 | 0.72 ± 0.03 | 1.22 | 1.17 | 1.40 * ±0.07 | 1.32 * ± 0.06 | 1.20 | 1.20 | 0.80 ± 0.03 | 0.78 ± 0.04 | 0.93 | 0.90 | |
75/25 | 1.21 * ± 0.06 | 1.10 * ± 0.05 | 1.47 | 1.41 | 0.89 ± 0.03 | 0.82 ± 0.03 | 1.23 | 1.22 | 1.32 * ±0.05 | 1.31 * ± 0.05 | 1.30 | 1.27 | 0.85 ± 0.03 | 0.82 ± 0.04 | 0.92 | 0.94 | |
100/0 | 0.89 ± 0.04 | 0.83 ± 0.03 | – | – | 0.89 ± 0.04 | 0.83 ± 0.03 | – | – | 0.89 ± 0.04 | 0.83 ± 0.03 | – | – | 0.8 ± 0.04 | 0.83 ± 0.03 | – | – | |
B1 | 0/100 | 0.18 ± 0.00 | 0.23 ± 0.01 | – | – | 0.00 ± 0.00 | 0.00 ± 0.00 | – | – | 1.16 ± 0.06 | 1.10 ± 0.04 | – | – | 0.45 ± 0.01 | 0.47 ± 0.02 | – | – |
25/75 | 0.25 ± 0.01 | 0.29 ± 0.01 | 0.63 | 0.64 | 0.21 ± 0.00 | 0.26 ± 0.00 | 0.98 | 0.80 | 0.98 ± 0.4 | 0.94 ± 0.03 | 0.98 | 1.00 | 0.45 ± 0.02 | 0.45 ± 0.02 | 0.77 | 0.69 | |
50/50 | 0.31 ± 0.01 | 0.35 ± 0.01 | 0.64 | 0.64 | 0.30 ± 0.01 | 0.33 ± 0.00 | 0.94 | 0.80 | 0.88 ± 0.04 | 0.84 ± 0.03 | 1.00 | 0.99 | 0.43 ± 0.01 | 0.45 ± 0.02 | 0.72 | 0.67 | |
75/25 | 0.37 ± 0.01 | 0.40 ± 0.02 | 0.77 | 0.72 | 0.38 ± 0.02 | 0.41 ± 0.02 | 0.99 | 0.91 | 0.76 ± 0.03 | 0.75 ± 0.02 | 1.00 | 0.96 | 0.43 ± 0.02 | 0.43 ± 0.01 | 0.74 | 0.68 | |
100/0 | 0.40 ± 0.02 | 0.42 ± 0.02 | – | – | 0.40 ± 0.02 | 0.42 ± 0.02 | – | – | 0.40 ± 0.02 | 0.42 ± 0.02 | – | – | 0.40 ± 0.02 | 0.42 ± 0.02 | – | – | |
B2 | 0/100 | 0.18 ± 0.00 | 0.23 ± 0.01 | – | – | 0.00 ± 0.00 | 0.00 ± 0.00 | – | – | 1.16 ± 0.06 | 1.10 ± 0.04 | – | – | 0.45 ± 0.01 | 0.47± 0.02 | – | – |
25/75 | 0.28 ± 0.00 | 0.34 ± 0.00 | 0.72 | 0.72 | 0.23 ± 0.01 | 0.28 ± 0.01 | 0.98 | 0.87 | 1.04 ± 0.05 | 1.00 ± 0.05 | 1.03 | 0.95 | 0.56 ± 0.02 | 0.53 ± 0.01 | 0.98 | 0.82 | |
50/50 | 0.34 ± 0.01 | 0.38 ± 0.00 | 0.76 | 0.72 | 0.29 ± 0.01 | 0.37 ± 0.02 | 0.97 | 0.84 | 0.85 ± 0.04 | 0.80 ± 0.03 | 1.02 | 0.98 | 0.54 ± 0.02 | 0.54 ± 0.00 | 0.94 | 0.83 | |
75/25 | 0.37 ± 0.01 | 0.44 ± 0.01 | 0.88 | 0.82 | 0.34 ± 0.01 | 0.38 ± 0.01 | 0.99 | 0.88 | 0.69 ± 0.04 | 0.66 ± 0.03 | 0.97 | 0.86 | 0.51 ± 0.02 | 0.52 ± 0.02 | 0.94 | 0.85 | |
100/0 | 0.40 ± 0.02 | 0.44 ± 0.02 | – | – | 0.40 ± 0.02 | 0.44 ± 0.02 | – | – | 0.40 ± 0.02 | 0.44 ± 0.02 | – | – | 0.40 ± 0.02 | 0.44 ± 0.02 | – | – | |
C1 | 0/100 | 0.18 ± 0.00 | 0.23 ± 0.01 | – | – | 0.00 ± 0.00 | 0.00 ± 0.00 | – | – | 1.16 ± 0.06 | 1.10 ± 0.04 | – | – | 0.45 ± 0.01 | 0.47 ± 0.02 | – | – |
25/75 | 0.15 ± 0.00 | 0.23 ± 0.01 | 0.73 | 0.95 | 0.00 ± 0.00 | 0.09 ± 0.00 | 0 | 0.98 | 0.75 ± 0.03 | 0.69 ± 0.02 | 0.94 | 0.99 | 0.39 ± 0.02 | 0.41 ± 0.02 | 1.16 | 1.00 | |
50/50 | 0.14 ± 0.00 | 0.20 ± 0.00 | 0.76 | 0.93 | 0.00 ± 0.00 | 0.13 ± 0.00 | 0 | 1.23 | 0.45 ± 0.02 | 0.40 ± 0.01 | 0.65 | 0.78 | 0.36 ± 0.01 | 0.38 ± 0.01 | 1.18 | 1.05 | |
75/25 | 0.12 ± 0.00 | 0.19 ± 0.00 | 0.88 | 0.86 | 0.09 ± 0.00 | 0.15 ± 0.00 | 1.28 | 1.24 | 0.16 ± 0.00 | 0.21 ± 0.01 | 0.38 | 0.46 | 0.29 ± 0.01 | 0.33 ± 0.01 | 1.18 | 1.04 | |
100/0 | 0.10 ± 0.00 | 0.15 ± 0.00 | – | – | 0.10 ± 0.00 | 0.15 ± 0.00 | – | – | 0.10 ± 0.00 | 0.15 ± 0.00 | – | – | 0.10 ± 0.00 | 0.15 ± 0.00 | – | – | |
C2 | 0/100 | 0.18 ± 0.00 | 0.23 ± 0.01 | – | – | 0.00 ± 0.00 | 0.00 ± 0.00 | – | – | 1.16 ± 0.06 | 1.10 ± 0.05 | – | – | 0.45 ± 0.01 | 0.47 ± 0.02 | – | – |
25/75 | 0.14 ± 0.00 | 0.19 ± 0.00 | 0.70 | 0.85 | 0.00 ± 0.00 | 0.06 ± 0.00 | 0.00 | 0.78 | 0.79 ± 0.04 | 0.71 ± 0.03 | 1.00 | 1.00 | 0.41 ± 0.02 | 0.41 ± 0.02 | 1.09 | 0.99 | |
50/50 | 0.13 ± 0.00 | 0.18 ± 0.00 | 0.72 | 0.85 | 0.00 ± 0.00 | 0.08 ± 0.00 | 0.00 | 0.86 | 0.53 ± 0.02 | 0.51 ± 0.02 | 0.96 | 1.00 | 0.36 ± 0.01 | 0.39 ± 0.01 | 1.18 | 1.04 | |
75/25 | 0.10 ± 0.00 | 0.16 ± 0.00 | 0.83 | 0.80 | 0.07 ± 0.00 | 0.13 ± 0.00 | 1.20 | 1.23 | 0.25 ± 0.00 | 0.30 ± 0.01 | 0.58 | 0.66 | 0.29 ± 0.01 | 0.31 ± 0.01 | 1.17 | 1.06 | |
100/0 | 0.09 ± 0.00 | 0.14 ± 0.00 | – | – | 0.09 ± 0.00 | 0.14 ± 0.00 | – | – | 0.09 ± 0.00 | 0.14 ± 0.00 | – | – | 0.09 ± 0.00 | 0.14 ± 0.00 | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thoresen, M.; Malgas, S.; Mafa, M.S.; Pletschke, B.I. Revisiting the Phenomenon of Cellulase Action: Not All Endo- and Exo-Cellulase Interactions Are Synergistic. Catalysts 2021, 11, 170. https://doi.org/10.3390/catal11020170
Thoresen M, Malgas S, Mafa MS, Pletschke BI. Revisiting the Phenomenon of Cellulase Action: Not All Endo- and Exo-Cellulase Interactions Are Synergistic. Catalysts. 2021; 11(2):170. https://doi.org/10.3390/catal11020170
Chicago/Turabian StyleThoresen, Mariska, Samkelo Malgas, Mpho Stephen Mafa, and Brett Ivan Pletschke. 2021. "Revisiting the Phenomenon of Cellulase Action: Not All Endo- and Exo-Cellulase Interactions Are Synergistic" Catalysts 11, no. 2: 170. https://doi.org/10.3390/catal11020170
APA StyleThoresen, M., Malgas, S., Mafa, M. S., & Pletschke, B. I. (2021). Revisiting the Phenomenon of Cellulase Action: Not All Endo- and Exo-Cellulase Interactions Are Synergistic. Catalysts, 11(2), 170. https://doi.org/10.3390/catal11020170