Direct Dimethyl Carbonates Synthesis over CeO2 and Evaluation of Catalyst Morphology Role in Catalytic Performance
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of CeO2
2.2. Catalytic Performance of CeO2
2.3. Dehydrating Agents and DMC Production
2.4. Reaction Mechanism Study Using FTIR Method
3. Experimental Apparatus and Procedures
3.1. Materials and Methods
3.2. Synthesis of Catalyst
3.3. Conversion of CO2 and Methanol into DMC in Batch Reactor over CeO2 Catalyst
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bian, J.; Xiao, M.; Wang, S.-J.; Lu, Y.-X.; Meng, Y.-Z. Carbon nanotubes supported Cu–Ni bimetallic catalysts and their properties for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Appl. Surf. Sci. 2009, 255, 7188–7196. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Caramanna, G.; Maroto-Valer, M.M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef] [Green Version]
- Tamboli, H.; Chaugule, A.A.; Kim, H. Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol. Chem. Eng. J. 2017, 323, 530–544. [Google Scholar] [CrossRef]
- Sun, W.; Shi, R.; Wang, X.; Liu, S.; Han, X.; Zhao, C.; Li, Z.; Ren, J. Density-functional theory study of dimethyl carbonate synthesis by methanol oxidative carbonylation on single-atom Cu 1/graphene catalyst. Appl. Surf. Sci. 2017, 425, 291–300. [Google Scholar] [CrossRef]
- Kwon, E.E.; Yi, H.; Jeon, Y.J. Boosting the value of biodiesel byproduct by the non-catalytic transesterification of dimethyl carbonate via a continuous flow system under ambient pressure. Chemosphere 2014, 113, 87–92. [Google Scholar] [CrossRef]
- Aricò, F.; Tundo, P. Dimethyl carbonate as a modern green reagent and solvent. Russ. Chem. Rev. 2010, 79, 479–489. [Google Scholar] [CrossRef] [Green Version]
- Tundo, P.; Selva, M. The chemistry of dimethyl carbonate. Acc. Chem. Res. 2002, 35, 706–716. [Google Scholar] [CrossRef]
- Tamboli, A.H.; Bandal, H.A.; Kim, H. Solvent free synthesis of cyclic ureas and urethanes by carbonylation method in the basic dicationic ionic liquid catalysts. Chem. Eng. J. 2016, 306, 826–831. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Z.; Zheng, H.; Hao, Z.; Wang, X.; Wang, J. Influence of surface oxygenated groups on the formation of active Cu species and the catalytic activity of Cu/AC catalyst for the synthesis of dimethyl carbonate. Appl. Surf. Sci. 2016, 390, 68–77. [Google Scholar] [CrossRef]
- Ren, Y.; Ma, Z.; Bruce, P.G. Ordered mesoporous metal oxides: Synthesis and applications. Chem. Soc. Rev. 2012, 41, 4909–4927. [Google Scholar] [CrossRef]
- Nasreen, S.; Liu, H.; Qureshi, L.A.; Sissou, Z.; Lukic, I.; Skala, D. Cerium-manganese oxide as catalyst for transesterification of soybean oil with subcritical methanol. Fuel Process. Technol. 2016, 148, 76–84. [Google Scholar] [CrossRef]
- Jung, K.T.; Bell, A.T. An in Situ Infrared Study of Dimethyl Carbonate Synthesis from Carbon Dioxide and Methanol over Zirconia. J. Catal. 2001, 204, 339–347. [Google Scholar] [CrossRef]
- Kang, K.H.; Lee, C.H.; Kim, D.B.; Jang, B.; Song, I.K. NiO/CeO2-ZnO Nano-Catalysts for Direct Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide. J. Nanosci. Nanotechnol. 2014, 14, 8693–8698. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; With, P.; Srivastava, V.C.; Gläser, R.; Mishra, I.M. Conversion of carbon dioxide along with methanol to dimethyl carbonate over ceria catalyst. J. Environ. Chem. Eng. 2015, 3, 2943–2947. [Google Scholar] [CrossRef]
- Tamboli, A.H.; Gosavi, S.W.; Terashima, C.; Fujishima, A.; Pawar, A.A.; Kim, H. Synthesis of cerium and nickel doped titanium nanofibers for hydrolysis of sodium borohydride. Chemosphere 2018, 202, 669–676. [Google Scholar] [CrossRef]
- Marin, C.M.; Li, L.; Bhalkikar, A.; Doyle, J.E.; Zeng, X.C.; Cheung, C.L. Kinetic and mechanistic investigations of the direct synthesis of dimethyl carbonate from carbon dioxide over ceria nanorod catalysts. J. Catal. 2016, 340, 295–301. [Google Scholar] [CrossRef]
- Santos, B.a.V.; Silva, V.M.T.M.; Loureiro, J.M.; Rodrigues, A.E. Review for the Direct Synthesis of Dimethyl Carbonate. ChemBioEng Rev. 2014, 1, 214–229. [Google Scholar] [CrossRef]
- Bansode, A.; Urakawa, A. Continuous DMC synthesis from CO2 and methanol over a CeO2 catalyst in a fixed bed reactor in the presence of a dehydrating agent. ACS Catal. 2014, 4, 3877–3880. [Google Scholar] [CrossRef] [Green Version]
- Santos, B.A.V.; Pereira, C.S.M.; Silva, V.M.T.M.; Loureiro, J.M.; Rodrigues, A.E. Kinetic study for the direct synthesis of dimethyl carbonate from methanol and CO2 over CeO2 at high pressure conditions. Appl. Catal. A Gen. 2013, 455, 219–226. [Google Scholar] [CrossRef]
- Wang, F.; Yu, H.; Tian, Z.; Xue, H.; Feng, L. Active sites contribution from nanostructured interface of palladium and cerium oxide with enhanced catalytic performance for alcohols oxidation in alkaline solution. J. Energy Chem. 2018, 27, 395–403. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Haiying, F.; Yang, L.; Lihong, L.; Dionysios, X.; Dionysioud, D.; Yanga, L.; Xing, B. Nano-cerium oxide functionalized biochar for phosphate retention: Preparation, optimization and rice paddy application. Chemosphere 2017, 185, 816–825. [Google Scholar] [CrossRef]
- Xu, J.; Long, K.Z.; Wu, F.; Xue, B.; Li, Y.X.; Cao, Y. Efficient synthesis of dimethyl carbonate via transesterification of ethylene carbonate over a new mesoporous ceria catalyst. Appl. Catal. A Gen. 2014, 484, 1–7. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, L.; Wang, W.; Zhao, Y.; Zhang, G.; Ma, X.; Gong, J. Morphology control of ceria nanocrystals for catalytic conversion of CO2 with methanol. Nanoscale 2013, 5, 5582–5588. [Google Scholar] [CrossRef]
- Mei, J.; Ke, Y.; Yu, Z.; Hu, X.; Qu, Z.; Yan, N. Morphology-dependent properties of Co3O4/CeO2 catalysts for low temperature dibromomethane (CH 2 Br 2) oxidation. Chem. Eng. J. 2017, 320, 124–134. [Google Scholar] [CrossRef]
- Chen, L.; Wang, S.; Zhou, J.; Shen, Y.; Zhao, Y.; Ma, X. Dimethyl carbonate synthesis from carbon dioxide and methanol over CeO2 versus over ZrO2: Comparison of mechanisms. RSC Adv. 2014, 4, 30968–30975. [Google Scholar] [CrossRef]
- Hu, S.; Ouyang, R.; Li, W.-X. First-principles kinetics study of carbon monoxide promoted Ostwald ripening of Au particles on FeO/Pt(111). J. Energy Chem. 2019, 30, 108–113. [Google Scholar] [CrossRef] [Green Version]
- Piwoński, I.; Spilarewicz-Stanek, K.; Kisielewska, A.; Kadzioła, K.; Cichomski, M.; Ginter, J. Examination of Ostwald ripening in the photocatalytic growth of silver nanoparticles on titanium dioxide coatings. Appl. Surf. Sci. 2016, 373, 38–44. [Google Scholar] [CrossRef]
- Madras, G.; McCoy, B.J. Distribution kinetics theory of Ostwald ripening. J. Chem. Phys. 2001, 115, 6699–6706. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Zhao, Y.; Yang, W.; Tian, J.; Guan, F.; Ma, Y.; Hou, J.; Kang, J.; Wang, Y. Preparation of samarium oxide nanoparticles and its catalytic activity on the esterification. Mater. Chem. Phys. 2003, 77, 65–69. [Google Scholar] [CrossRef]
- Langford, J.I.; Wilson, A.J.C. Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 1978, 11, 102–113. [Google Scholar] [CrossRef]
- Lee, D.K.; Park, S.I.; Lee, J.K.; Hwang, N.M. A theoretical model for digestive ripening. Acta Mater. 2007, 55, 5281–5288. [Google Scholar] [CrossRef]
- Ghosh, A.; Chakrabarti, S.; Biswas, K.; Ghosh, U.C. Agglomerated nanoparticles of hydrous Ce(IV) + Zr(IV) mixed oxide: Preparation, characterization and physicochemical aspects on fluoride adsorption. Appl. Surf. Sci. 2014, 307, 665–676. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Sato, H.; Kaneeda, M.; Kondo, J.N. Synthesis and analysis of CO2adsorbents based on cerium oxide. J. CO2 Util. 2014, 8, 34–38. [Google Scholar] [CrossRef]
- Aresta, M.; Dibenedetto, A.; Pastore, C.; Angelini, A.; Aresta, B.; Pápai, I. Influence of Al2O3 on the performance of CeO2 used as catalyst in the direct carboxylation of methanol to dimethylcarbonate and the elucidation of the reaction mechanism. J. Catal. 2010, 269, 44–52. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, Q.; Ye, Z.; Li, Y.; Yang, Y.; Pua, H.; Gao, L. Monolithic Zn x Ce 1− x O 2 catalysts for catalytic synthesis of dimethyl carbonate from CO 2 and methanol. New J. Chem. 2020, 44, 12522–12530. [Google Scholar] [CrossRef]
- Vayssilov, G.N.; Mihaylov, M.; Petkov, P.S.; Hadjiivanov, K.I.; Neyman, K.M. Reassignment of the vibrational spectra of carbonates, formates, and related surface species on ceria: A combined density functional and infrared spectroscopy investigation. J. Phys. Chem. C 2011, 115, 23435–23454. [Google Scholar] [CrossRef]
- Monteiro, R.S.; Noronha, F.B.; Dieguez, L.C.; Schmal, M. Characterization of PdCeO2 interaction on alumina support and hydrogenation of 1, 3-butadiene. Appl. Catal. A Gen. 1995, 131, 89–106. [Google Scholar] [CrossRef]
- Marciniaka, A.A.; Henrique, F.J.F.S.; Lima, A.F.F.; Alves, O.; Moreira, C.R.; Appele, L.G.; Mota, C.J.A. What are the preferred CeO2 exposed planes for the synthesis of dimethyl carbonate? Answers from theory and experiments. Mol. Catal. 2020, 493, 111053. [Google Scholar] [CrossRef]
- Pozdnyakova, O.; Teschner, D.; Wootsch, A.; Kröhnert, J.; Steinhauer, B.; Sauer, H.; Toth, L.; Jentoft, F.C.; Knop-Gericke, A.; Paál, Z.; et al. Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part II: Oxidation states and surface species on Pd/CeO2 under reaction conditions, suggested reaction mechanism. J. Catal. 2006, 237, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Binet, C.; Daturi, M.; Lavalley, J.-C. {IR} study of polycrystalline ceria properties in oxidised and reduced states. Catal. Today 1999, 50, 207–225. [Google Scholar] [CrossRef]
- Durano, M.M.; Tamboli, A.H.; Kim, H. Cobalt oxide synthesized using urea precipitation method as catalyst for the hydrolysis of sodium borohydride, Colloids Surfaces a Physicochem. Eng. Asp. 2017, 520, 355–360. [Google Scholar] [CrossRef]
Sr. No. | Catalyst | Surface Area (m2g−1) | Pore Volume (cm3g−1) | Pore Size (nm) |
---|---|---|---|---|
1 | CeO2 sphere | 71 | 0.053 | 3.0 |
2 | CeO2 mixed shapes | 68 | 0.094 | 5.4 |
3 | CeO2 spindles | 104 | 0.073 | 2.8 |
4 | CeO2 nanorods | 66 | 0.085 | 5.1 |
Sr. No. | b Catalyst | c Catalyst wt. (g) | a Dehydrating Agent | c Pressure (MPa) | c Temperature (°C) | d TON (M. s−1) | d TOF (h−1) |
---|---|---|---|---|---|---|---|
1 | Sphere CeO2 | 1 | − | 7.5 | 140 | 1.18 | 0.395 |
2 | Mixed shape CeO2 | 1 | − | 7.5 | 140 | 1.69 | 0.566 |
3 | Spindle CeO2 | 1 | − | 7.5 | 140 | 2.24 | 0.748 |
4 | Nanorod CeO2 | 1 | − | 7.5 | 140 | 1.76 | 0.588 |
5 | Spindle CeO2 | 1 | − | 6.5 | 140 | 1.52 | 0.507 |
6 | Spindle CeO2 | 1 | − | 7 | 140 | 1.76 | 0.589 |
7 | Spindle CeO2 | 1 | − | 8 | 140 | 2.38 | 0.794 |
8 | Spindle CeO2 | 1 | − | 7.5 | 100 | 1.65 | 0.553 |
9 | Spindle CeO2 | 1 | − | 7.5 | 120 | 2.20 | 0.736 |
10 | Spindle CeO2 | 1 | − | 7.5 | 160 | 2.25 | 0.751 |
11 | Spindle CeO2 | 0.5 | − | 7.5 | 140 | 3.59 | 1.199 |
12 | Spindle CeO2 | 1.5 | − | 7.5 | 140 | 1.68 | 0.561 |
13 | Spindle CeO2 | 2 | − | 7.5 | 140 | 1.35 | 0.452 |
14 | Spindle CeO2 | 1 | Molecular sieve 4A | 7.5 | 140 | 3.33 | 1.110 |
15 | Spindle CeO2 | 1 | DMP | 7.5 | 140 | 4.31 | 1.439 |
16 | Spindle CeO2 | 1 | Acetonitrile | 7.5 | 140 | 3.41 | 1.138 |
17 | Spindle CeO2 | 1 | Cyclohexene oxide | 7.5 | 140 | 4.25 | 1.419 |
18 | Spindle CeO2 | 1 | Styrene oxide | 7.5 | 140 | 4.29 | 1.433 |
Catalysts | Dehydrating Agent | Temp. (°C) | Pressure (MPa) | DMC (mmol) | TOF (h−1) | References |
---|---|---|---|---|---|---|
CeO2 | − | 170 | 5 | 0.66 | − | [33] |
CeO2 | CH3CN | 150 | 0.5 | 1.52 | − | [34] |
Spindle-like CeO2 | - | 140 | 5 | 4.10 | − | [35] |
CeO2 | − | 140 | 5 | 5.34 | − | [36] |
CeO2 | 3 A MS | 120 | 15 | 2.04 | − | [37] |
CeO2-4A | − | 120 | 0.6 | 3.23 | − | [38] |
CeO2 Spindle | − | 140 | 8 | 13.84 | 0.794 | [This study] |
CeO2 Spindle | Molecular sieve 4A | 140 | 7.5 | 19.35 | 1.110 | [This study] |
CeO2 Spindle | DMP | 140 | 7.5 | 25.09 | 1.439 | [This study] |
CeO2 Spindle | Acetonitrile | 140 | 7.5 | 19.84 | 1.1380. | [This study] |
CeO2 Spindle | Cyclohexene oxide | 140 | 7.5 | 24.75 | 1.419 | [This study] |
CeO2 Spindle | Styrene oxide | 140 | 7.5 | 24.98 | 1.433 | [This study] |
Molecular sieve 4A | - | 140 | 7.5 | 0.09 | − | [This study] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamboli, A.H.; Suzuki, N.; Terashima, C.; Gosavi, S.; Kim, H.; Fujishima, A. Direct Dimethyl Carbonates Synthesis over CeO2 and Evaluation of Catalyst Morphology Role in Catalytic Performance. Catalysts 2021, 11, 223. https://doi.org/10.3390/catal11020223
Tamboli AH, Suzuki N, Terashima C, Gosavi S, Kim H, Fujishima A. Direct Dimethyl Carbonates Synthesis over CeO2 and Evaluation of Catalyst Morphology Role in Catalytic Performance. Catalysts. 2021; 11(2):223. https://doi.org/10.3390/catal11020223
Chicago/Turabian StyleTamboli, Ashif H., Norihiro Suzuki, Chiaki Terashima, Suresh Gosavi, Hern Kim, and Akira Fujishima. 2021. "Direct Dimethyl Carbonates Synthesis over CeO2 and Evaluation of Catalyst Morphology Role in Catalytic Performance" Catalysts 11, no. 2: 223. https://doi.org/10.3390/catal11020223
APA StyleTamboli, A. H., Suzuki, N., Terashima, C., Gosavi, S., Kim, H., & Fujishima, A. (2021). Direct Dimethyl Carbonates Synthesis over CeO2 and Evaluation of Catalyst Morphology Role in Catalytic Performance. Catalysts, 11(2), 223. https://doi.org/10.3390/catal11020223