Sustainable and Environmental Catalysis
1. Introduction
2. The Contents of the Special Issue
Funding
Conflicts of Interest
References
- Cespi, D.; Esposito, I.; Cucciniello, R.; Anastas, P.T. Beyond the beaker: Benign by design society. Curr. Res. Green Sustain. Chem. 2020, 3, 100028. [Google Scholar] [CrossRef]
- Fasolini, A.; Cespi, D.; Tabanelli, T.; Cucciniello, R.; Cavani, F. Hydrogen from Renewables: A Case Study of Glycerol Reforming. Catalysts 2019, 9, 722. [Google Scholar] [CrossRef] [Green Version]
- Bellè, A.; Tabanelli, T.; Fiorani, G.; Perosa, A.; Cavani, F.; Selva, M. A Multiphase Protocol for Selective Hydrogenation and Reductive Amination of Levulinic Acid with Integrated Catalyst Recovery. ChemSusChem 2019, 12, 3343–3354. [Google Scholar] [CrossRef]
- Cucciniello, R.; Intiso, A.; Castiglione, S.; Genga, A.; Proto, A.; Rossi, F. Total oxidation of trichloroethylene over mayenite (Ca12Al14O33) catalyst. Appl. Catal. B Environ. 2017, 204, 167–172. [Google Scholar] [CrossRef]
- Intiso, A.; Martinez-Triguero, J.; Cucciniello, R.; Proto, A.; Palomares, A.E.; Rossi, F. A Novel Synthetic Route to Prepare High Surface. Catalysts 2019, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Liu, Q.; Guo, L.; Zhang, S.; Pang, L.; Guo, Y.; Li, T. The promoting mechanism of in situ Zr doping on the hydrothermal stability of Fe-SSZ-13 catalyst for NH3-SCR reaction. Appl. Catal. B Environ. 2021, 286, 119816. [Google Scholar] [CrossRef]
- Ricciardi, M.; Falivene, L.; Tabanelli, T.; Proto, A.; Cucciniello, R.; Cavani, F. Bio-Glycidol Conversion to Solketal over Acid Heterogeneous Catalysts: Synthesis and Theoretical Approach. Catalysts 2018, 8, 391. [Google Scholar] [CrossRef] [Green Version]
- Prete, P.; Fiorentino, A.; Rizzo, L.; Proto, A.; Cucciniello, R. Review of aminopolycarboxylic acids-based metal complexes application to water and wastewater treatment by (photo-)Fenton process at neutral pH. Curr. Opin. Green Sustain. Chem. 2021. [Google Scholar] [CrossRef]
- Cova, C.M.; Zuliani, A.; Manno, R.; Sebastian, V.; Luque, R. Scrap waste automotive converters as efficient catalysts for the continuous-flow hydrogenations of biomass derived chemicals. Green Chem. 2020, 22, 1414–1423. [Google Scholar] [CrossRef]
- Scioli, G.; Tonucci, L.; Di Profio, P.; Proto, A.; Cucciniello, R.; D’Alessandro, N. New green route to obtain (bio)-propene through 1,2-propanediol deoxydehydration. Sustain. Chem. Pharm. 2020, 17, 100273. [Google Scholar] [CrossRef]
- Kang, S.; Li, X.; Fan, J.; Chang, J. Hydrothermal conversion of lignin: A review. Ren. Sustain. Energy Rev. 2013, 27, 546–558. [Google Scholar] [CrossRef]
- Aomchad, V.; Cristofol, A.; Della Monica, F.; Limburg, B.; D’Elia, V.; Kleij, A. Recent progress in the catalytic transformation of carbon dioxide into biosourced organic carbonates. Green Chem. 2021. [Google Scholar] [CrossRef]
- Tabanelli, T.; Giliberti, C.; Mazzoni, R.; Cucciniello, R.; Cavani, F. An innovative synthesis pathway to benzodioxanes: The peculiar reactivity of glycerol carbonate and catechol. Green Chem. 2019, 21, 329. [Google Scholar] [CrossRef]
- Cucciniello, R.; Intiso, A.; Siciliano, T.; Palomares, A.P.; Martinez-Triguero, J.; Cerrillo, J.L.; Proto, A.; Rossi, F. Oxidative Degradation of Trichloroethylene over Fe2O3-doped Mayenite: Chlorine Poisoning Mitigation and Improved Catalytic Performance. Catalysts 2019, 9, 747. [Google Scholar] [CrossRef] [Green Version]
- Rivas, F.C.; Rodriguez-Iznaga, I.; Berlier, G.; Ferro, D.T.; Concepcion-Rosabal, B.; Petranovskii, V. Fe Speciation in Iron Modified Natural Zeolites as Sustainable Environmental Catalysts. Catalysts 2019, 9, 866. [Google Scholar] [CrossRef] [Green Version]
- Husnain, N.; Wang, E.; Fareed, S. Low-Temperature Selective Catalytic Reduction of NO with NH3 over Natural Iron Ore Catalyst. Catalysts 2019, 9, 956. [Google Scholar] [CrossRef] [Green Version]
- Ngoie, W.I.; Weiz, P.J.; Ikhu-Omoregbe, D.; Oyekola, O.O. Heterogeneous Nanomagnetic Catalyst from Cupriferous Mineral Processing Gangue for the Production of Biodiesel. Catalysts 2019, 9, 1047. [Google Scholar] [CrossRef] [Green Version]
- Rehman, M.H.U.; Noor, T.; Iqbal, N. Effect of Zirconia on Hydrothermally Synthesized Co3O4/TiO2 Catalyst for NOx Reduction from Engine Emissions. Catalysts 2020, 10, 209. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Liu, Z.; Fang, L.; Guo, Y.; Feng, Y.; Yang, M. Kinetic and Mechanistic Study of Rhodamine B Degradation by H2O2 and Cu/Al2O3/g-C3N4 Composite. Catalysts 2020, 10, 317. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, T.; Horino, Y.; Ohtake, T.; Ogawa, K.; Suzaki, Y. A Highly Efficient Monolayer Pt Nanoparticle Catalyst Prepared on a Glass Fiber Surface. Catalysts 2020, 10, 472. [Google Scholar] [CrossRef]
- Villamarin-Barriga, E.; Canacuan, J.; Londono-Larrea, P.; Solis, H.; De La Rosa, A.; Saldarriaga, J.F.; Montero, C. Catalytic Cracking of Heavy Crude Oil over Iron-Based Catalyst Obtained from Galvanic Industry Wastes. Catalysts 2020, 10, 736. [Google Scholar] [CrossRef]
- Li, J.; Lutz, M.; Gebbink, R.J.M.K. N-Donor Ligand Supported “ReO2+”: A Pre-Catalyst for the Deoxydehydration of Diols and Polyols. Catalysts 2020, 10, 754. [Google Scholar] [CrossRef]
- Thakur, S.; Neogi, S.; Ray, A.K. Morphology-Controlled Synthesis of ZnO Nanostructures for Caffeine Degradation and Escherichia coli Inactivation in Water. Catalysts 2021, 11, 63. [Google Scholar] [CrossRef]
- Muanruksa, P.; Winterburn, J.; Kaewkannetra, P. Biojet Fuel Production from Waste of Palm Oil Mill Effluent through Enzymatic Hydrolysis and Decarboxylation. Catalysts 2021, 11, 78. [Google Scholar] [CrossRef]
- Al Soubaihi, R.M.; Saoud, K.M.; Myint, M.T.Z.; Gothelid, M.A.; Dutta, J. CO Oxidation Efficiency and Hysteresis Behavior over Mesoporous Pd/SiO2 Catalyst. Catalysts 2021, 11, 131. [Google Scholar] [CrossRef]
- Bagnato, G.; Sanna, A.; Paone, E.; Catizzone, E. Recent Catalytic Advances in Hydrotreatment Processes of Pyrolysis Bio-Oil. Catalysts 2021, 11, 157. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, T.; Xiang, P.; Du, Q.; Han, S. Syntheses, Characterization, and Application of Tridentate Phenoxyimino-Phenoxy Aluminum Complexes for the Coupling of Terminal Epoxide with CO2: From Binary System to Single Component Catalyst. Catalysts 2021, 11, 145. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabanelli, T.; Cespi, D.; Cucciniello, R. Sustainable and Environmental Catalysis. Catalysts 2021, 11, 225. https://doi.org/10.3390/catal11020225
Tabanelli T, Cespi D, Cucciniello R. Sustainable and Environmental Catalysis. Catalysts. 2021; 11(2):225. https://doi.org/10.3390/catal11020225
Chicago/Turabian StyleTabanelli, Tommaso, Daniele Cespi, and Raffaele Cucciniello. 2021. "Sustainable and Environmental Catalysis" Catalysts 11, no. 2: 225. https://doi.org/10.3390/catal11020225
APA StyleTabanelli, T., Cespi, D., & Cucciniello, R. (2021). Sustainable and Environmental Catalysis. Catalysts, 11(2), 225. https://doi.org/10.3390/catal11020225