One-Pot Synthesis of Ultra-Small Pt Dispersed on Hierarchical Zeolite Nanosheet Surfaces for Mild Hydrodeoxygenation of 4-Propylphenol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Structural and Morphological Structures
2.2. Catalytic Test in Hydrodeoxygenation (HDO) Process
3. Materials and Methods
3.1. Reagent and Materials
3.2. Synthesis of Ultra-Small Pt Clusters Distributed on Hierarchical Silicalite-1 by a One-Pot Hydrothermal System (Pt@SiNS(one))
3.3. Synthesis of Pt on Hierarchical Silicalite-1 (Pt/SiNS(imp)) and Conventional Silicalite-1 (Pt/SiCON(imp)) by an Impregnation
3.4. Synthesis of Bifunctional Catalysts (Pt@HZSM-5NS(one), Pt/HZSM-5NS(imp), and Pt/HZSM-5CON(imp))
3.5. Characterization
3.6. Catalytic Study in Hydrodeoxygenation (HDO) of 4-Propylphenol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Filho, E.P.B.; Mendoza, O.S.H.; Beicker, C.L.L.; Menezes, A.; Wen, D. Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system. Energy Convers. Manag. 2014, 84, 261–267. [Google Scholar] [CrossRef]
- Cheon, Y.E.; Suh, M.P. Multifunctional fourfold interpenetrating diamondoid network: As separation and fabrication of palladium nanoparticles. Chem. A Eur. J. 2008, 14, 3961–3967. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, J.; Gong, H.; Ju, D.; Cao, B. Au nanoparticle-functionalized 3D SnO2 microstructures for high performance gas sensor. Sens. Actuators B Chem. 2016, 226, 266–272. [Google Scholar] [CrossRef]
- Farka, Z.; Juřík, T.; Kovář, D.; Trnková, L.; Skládal, P. Nanoparticle-based immunochemical biosensors and assays: Recent advances and challenges. Chem. Rev. 2017, 117, 9973–10042. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. 2004, 116, 607–611. [Google Scholar] [CrossRef]
- Wang, J.; Wu, H.; Gao, D.; Miao, S.; Wang, G.; Bao, X. High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc–air battery. Nano Energy 2015, 13, 387–396. [Google Scholar] [CrossRef]
- Dong, C.; Lian, C.; Hu, S.; Deng, Z.; Gong, J.; Li, M.; Liu, H.; Xing, M.; Zhang, J. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Moliner, M.; Gabay, J.E.; Kliewer, C.E.; Carr, R.T.; Guzman, J.; Casty, G.L.; Serna, P.; Corma, A. Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite. J. Am. Chem. Soc. 2016, 138, 15743–15750. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Cheng, K.; Zhang, L.; Zhang, Q.; Ding, J.; Hua, W.; Lou, Y.; Zhai, Q.; Wang, Y. Mesoporous zeolite-supported ruthenium nanoparticles as highly selective fischer-tropsch catalysts for the production of C5-C11 isoparaffins. Angew. Chem. Int. Ed. 2011, 50, 5200–5203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, K.; Gulec, A.; Johnson, A.M.; Schweitzer, N.M.; Stucky, G.D.; Marks, L.D.; Stair, P.C. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 2015, 350, 189–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Tuel, A.; Laprune, D.; Meunier, F.; Farrusseng, D. Transition-metal nanoparticles in hollow zeolite single crystals as bifunctional and size-selective hydrogenation catalysts. Chem. Mater. 2015, 27, 276–282. [Google Scholar] [CrossRef]
- Kim, J.; Kim, W.; Seo, Y.; Kim, J.-C.; Ryoo, R. n-Heptane hydroisomerization over Pt/MFI zeolite nanosheets: Effects of zeolite crystal thickness and platinum location. J. Catal. 2013, 301, 187–197. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Liu, C.; Ma, W.; Yan, B.; Zhang, J. Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts: A critical review. Renew. Sustain. Energy Rev. 2017, 71, 296–308. [Google Scholar] [CrossRef]
- Friedlander, S.K. R&D Status and Trends in Nanoparticles, Nanostructured Materials, and Nanodevices in the United States. In Proceedings of the WTEC Workshop Report, Arlington, VA, USA, 8–9 May 1997; pp. 83–88. [Google Scholar]
- Wang, D.; Ma, B.; Wang, B.; Zhao, C.; Wu, P. One-pot synthesized hierarchical zeolite supported metal nanoparticles for highly efficient biomass conversion. Chem. Commun. 2015, 51, 15102–15105. [Google Scholar] [CrossRef]
- Dynys, F.W.; Halloran, J.W. Influence of aggregates on sintering. J. Am. Ceram. Soc. 1984, 67, 596–601. [Google Scholar] [CrossRef]
- Rubio-Marqués, P.; Rivero-Crespo, M.A.; Leyva-Pérez, A.; Corma, A. Well-defined noble metal single sites in zeolites as an alternative to catalysis by insoluble metal salts. J. Am. Chem. Soc. 2015, 137, 11832–11837. [Google Scholar] [CrossRef]
- Liu, L.; Díaz, U.; Arenal, R.; Agostini, G.; Concepción, P.; Corma, A. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 2017, 16, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Weitkamp, J.; Puppe, L. Catalysis and Zeolites: Fundamentals and Applications, 1st ed.; Springer: New York, NY, USA, 1999. [Google Scholar]
- Csicsery, S.M. Shape-selective catalysis in zeolites. Zeolites 1984, 4, 202–213. [Google Scholar] [CrossRef]
- Belaya, L.A.; Doronin, V.P.; Sorokina, T.P.; Gulyaeva, T.I. Thermal stability of zeolites Y and ZSM-5 in matrices of various compositions. Russ. J. Appl. Chem. 2009, 82, 236–242. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, C.; Du, J.; Yue, Y.; Hua, W.; Zhang, C.; Shen, W.; Xu, H. The synthesis of endurable B–Al–ZSM-5 catalysts with tunable acidity for methanol to propylene reaction. Catal. Commun. 2012, 24, 44–47. [Google Scholar] [CrossRef]
- Xue, Z.; Ma, J.; Hao, W.; Bai, X.; Kang, Y.; Liu, J.; Li, R. Synthesis and characterization of ordered mesoporous zeolite LTA with high ion exchange ability. J. Mater. Chem. 2012, 22, 2532–2538. [Google Scholar] [CrossRef]
- Wang, N.; Sun, Q.; Bai, R.; Li, X.; Guo, G.; Yu, J. In Situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J. Am. Chem. Soc. 2016, 138, 7484–7487. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Q.; Wang, D.; Hong, Z.; Qu, Z.; Li, X. Hollow ZSM-5 zeolite encapsulated Ag nanoparticles for SO2-resistant selective catalytic oxidation of ammonia to nitrogen. Sep. Purif. Technol. 2019, 209, 1016–1026. [Google Scholar] [CrossRef]
- Liu, L.; Arenal, R.; Meira, D.M.; Corma, A. Generation of gold nanoclusters encapsulated in an MCM-22 zeolite for the aerobic oxidation of cyclohexane. Chem. Commun. 2019, 55, 1607–1610. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, E.F.; Awad, G.; Zaitan, H.; Andriantsiferana, C.; Manero, M.-H. Transition metals-incorporated zeolites as environmental catalysts for indoor air ozone decomposition. Environ. Technol. 2017, 39, 878–886. [Google Scholar] [CrossRef]
- Farrusseng, D.; Tuel, A. Perspectives on zeolite-encapsulated metal nanoparticles and their applications in catalysis. New J. Chem. 2016, 40, 3933–3949. [Google Scholar] [CrossRef]
- Xu, D.; Lv, H.; Liu, B. Encapsulation of metal nanoparticle catalysts within mesoporous zeolites and their enhanced catalytic performances: A Review. Front. Chem. 2018, 6, 550. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Cao, W.; Bruijnincx, P.C.A.; Lin, L.; Wang, A.; Zhang, T. Zeolite-supported metal catalysts for selective hydrodeoxygenation of biomass-derived platform molecules. Green Chem. 2019, 21, 3744–3768. [Google Scholar] [CrossRef]
- Munnik, P.; de Jongh, P.E.; de Jong, K.P. Recent developments in the synthesis of supported catalysts. Chem. Rev. 2015, 115, 6687–6718. [Google Scholar] [CrossRef]
- Luo, W.; Bruijnincx, P.C.; Weckhuysen, B.M. Selective, one-pot catalytic conversion of levulinic acid to pentanoic acid over Ru/H-ZSM5. J. Catal. 2014, 320, 33–41. [Google Scholar] [CrossRef]
- Goel, S.; Wu, Z.; Zones, S.I.; Iglesia, E. Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites. J. Am. Chem. Soc. 2012, 134, 17688–17695. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Sun, Q.; Yu, J. Ultrasmall metal nanoparticles confined within crystalline nanoporous materials: A Fascinating class of nanocatalysts. Adv. Mater. 2019, 31, e1803966. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wang, L.; Zhang, J.; Wang, H.; Lewis, J.P.; Xiao, F.-S. Product selectivity controlled by zeolite crystals in biomass hydrogenation over a palladium catalyst. J. Am. Chem. Soc. 2016, 138, 7880–7883. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, N.; Bing, Q.; Si, R.; Liu, J.; Bai, R.; Zhang, P.; Jia, M.; Yu, J. Subnanometric hybrid Pd-M(OH)2, M = Ni, Co, clusters in zeolites as highly efficient nanocatalysts for hydrogen generation. Chem 2017, 3, 477–493. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Yuan, K.; Wang, Y.; Li, G.; Guo, J.; Gu, L.; Hu, W.; Zhao, H.; Tang, Z. Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nat. Cell Biol. 2016, 539, 76–80. [Google Scholar] [CrossRef]
- Goel, S.; Zones, S.I.; Iglesia, E. Encapsulation of metal clusters within MFI via interzeolite transformations and direct hydrothermal syntheses and catalytic consequences of their confinement. J. Am. Chem. Soc. 2014, 136, 15280–15290. [Google Scholar] [CrossRef] [PubMed]
- Otto, T.; Zones, S.I.; Iglesia, E. Synthetic strategies for the encapsulation of nanoparticles of Ni, Co, and Fe oxides within crystalline microporous aluminosilicates. Microporous Mesoporous Mater. 2018, 270, 10–23. [Google Scholar] [CrossRef]
- Cho, H.J.; Kim, D.; Li, J.; Su, D.; Xu, B. Zeolite-encapsulated Pt nanoparticles for tandem catalysis. J. Am. Chem. Soc. 2018, 140, 13514–13520. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Wang, S. Hydrodeoxygenation of bio-oil over Pt-based supported catalysts: Importance of mesopores and acidity of the support to compounds with different oxygen contents. RSC Adv. 2013, 3, 12635. [Google Scholar] [CrossRef]
- Khan, W.; Jia, X.; Wu, Z.; Choi, J.; Yip, A.C. Incorporating hierarchy into conventional zeolites for catalytic biomass conversions: A Review. Catalysts 2019, 9, 127. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-H.; Li, X.-Y.; Rooke, J.C.; Zhang, Y.-H.; Yang, X.-Y.; Tang, Y.; Xiao, F.-S.; Su, B.-L. Hierarchically structured zeolites: Synthesis, mass transport properties and applications. J. Mater. Chem. 2012, 22, 17381–17403. [Google Scholar] [CrossRef]
- Xiao, F.-S.; Wang, L.; Yin, C.; Lin, K.; Di, Y.; Li, J.; Xu, R.; Su, D.S.; Schlögl, R.; Yokoi, T.; et al. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angew. Chem. 2006, 118, 3162–3165. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhang, Z.; Yin, C.; Shan, Z.; Xiao, F.-S. Hierarchical mesoporous zeolites with controllable mesoporosity templated from cationic polymers. Microporous Mesoporous Mater. 2010, 131, 58–67. [Google Scholar] [CrossRef]
- Choi, M.; Cho, H.S.; Srivastava, R.M.; Venkatesan, C.; Choi, D.-H.; Ryoo, R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat. Mater. 2006, 5, 718–723. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yang, M.; Shang, W.; Tong, Y.; Liu, B.; Han, X.; Zhang, J.; Hao, Q.; Sun, M.; Ma, X. Organosilane surfactant-directed synthesis of hierarchical ZSM-5 zeolites with improved catalytic performance in methanol-to-propylene Reaction. Ind. Eng. Chem. Res. 2018, 57, 10956–10966. [Google Scholar] [CrossRef]
- Shetsiri, S.; Thivasasith, A.; Saenluang, K.; Wannapakdee, W.; Salakhum, S.; Wetchasat, P.; Nokbin, S.; Limtrakul, J.; Wattanakit, C. Sustainable production of ethylene from bioethanol over hierarchical ZSM-5 nanosheets. Sustain. Energy Fuels 2018, 3, 115–126. [Google Scholar] [CrossRef]
- Luo, H.Y.; Michaelis, V.K.; Hodges, S.E.; Griffin, R.G.; Román-Leshkov, Y. One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent. Chem. Sci. 2015, 6, 6320–6324. [Google Scholar] [CrossRef] [Green Version]
- Salakhum, S.; Saenluang, K.; Wattanakit, C. Stability of monometallic Pt and Ru supported on hierarchical HZSM-5 nanosheets for hydrodeoxygenation of lignin-derived compounds in the aqueous phase. Sustain. Energy Fuels 2020, 4, 1126–1134. [Google Scholar] [CrossRef]
- Salakhum, S.; Yutthalekha, T.; Shetsiri, S.; Witoon, T.; Wattanakit, C. Bifunctional and bimetallic Pt–Ru/HZSM-5 nanoparticles for the mild hydrodeoxygenation of lignin-derived 4-Propylphenol. ACS Appl. Nano Mater. 2019, 2, 1053–1062. [Google Scholar] [CrossRef]
- Kwok, K.M.; Ong, S.W.D.; Chen, L.; Zeng, H.C. Transformation of stöber silica spheres to hollow hierarchical single-crystal ZSM-5 zeolites with encapsulated metal nanocatalysts for selective catalysis. ACS Appl. Mater. Interfaces 2019, 11, 14774–14785. [Google Scholar] [CrossRef]
- Guisnet, M. “Ideal” bifunctional catalysis over Pt-acid zeolites. Catal. Today 2013, 218, 123–134. [Google Scholar] [CrossRef]
- Chupin, J.; Gnep, N.; Lacombe, S.; Guisnet, M. Influence of the metal and of the support on the activity and stability of bifunctional catalysts for toluene hydrogenation. Appl. Catal. A Gen. 2001, 206, 43–56. [Google Scholar] [CrossRef]
- Blomsma, E.; Martens, J.A.; Jacobs, P.A. Isomerization and hydrocracking of heptane over bimetallic bifunctional PtPd/H-Beta and PtPd/USY zeolite catalysts. J. Catal. 1997, 165, 241–248. [Google Scholar] [CrossRef]
- Arribas, M.; Corma, A.; Díaz-Cabañas, M.; Martínez, A. Hydrogenation and ring opening of Tetralin over bifunctional catalysts based on the new ITQ-21 zeolite. Appl. Catal. A Gen. 2004, 273, 277–286. [Google Scholar] [CrossRef]
- Shi, Y.; Xing, E.; Wu, K.; Wang, J.; Yang, M.; Wu, Y. Recent progress on upgrading of bio-oil to hydrocarbons over metal/zeolite bifunctional catalysts. Catal. Sci. Technol. 2017, 7, 2385–2415. [Google Scholar] [CrossRef]
- Yan, N.; Yuan, Y.; Dykeman, R.; Kou, Y.; Dyson, P.J. Hydrodeoxygenation of lignin-derived phenols into alkanes by using nanoparticle catalysts combined with Brønsted acidic ionic liquids. Angew. Chem. Int. Ed. 2010, 49, 5549–5553. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, J.; Liu, R.; Wang, S.; Chen, L.; Li, K. Hydrodeoxygenation of lignin-derived phenolic monomers and dimers to alkane fuels over bifunctional zeolite-supported metal catalysts. ACS Sustain. Chem. Eng. 2014, 2, 683–691. [Google Scholar] [CrossRef]
- Rahman, M.; Liu, R.; Cai, J. Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil—A review. Fuel Process. Technol. 2018, 180, 32–46. [Google Scholar] [CrossRef]
- Ohta, H.; Yamamoto, K.; Hayashi, M.; Hamasaka, G.; Uozumi, Y.; Watanabe, Y. Low temperature hydrodeoxygenation of phenols under ambient hydrogen pressure to form cyclohexanes catalysed by Pt nanoparticles supported on H-ZSM-5. Chem. Commun. 2015, 51, 17000–17003. [Google Scholar] [CrossRef] [PubMed]
- Wannapakdee, W.; Wattanakit, C.; Paluka, V.; Yutthalekha, T.; Limtrakul, J. One-pot synthesis of novel hierarchical bifunctional Ga/HZSM-5 nanosheets for propane aromatization. RSC Adv. 2015, 6, 2875–2881. [Google Scholar] [CrossRef]
- Yuan, E.; Wu, G.; Dai, W.; Guan, N.; Li, L. One-pot construction of Fe/ZSM-5 zeolites for the selective catalytic reduction of nitrogen oxides by ammonia. Catal. Sci. Technol. 2017, 7, 3036–3044. [Google Scholar] [CrossRef]
- Wietecha, M.S.; Zhu, J.; Gao, G.; Wang, N.; Feng, H.; Gorring, M.L.; Kasner, M.L.; Hou, S. Platinum nanoparticles anchored on chelating group-modified graphene for methanol oxidation. J. Power Sources 2012, 198, 30–35. [Google Scholar] [CrossRef]
- Treacy, M.M.J.; Higgins, J.B. Collection of Simulated XRD Powder Patterns for Zeolites, 5th ed.; Elsevier Science: Amsterdam, The Netherlands, 2007; p. 485. [Google Scholar]
- Wang, C.; Jiang, F.; Yue, R.; Wang, H.; Du, Y. Enhanced photo-electrocatalytic performance of Pt/RGO/TiO2 on carbon fiber towards methanol oxidation in alkaline media. J. Solid State Electrochem. 2013, 18, 515–522. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Dong, S. An effective hydrothermal route for the synthesis of multiple PDDA-protected noble-metal nanostructures. Inorg. Chem. 2007, 46, 10587–10593. [Google Scholar] [CrossRef] [PubMed]
- Sing, K. The use of nitrogen adsorption for the characterisation of porous materials. Colloids Surf. A Physicochem. Eng. Asp. 2001, 187–188, 3–9. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Zhu, Y.; Xu, S.; Wang, C.; Bian, C.; Meng, X.; Xiao, F.-S. Strong metal–support interactions achieved by hydroxide-to-oxide support transformation for preparation of sinter-resistant gold nanoparticle catalysts. ACS Catal. 2017, 7, 7461–7465. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, N.; Dai, W.; Guan, N.; Li, L. Construction of bifunctional Co/H-ZSM-5 catalysts for the hydrodeoxygenation of stearic acid to diesel-range alkanes. ChemSusChem 2018, 11, 2179–2188. [Google Scholar] [CrossRef] [PubMed]
- Iida, T.; Shetty, M.; Murugappan, K.; Wang, Z.; Ohara, K.; Wakihara, T.; Román-Leshkov, Y. Encapsulation of molybdenum carbide nanoclusters inside zeolite micropores enables synergistic bifunctional catalysis for anisole hydrodeoxygenation. ACS Catal. 2017, 7, 8147–8151. [Google Scholar] [CrossRef]
- Williams, M.; Fonfe, B.; Sievers, C.; Abraham, A.; Vanbokhoven, J.; Jentys, A.; Vanveen, J.; Lercher, J. Hydrogenation of tetralin on silica–alumina-supported Pt catalysts I. Physicochemical characterization of the catalytic materials. J. Catal. 2007, 251, 485–496. [Google Scholar] [CrossRef]
- Giovanetti, L.J.; Ramallo-López, J.M.; Foxe, M.; Jones, L.C.; Koebel, M.M.; Somorjai, G.A.; Craievich, A.F.; Salmeron, M.B.; Requejo, F.G. Shape changes of Pt nanoparticles induced by deposition on mesoporous silica. Small 2011, 8, 468–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Short, D.; Mansour, A.; Cook, J.W., Jr.; Sayers, D.; Katzer, J. X-ray absorption edge and extended X-ray absorption fine structure studies of Pt/TiO2 catalysts. J. Catal. 1983, 82, 299–312. [Google Scholar] [CrossRef]
- Ichikuni, N.; Iwasawa, Y. In situ d electron density of Pt particles on supports by XANES. Catal. Lett. 1993, 20, 87–95. [Google Scholar] [CrossRef]
- Yan, P.; Li, M.M.-J.; Kennedy, E.; Adesina, A.; Zhao, G.; Setiawan, A.; Stockenhuber, M. The role of acid and metal sites in hydrodeoxygenation of guaiacol over Ni/Beta catalysts. Catal. Sci. Technol. 2020, 10, 810–825. [Google Scholar] [CrossRef]
- Lee, C.R.; Yoon, J.S.; Suh, Y.-W.; Choi, J.-W.; Ha, J.-M.; Suh, D.J.; Park, Y.-K. Catalytic roles of metals and supports on hydrodeoxygenation of lignin monomer guaiacol. Catal. Commun. 2012, 17, 54–58. [Google Scholar] [CrossRef]
- Hong, D.-Y.; Miller, S.J.; Agrawal, P.K.; Jones, C.W. Hydrodeoxygenation and coupling of aqueous phenolics over bifunctional zeolite-supported metal catalysts. Chem. Commun. 2009, 46, 1038–1040. [Google Scholar] [CrossRef]
- Wang, W.; Liu, C.-J.; Wu, W. Bifunctional catalysts for the hydroisomerization of n-alkanes: The effects of metal–acid balance and textural structure. Catal. Sci. Technol. 2019, 9, 4162–4187. [Google Scholar] [CrossRef]
- Oh, S.; Ahn, S.-H.; Choi, J.W. Effect of different zeolite supported bifunctional catalysts for hydrodeoxygenation of waste wood bio-oil. J. Korean Wood Sci. Technol. 2019, 47, 344–359. [Google Scholar]
- Wang, L.; Zhang, J.; Yi, X.; Zheng, A.; Deng, F.; Chen, C.; Ji, Y.; Liu, F.; Meng, X.; Xiao, F.-S. Mesoporous ZSM-5 zeolite-supported Ru nanoparticles as highly efficient catalysts for upgrading phenolic biomolecules. ACS Catal. 2015, 5, 2727–2734. [Google Scholar] [CrossRef]
- Salakhum, S.; Yutthalekha, T.; Chareonpanich, M.; Limtrakul, J.; Wattanakit, C. Synthesis of hierarchical faujasite nanosheets from corn cob ash-derived nanosilica as efficient catalysts for hydrogenation of lignin-derived alkylphenols. Microporous Mesoporous Mater. 2018, 258, 141–150. [Google Scholar] [CrossRef]
Sample | SBET [a] | Smicro [b] | Sext [c] | Vtotal [d] | Vmicro [e] | Vext [f] | Vext/Vtotal [g] |
---|---|---|---|---|---|---|---|
Pt@SiNS(one) | 391 | 252 | 139 | 0.89 | 0.14 | 0.75 | 0.84 |
Pt/SiNS(imp) | 314 | 171 | 143 | 0.68 | 0.09 | 0.59 | 0.87 |
Pt/SiCON(imp) | 284 | 226 | 58 | 0.22 | 0.11 | 0.11 | 0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wetchasat, P.; Salakhum, S.; Imyen, T.; Suttipat, D.; Wannapakdee, W.; Ketkaew, M.; Prasertsab, A.; Kidkhunthod, P.; Witoon, T.; Wattanakit, C. One-Pot Synthesis of Ultra-Small Pt Dispersed on Hierarchical Zeolite Nanosheet Surfaces for Mild Hydrodeoxygenation of 4-Propylphenol. Catalysts 2021, 11, 333. https://doi.org/10.3390/catal11030333
Wetchasat P, Salakhum S, Imyen T, Suttipat D, Wannapakdee W, Ketkaew M, Prasertsab A, Kidkhunthod P, Witoon T, Wattanakit C. One-Pot Synthesis of Ultra-Small Pt Dispersed on Hierarchical Zeolite Nanosheet Surfaces for Mild Hydrodeoxygenation of 4-Propylphenol. Catalysts. 2021; 11(3):333. https://doi.org/10.3390/catal11030333
Chicago/Turabian StyleWetchasat, Piraya, Saros Salakhum, Thidarat Imyen, Duangkamon Suttipat, Wannaruedee Wannapakdee, Marisa Ketkaew, Anittha Prasertsab, Pinit Kidkhunthod, Thongthai Witoon, and Chularat Wattanakit. 2021. "One-Pot Synthesis of Ultra-Small Pt Dispersed on Hierarchical Zeolite Nanosheet Surfaces for Mild Hydrodeoxygenation of 4-Propylphenol" Catalysts 11, no. 3: 333. https://doi.org/10.3390/catal11030333
APA StyleWetchasat, P., Salakhum, S., Imyen, T., Suttipat, D., Wannapakdee, W., Ketkaew, M., Prasertsab, A., Kidkhunthod, P., Witoon, T., & Wattanakit, C. (2021). One-Pot Synthesis of Ultra-Small Pt Dispersed on Hierarchical Zeolite Nanosheet Surfaces for Mild Hydrodeoxygenation of 4-Propylphenol. Catalysts, 11(3), 333. https://doi.org/10.3390/catal11030333