Recent Advances in Organometallic Chemistry and Catalysis
Funding
Conflicts of Interest
References
- Jahnke, M.C.; Hahn, F.E. Chemistry of N-heterocyclic carbene ligands. Top. Organomet. Chem. 2010, 30, 95–129. [Google Scholar]
- Nolan, S.P. (Ed.) N-Heterocyclic Carbenes; Wiley-VCH: Weinheim, Germany, 2014. [Google Scholar]
- Peris, E. Smart N-heterocyclic carbene ligands in catalysis. Chem. Rev. 2018, 118, 9988–10031. [Google Scholar] [CrossRef]
- Samojłowicz, C.; Bieniek, M.; Grela, K. Ruthenium-based olefin metathesis catalysts bearing N-heterocyclic carbene ligands. Chem. Rev. 2009, 109, 3708–3742. [Google Scholar] [CrossRef]
- Jolly, P.I.; Marczyk, A.; Małecki, P.; Trzybiński, D.; Woźniak, K.; Kajetanowicz, A.; Grela, K. Specialized olefin metathesis catalysts featuring unsymmetrical N-heterocyclic carbene ligands bearing N-(fluoren-9-yl) arm. Catalysts 2020, 10, 599. [Google Scholar] [CrossRef]
- Kantchev, A.B.; O’Brien, C.J.; Organ, M.G. Pd-N-heterocyclic carbene (NHC) catalysts for cross-coupling reactions. Aldrichchim. Acta 2006, 39, 97–111. [Google Scholar] [CrossRef]
- O’Brien, C.J.; Kantchev, E.A.B.; Valente, C.; Hadei, N.; Chass, G.A.; Lough, A.; Hopkinson, A.C.; Organ, M.G. Easily prepared air- and moisture-stable Pd-NHC (NHC = N-heterocyclic carbene) complexes: A reliable, user-friendly, highly active palladium precatalyst for the Suzuki-Miyaura reaction. Chem. Eur. J. 2006, 12, 4743–4748. [Google Scholar] [CrossRef]
- Valente, C.; Pompeo, M.; Sayah, M.; Organ, M.G. Carbon-heteroatom coupling using Pd-PEPPSI complexes. Org. Process Res. Dev. 2014, 18, 180–190. [Google Scholar] [CrossRef]
- Froese, R.D.J.; Lombardi, C.; Pompeo, M.; Rucker, R.P.; Organ, M.G. Designing Pd-N-heterocyclic carbene complexes for high reactivity and selectivity for cross-coupling applications. Acc. Chem. Res. 2017, 50, 2244–2253. [Google Scholar] [CrossRef] [PubMed]
- Al Nasr, I.; Touj, N.; Koko, W.; Khan, T.; Özdemir, I.; Yaşar, S.; Hamdi, N. Biological activities of NHC-Pd(II) complexes based on benzimidazolylidene N-heterocyclic carbene (NHC) ligands bearing aryl substituents. Catalysts 2020, 10, 1190. [Google Scholar] [CrossRef]
- Ndagi, U.; Mhlongo, N.; Soliman, M.E. Metal complexes in cancer therapy—An update from drug design perspective. Drug Des. Devel. Ther. 2017, 11, 599–616. [Google Scholar] [CrossRef] [Green Version]
- Chylewska, A.; Biedulska, M.; Sumczynski, P.; Makowski, M. Metallopharmaceuticals in therapy—A new horizon for scientific research. Curr. Med. Chem. 2018, 25, 1729–1791. [Google Scholar] [CrossRef]
- Fukuda, Y.; Utimoto, K. Effective transformation of unactivated alkynes into ketones or acetals by means of Au(III) catalyst. J. Org. Chem. 1991, 56, 3729–3731. [Google Scholar] [CrossRef]
- Hashmi, A.S.K.; Toste, F.D. (Eds.) Modern Gold Catalyzed Synthesis; Wiley-VCH: Weinheim, Germany, 2012. [Google Scholar]
- Toste, F.D.; Michelet, V. (Eds.) Gold Catalysis: An Homogeneous Approach; Imperial College Press: London, UK, 2014. [Google Scholar]
- Cadierno, V. Gold-catalyzed addition of carboxylic acids to alkynes and allenes: Valuable tools for organic synthesis. Catalysts 2020, 10, 1206. [Google Scholar] [CrossRef]
- Cadierno, V. Metal-catalyzed synthesis and transformations of β-haloenol esters. Catalysts 2020, 10, 399. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Jiang, H. Haloalkynes: A powerful and versatile building block in organic synthesis. Acc. Chem. Res. 2014, 47, 2483–2504. [Google Scholar] [CrossRef] [PubMed]
- Cadierno, V. Metal-catalyzed hydrofunctionalization reactions of haloalkynes. Eur. J. Inorg. Chem. 2020, 2020, 886–898. [Google Scholar] [CrossRef]
- Davenel, V.; Nisole, C.; Fontaine-Vive, F.; Fourquez, J.-M.; Chollet, A.-M.; Michelet, V. Gold-catalyzed cycloisomerization of 1,6-cyclohexenylalkyne: An efficient entry to bicyclo[3.2.1]oct-2-ene and bicyclo[3.3.1]nonadiene. J. Org. Chem. 2020, 85, 12657–12669. [Google Scholar] [CrossRef]
- Davenel, V.; Puteaux, C.; Nisole, C.; Fontaine-Vive, F.; Fourquez, J.-M.; Michelet, V. Indium-catalyzed cycloisomerization of 1,6-cyclohexenylalkynes. Catalysts 2021, 11, 546. [Google Scholar] [CrossRef]
- Benaglia, M. (Ed.) Recoverable and Recyclable Catalysts; John Wiley & Sons: Chichester, UK, 2009. [Google Scholar]
- Caballero, V.; Estevez, R.; Luna, D.; Bautista, F.M.; Romero, A.A.; Aguado-Deblas, L.; Hidalgo-Carrillo, J.; Romero, I. Hydrogenation of α,β-unsaturated carbonyl compounds over covalently heterogenized Ru(II) diphosphine complexes on AlPO4-sepiolite supports. Catalysts 2021, 11, 289. [Google Scholar] [CrossRef]
- Ribeiro, A.P.C.; Spada, E.; Bertani, R.; Martins, L.M.D.R.S. Adipic acid route: Oxidation of cyclohexene vs. cyclohexane. Catalysts 2020, 10, 1443. [Google Scholar] [CrossRef]
- Castellan, A.; Bart, J.C.J.; Cavallaro, S. Industrial production and uses of adipic acid. Catal. Today 1991, 9, 237–254. [Google Scholar] [CrossRef]
- Van de Vyver, S.; Román-Leshkov, Y. Emerging catalytic processes for the production of adipic acid. Catal. Sci. Technol. 2013, 3, 1465–1479. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cadierno, V. Recent Advances in Organometallic Chemistry and Catalysis. Catalysts 2021, 11, 646. https://doi.org/10.3390/catal11050646
Cadierno V. Recent Advances in Organometallic Chemistry and Catalysis. Catalysts. 2021; 11(5):646. https://doi.org/10.3390/catal11050646
Chicago/Turabian StyleCadierno, Victorio. 2021. "Recent Advances in Organometallic Chemistry and Catalysis" Catalysts 11, no. 5: 646. https://doi.org/10.3390/catal11050646