Asymmetric Catalytic Ketimine Mannich Reactions and Related Transformations
Abstract
:1. Introduction
2. Activated and/or Cyclic Ketimines in the Mannich Reaction
2.1. Endocyclic Ketimines with Electron-Withdrawing Substituents
2.1.1. The First Examples of Catalytic Enantioselective Ketimine Mannich Reactions
2.1.2. Direct Mannich
2.1.3. Preformed Enolate Equivalents
2.2. Endocyclic Ketimines without Electron-Withdrawing Substituents
2.2.1. Direct Mannich
2.2.2. Silyl Enol Ethers
2.3. Isatin-Derived Ketimines
2.3.1. Direct Mannich
2.3.2. Silyl Enol Ethers
2.4. Acyclic Ketimines Bearing Electron-Withdrawing Groups and/or Alkynes
Direct Mannich
3. Unmodified Ketimines in the Mannich Reaction
3.1. Silyl Ketene Acetals
3.2. Reductive Mannich
3.3. Enamine
3.4. Direct Mannich
4. Activated and/or Cyclic Ketimines in the Allylation Reaction
4.1. Endocyclic Ketimines
4.1.1. Allyl Rhodium Species
4.1.2. Allyl Cobalt Species
4.2. Isatin-Derived and Analogous Cyclic Ketimines
4.2.1. Allyl Palladium Species
4.2.2. Allyl Bismuth Species
4.2.3. Allenyl Copper Species
4.2.4. Allyl Gold Species
4.3. Ketimines Bearing a CF3 and/or Carbonyl Moiety etc
4.3.1. Allyl Indium Species
4.3.2. Allyl Boronate Species
4.3.3. Allyl Copper Species
5. Unmodified Ketimines in the Allylation Reaction
5.1. Allyl Copper Species
5.2. Pd–Trimethylenemethane (TMM)
5.3. Allyl Rhodium Species
5.4. Allyltrichlorosilane
6. Activated and/or Cyclic Ketimines in Aza-Morita–Baylis–Hillman Reaction
6.1. Acyclic Ketimines Bearing a Carbonyl Moiety
6.2. Endocyclic Ketimines
6.3. Isatin-Derived Ketimines
7. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mannich, C.; Krösche, W. Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin. Arch. Pharm. 1912, 250, 647–667. [Google Scholar] [CrossRef] [Green Version]
- Trost, B.M.; Hung, C.-I.; Mata, G. Dinuclear Metal-ProPhenol Catalysts: Development and Synthetic Applications. Angew. Chem. Int. Ed. 2020, 59, 4240–4261. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, T. 6.3 C-C Bond Formation: Mannich Reaction. In Comprehensive Chirality; Elsevier: Amsterdam, The Netherlands, 2012; Volume 6, pp. 69–96. ISBN 9780080951683. [Google Scholar]
- Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Asymmetric Aminocatalysis-Gold Rush in Organic Chemistry. Angew. Chem. Int. Ed. 2008, 47, 6138–6171. [Google Scholar] [CrossRef] [PubMed]
- Ting, A.; Schaus, S.E. Organocatalytic Asymmetric Mannich Reactions: New Methodology, Catalyst Design, and Synthetic Applications. Eur. J. Org. Chem. 2007, 2007, 5797–5815. [Google Scholar] [CrossRef]
- Friestad, G.K.; Mathies, A.K. Recent developments in asymmetric catalytic addition to C=N bonds. Tetrahedron 2007, 63, 2541–2569. [Google Scholar] [CrossRef]
- Mukherjee, S.; Yang, J.W.; Hoffmann, S.; List, B. Asymmetric Enamine Catalysis. Chem. Rev. 2007, 107, 5471–5569. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.M.B. Catalytic Enantioselective Cross-Mannich Reaction of Aldehydes. Angew. Chem. Int. Ed. 2006, 45, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Notz, W.; Tanaka, F.; Barbas, C.F. Enamine-Based Organocatalysis with Proline and Diamines: The Development of Direct Catalytic Asymmetric Aldol, Mannich, Michael, and Diels−Alder Reactions. Acc. Chem. Res. 2004, 37, 580–591. [Google Scholar] [CrossRef]
- Córdova, A. The Direct Catalytic Asymmetric Mannich Reaction. Acc. Chem. Res. 2004, 37, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Taggi, A.E.; Hafez, A.M.; Lectka, T. α-Imino Esters: Versatile Substrates for the Catalytic, Asymmetric Synthesis of α- and β-Amino Acids and β-Lactams. Acc. Chem. Res. 2003, 36, 10–19. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ishitani, H. Catalytic Enantioselective Addition to Imines. Chem. Rev. 1999, 99, 1069–1094. [Google Scholar] [CrossRef] [PubMed]
- Shamna, S.; Afsina, C.M.A.; Philip, R.M.; Anilkumar, G. Recent advances and prospects in the Zn-catalysed Mannich reaction. RSC Adv. 2021, 11, 9098–9111. [Google Scholar] [CrossRef]
- Hou, X.; Du, D. Recent Advances in Squaramide-Catalyzed Asymmetric Mannich Reactions. Adv. Synth. Catal. 2020, 362, 4487–4512. [Google Scholar] [CrossRef]
- Saranya, S.; Harry, N.A.; Krishnan, K.K.; Anilkumar, G. Recent Developments and Perspectives in the Asymmetric Mannich Reaction. Asian J. Org. Chem. 2018, 7, 613–633. [Google Scholar] [CrossRef]
- Frías, M.; Cieślik, W.; Fraile, A.; Rosado-Abón, A.; Garrido-Castro, A.F.; Yuste, F.; Alemán, J. Development and Application of Asymmetric Organocatalytic Mukaiyama and Vinylogous Mukaiyama-Type Reactions. Chem. A Eur. J. 2018, 24, 10906–10933. [Google Scholar] [CrossRef]
- Kumagai, N.; Shibasaki, M. Recent Advances in Catalytic Asymmetric C–C Bond-Forming Reactions to Ketimines Promoted by Metal-Based Catalysts. Bull. Chem. Soc. Jpn. 2015, 88, 503–517. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, T. 2.16 The Bimolecular and Intramolecular Mannich and Related Reactions. In Comprehensive Organic Synthesis II; Elsevier: Amsterdam, The Netherlands, 2014; Volume 2, pp. 629–681. ISBN 9780080977430. [Google Scholar]
- Karimi, B.; Enders, D.; Jafari, E. Recent Advances in Metal-Catalyzed Asymmetric Mannich Reactions. Synthesis 2013, 45, 2769–2812. [Google Scholar] [CrossRef]
- Kobayashi, S.; Mori, Y.; Fossey, J.S.; Salter, M.M. Catalytic Enantioselective Formation of C−C Bonds by Addition to Imines and Hydrazones: A Ten-Year Update. Chem. Rev. 2011, 111, 2626–2704. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, S.; Yoshino, T. Construction of Contiguous Tetrasubstituted Chiral Carbon Stereocenters via Direct Catalytic Asymmetric Aldol and Mannich-Type Reactions. Chem. Rec. 2011, 11, 260–268. [Google Scholar] [CrossRef]
- Shibasaki, M.; Kanai, M. Asymmetric Synthesis of Tertiary Alcohols and α-Tertiary Amines via Cu-Catalyzed C−C Bond Formation to Ketones and Ketimines. Chem. Rev. 2008, 108, 2853–2873. [Google Scholar] [CrossRef] [PubMed]
- Riant, O.; Hannedouche, J. Asymmetric catalysis for the construction of quaternary carbon centres: Nucleophilic addition on ketones and ketimines. Org. Biomol. Chem. 2007, 5, 873. [Google Scholar] [CrossRef]
- Kano, T.; Aota, Y.; Maruoka, K. Asymmetric Synthesis of Less Accessible α-Tertiary Amines from Alkynyl Z- Ketimines. Angew. Chem. Int. Ed. 2017, 56, 16293–16296. [Google Scholar] [CrossRef] [PubMed]
- Kirillova, M.S.; Muratore, M.E.; Dorel, R.; Echavarren, A.M. Concise Total Synthesis of Lundurines A–C Enabled by Gold Catalysis and a Homodienyl Retro-Ene/Ene Isomerization. J. Am. Chem. Soc. 2016, 138, 3671–3674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, A.; Tu, Y.; Peng, J.; Dou, Q.; Hou, S.; Zhang, F.; Wang, S. Total Synthesis of (−)-FR901483. Org. Lett. 2012, 14, 3604–3607. [Google Scholar] [CrossRef] [PubMed]
- Bagutski, V.; Elford, T.G.; Aggarwal, V.K. Synthesis of Highly Enantioenriched C-Tertiary Amines From Boronic Esters: Application to the Synthesis of Igmesine. Angew. Chem. Int. Ed. 2011, 50, 1080–1083. [Google Scholar] [CrossRef] [PubMed]
- Edwards, P.D.; Albert, J.S.; Sylvester, M.; Aharony, D.; Andisik, D.; Callaghan, O.; Campbell, J.B.; Carr, R.A.; Chessari, G.; Congreve, M.; et al. Application of Fragment-Based Lead Generation to the Discovery of Novel, Cyclic Amidine β-Secretase Inhibitors with Nanomolar Potency, Cellular Activity, and High Ligand Efficiency §. J. Med. Chem. 2007, 50, 5912–5925. [Google Scholar] [CrossRef] [PubMed]
- Bjørgo, J.; Boyd, D.R.; Watson, C.G.; Jennings, W.B. Equilibrium distribution of E–Z-ketimine isomers. J. Chem. Soc. Perkin Trans. 1974, 2, 757–762. [Google Scholar] [CrossRef]
- Berger, R.; Duff, K.; Leighton, J.L. Enantioselective Allylation of Ketone-Derived Benzoylhydrazones: Practical Synthesis of Tertiary Carbinamines. J. Am. Chem. Soc. 2004, 126, 5686–5687. [Google Scholar] [CrossRef]
- Yin, Q.; Shi, Y.; Wang, J.; Zhang, X. Direct catalytic asymmetric synthesis of α-chiral primary amines. Chem. Soc. Rev. 2020, 49, 6141–6153. [Google Scholar] [CrossRef] [PubMed]
- Hou, G.; Gosselin, F.; Li, W.; McWilliams, J.C.; Sun, Y.; Weisel, M.; O’Shea, P.D.; Chen, C.; Davies, I.W.; Zhang, X. Enantioselective Hydrogenation of N−H Imines. J. Am. Chem. Soc. 2009, 131, 9882–9883. [Google Scholar] [CrossRef] [PubMed]
- Gröger, H. Catalytic Enantioselective Strecker Reactions and Analogous Syntheses. Chem. Rev. 2003, 103, 2795–2828. [Google Scholar] [CrossRef] [PubMed]
- Noble, A.; Anderson, J.C. Nitro-Mannich Reaction. Chem. Rev. 2013, 113, 2887–2939. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Guo, D.; Bie, J.; Wang, J. Catalytic Enantioselective Aza-Benzoin Reactions of Aldehydes with 2H-Azirines. Angew. Chem. Int. Ed. 2018, 57, 3767–3771. [Google Scholar] [CrossRef]
- Sun, L.-H.; Liang, Z.-Q.; Jia, W.-Q.; Ye, S. Enantioselective N-Heterocyclic Carbene Catalyzed Aza-Benzoin Reaction of Enals with Activated Ketimines. Angew. Chem. Int. Ed. 2013, 52, 5803–5806. [Google Scholar] [CrossRef]
- Shen, C.; Wang, R.-Q.; Wei, L.; Wang, Z.-F.; Tao, H.-Y.; Wang, C.-J. Catalytic Asymmetric Umpolung Allylation/2-Aza-Cope Rearrangement for the Construction of α-Tetrasubstituted α-Trifluoromethyl Homoallylic Amines. Org. Lett. 2019, 21, 6940–6945. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Deng, L.-F.; Zhang, X.; Niu, D. Catalytic Asymmetric Synthesis of α-Tetrasubstituted α-Trifluoromethyl Homoallylic Amines by Ir-Catalyzed Umpolung Allylation of Imines. Org. Lett. 2019, 21, 6951–6956. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Deng, L. Catalytic Asymmetric Synthesis of Trifluoromethylated γ-Amino Acids through the Umpolung Addition of Trifluoromethyl Imines to Carboxylic Acid Derivatives. Angew. Chem. Int. Ed. 2018, 57, 2233–2237. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Hu, B.; Wu, Y.; Fei, C.; Deng, L. Control of chemoselectivity in asymmetric tandem reactions: Direct synthesis of chiral amines bearing nonadjacent stereocenters. Proc. Natl. Acad. Sci. USA 2018, 115, 1730–1735. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Zhang, J. Phosphine-Catalyzed Asymmetric Synthesis of α-Quaternary Amine via Umpolung γ-Addition of Ketimines to Allenoates. Org. Lett. 2017, 19, 6550–6553. [Google Scholar] [CrossRef]
- Chen, P.; Yue, Z.; Zhang, J.; Lv, X.; Wang, L.; Zhang, J. Phosphine-Catalyzed Asymmetric Umpolung Addition of Trifluoromethyl Ketimines to Morita-Baylis-Hillman Carbonates. Angew. Chem. Int. Ed. 2016, 55, 13316–13320. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Hu, L.; Li, Z.; Deng, L. Catalytic asymmetric umpolung reactions of imines. Nature 2015, 523, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Curto, J.M.; Dickstein, J.S.; Berritt, S.; Kozlowski, M.C. Asymmetric Synthesis of α-Allyl-α-Aryl α-Amino Acids by Tandem Alkylation/π-Allylation of α-Iminoesters. Org. Lett. 2014, 16, 1948–1951. [Google Scholar] [CrossRef] [PubMed]
- Rostoll-Berenguer, J.; Blay, G.; Pedro, J.R.; Vila, C. Asymmetric Oxidative Mannich Reactions. Adv. Synth. Catal. 2021, 363, 602–628. [Google Scholar] [CrossRef]
- Saaby, S.; Nakama, K.; Lie, M.A.; Hazell, R.G.; Jørgensen, K.A. The First Catalytic Highly Enantioselective Alkylation of Ketimines—A Novel Approach to Optically Active Quaternaryα-Amino Acids. Chem. A Eur. J. 2003, 9, 6145–6154. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, W.; Saaby, S.; Jørgensen, K.A. Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternaryα-Amino Acid Derivatives. Angew. Chem. Int. Ed. 2004, 43, 4476–4478. [Google Scholar] [CrossRef] [PubMed]
- Kano, T.; Song, S.; Kubota, Y.; Maruoka, K. Highly Diastereo- and Enantioselective Mannich Reactions of Synthetically Flexible Ketimines with Secondary Amine Organocatalysts. Angew. Chem. Int. Ed. 2012, 51, 1191–1194. [Google Scholar] [CrossRef]
- Shao, Q.; Wu, L.; Chen, J.; Gridnev, I.D.; Yang, G.; Xie, F.; Zhang, W. Copper (II)/RuPHOX-Catalyzed Enantioselective Mannich-Type Reaction of Glycine Schiff Bases with Cyclic Ketimines. Adv. Synth. Catal. 2018, 360, 4625–4633. [Google Scholar] [CrossRef]
- Zhao, M.-X.; Dong, Z.-W.; Zhu, G.-Y.; Zhao, X.-L.; Shi, M. Diastereo- and enantioselective Mannich/cyclization cascade reaction of isocyanoacetates with cyclic sulfamide ketimines by cinchona alkaloid squaramide/AgOAc cooperative catalysis. Org. Biomol. Chem. 2018, 16, 4641–4649. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, L.; Hu, Y.; Li, Y.; Yang, Y.; Zha, Z.; Wang, Z. Highly Enantioselective Construction of Fluoroalkylated Quaternary Stereocenters via Organocatalytic Dehydrated Mannich Reaction of Unprotected Hemiaminals with Ketones. Org. Lett. 2015, 17, 5036–5039. [Google Scholar] [CrossRef]
- Zhang, S.; Li, L.; Hu, Y.; Zha, Z.; Wang, Z.; Loh, T.-P. Bifunctional Amino Sulfonohydrazide Catalyzed Direct Asymmetric Mannich Reaction of Cyclic Ketimines with Ketones: Highly Diastereo- and Enantioselective Construction of Quaternary Carbon Stereocenters. Org. Lett. 2015, 17, 1050–1053. [Google Scholar] [CrossRef]
- Nakamura, S.; Sano, M.; Toda, A.; Nakane, D.; Masuda, H. Organocatalytic Enantioselective Decarboxylative Reaction of Malonic Acid Half Thioesters with Cyclic N -Sulfonyl Ketimines by Using N -Heteroarenesulfonyl Cinchona Alkaloid Amides. Chem. A Eur. J. 2015, 21, 3929–3932. [Google Scholar] [CrossRef]
- Qiao, B.; Huang, Y.-J.; Nie, J.; Ma, J.-A. Highly Regio-, Diastereo-, and Enantioselective Mannich Reaction of Allylic Ketones and Cyclic Ketimines: Access to Chiral Benzosultam. Org. Lett. 2015, 17, 4608–4611. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.-X.; Bi, H.-L.; Jiang, R.-H.; Xu, X.-W.; Shi, M. Cinchona Alkaloid Squaramide/AgOAc Cooperatively Catalyzed Diastereo- and Enantioselective Mannich/Cyclization Cascade Reaction of Isocyanoacetates and Cyclic Trifluoromethyl Ketimines. Org. Lett. 2014, 16, 4566–4569. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.-N.; Wang, S.; Nie, J.; Meng, W.; Yao, Q.; Ma, J.-A. Hydrogen-Bond-Directed Enantioselective Decarboxylative Mannich Reaction of β-Ketoacids with Ketimines: Application to the Synthesis of Anti-HIV Drug DPC 083. Angew. Chem. Int. Ed. 2013, 52, 3869–3873. [Google Scholar] [CrossRef]
- Jiang, B.; Dong, J.J.; Si, Y.G.; Zhao, X.L.; Huang, Z.G.; Xu, M. Highly Enantioselective Construction of a Quaternary Carbon Center of Dihydroquinazoline by Asymmetric Mannich Reaction and Chiral Recognition. Adv. Synth. Catal. 2008, 350, 1360–1366. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, X.-Y.; Li, S.; Jafari, E.; Raabe, G.; Enders, D. N-Heterocyclic carbene-catalyzed [4 + 2] annulation of β-methyl enals and cyclic trifluoromethyl ketimines for the asymmetric synthesis of dihydroquinazolinone derivatives. Chem. Commun. 2017, 53, 11342–11344. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Xie, K.-X.; Yue, D.-F.; Zhang, X.-M.; Xu, X.-Y.; Yuan, W.-C. An organocatalytic asymmetric Mannich reaction of pyrazoleamides with cyclic trifluoromethyl ketimines: Enantioselective access to dihydroquinazolinone skeletons. Org. Biomol. Chem. 2018, 16, 3372–3375. [Google Scholar] [CrossRef]
- Li, L.; Han, M.; Xiao, M.; Xie, Z. Proline-Catalyzed Enantioselective Synthesis of Aza-Quaternary Carbon Derivatives. Synlett 2011, 2011, 1727–1730. [Google Scholar] [CrossRef]
- Rueping, M.; Rasappan, R.; Raja, S. Asymmetric Proline-Catalyzed Addition of Aldehydes to 3H-Indol-3-ones: Enantioselective Synthesis of 2,3-Dihydro-1H-indol-3-ones with Quaternary Stereogenic Centers. Helv. Chim. Acta 2012, 95, 2296–2303. [Google Scholar] [CrossRef]
- Yuan, X.; Wu, X.; Zhang, P.; Peng, F.; Liu, C.; Yang, H.; Zhu, C.; Fu, H. Axially Chiral Cyclic Phosphoric Acid Enabled Enantioselective Sequential Additions. Org. Lett. 2019, 21, 2498–2503. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, X.-G.; Wei, Y.-H.; Ji, K.-L.; Zheng, J.-F.; Ye, J.-L.; Huang, P.-Q. Organocatalytic, Enantioselective Reductive Bis-functionalization of Secondary Amides: One-Pot Construction of Chiral 2,2-Disubstituted 3-Iminoindoline. Org. Lett. 2019, 21, 7587–7591. [Google Scholar] [CrossRef]
- Liu, R.-R.; Hu, J.-P.; Hong, J.-J.; Lu, C.-J.; Gao, J.-R.; Jia, Y.-X. Enantioselective [2 + 2] cycloaddition of N-allenamides with cyclic N-sulfonylketimines: Access to polysubstituted azetidines bearing quaternary stereocenters. Chem. Sci. 2017, 8, 2811–2815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, K.N.; Rao, M.V.K.; Sridhar, B.; Subba Reddy, B.V. BINOL Phosphoric Acid-Catalyzed Asymmetric Mannich Reaction of Cyclic N-Acyl Ketimines with Cyclic Enones. Chem. Asian J. 2019, 14, 2958–2965. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Zhang, Y.; Pan, K.; You, J.; Zhao, J. Direct Organocatalytic Asymmetric Mannich Addition of 3-Substituted-2 H-1,4-Benzoxazines: Access to Tetrasubstituted Carbon Stereocenters. Adv. Synth. Catal. 2013, 355, 3381–3386. [Google Scholar] [CrossRef]
- Wu, L.-L.; Xiang, Y.; Yang, D.-C.; Guan, Z.; He, Y.-H. Biocatalytic asymmetric Mannich reaction of ketimines using wheat germ lipase. Catal. Sci. Technol. 2016, 6, 3963–3970. [Google Scholar] [CrossRef]
- Khlebnikov, A.F.; Novikov, M.S. Recent advances in 2H-azirine chemistry. Tetrahedron 2013, 69, 3363–3401. [Google Scholar] [CrossRef]
- Hu, H.; Xu, J.; Liu, W.; Dong, S.; Lin, L.; Feng, X. Copper-Catalyzed Asymmetric Addition of Tertiary Carbon Nucleophiles to 2H -Azirines: Access to Chiral Aziridines with Vicinal Tetrasubstituted Stereocenters. Org. Lett. 2018, 20, 5601–5605. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-J.; Xie, Y.-C.; Yin, L. Copper(I)-catalyzed asymmetric decarboxylative Mannich reaction enabled by acidic activation of 2H-azirines. Nat. Commun. 2019, 10, 1699. [Google Scholar] [CrossRef]
- Trost, B.M.; Zhu, C. Zn-ProPhenol Catalyzed Enantioselective Mannich Reaction of 2H-Azirines with Alkynyl Ketones. Org. Lett. 2020, 22, 9683–9687. [Google Scholar] [CrossRef]
- Rong, M.-Y.; Li, J.-S.; Zhou, Y.; Zhang, F.-G.; Ma, J.-A. Catalytic Enantioselective Synthesis of Difluoromethylated Tetrasubstituted Stereocenters in Isoindolones Enabled by a Multiple-Fluorine System. Org. Lett. 2020, 22, 9010–9015. [Google Scholar] [CrossRef]
- Mohammadi Ziarani, G.; Moradi, R.; Lashgari, N. Asymmetric synthesis of chiral oxindoles using isatin as starting material. Tetrahedron 2018, 74, 1323–1353. [Google Scholar] [CrossRef]
- Kaur, J.; Chimni, S.S. Catalytic synthesis of 3-aminooxindoles via addition to isatin imine: An update. Org. Biomol. Chem. 2018, 16, 3328–3347. [Google Scholar] [CrossRef]
- Chauhan, P.; Chimni, S.S. Organocatalytic asymmetric synthesis of 3-amino-2-oxindole derivatives bearing a tetra-substituted stereocenter. Tetrahedron Asymmetry 2013, 24, 343–356. [Google Scholar] [CrossRef]
- Nakamura, S.; Matsuzaka, K.; Hatanaka, T.; Funahashi, Y. Enantioselective Vinylogous Mannich Reaction of Acyclic Vinylketene Silyl Acetals with Ketimines Using Chiral Bis(imidazoline)–Cu(II) Catalysts. Org. Lett. 2020, 22, 2868–2872. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.-S.; Noda, H.; Kumagai, N.; Shibasaki, M. Direct Catalytic Asymmetric Mannich-Type Reaction of an α-CF3 Amide to Isatin Imines. Synlett 2019, 30, 488–492. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Lu, J.; Sha, F.; Li, Q.; Wu, X.-Y. Cu(I)-Catalyzed Asymmetric Mannich Reaction of Glycine Schiff Bases to Ketimines. J. Org. Chem. 2019, 84, 11639–11648. [Google Scholar] [CrossRef]
- Franc, M.; Urban, M.; Císařová, I.; Veselý, J. Highly enantioselective addition of sulfur-containing heterocycles to isatin-derived ketimines. Org. Biomol. Chem. 2019, 17, 7309–7314. [Google Scholar] [CrossRef]
- Chang, Z.; Ye, C.; Fu, J.; Chigumbu, P.; Zeng, X.; Wang, Y.; Jiang, C.; Han, X. Enantioselective Synthesis of Oxindole-Derived α-Aryl-β-Amino Acid Derivatives and δ-Lactams with Homophthalic Anhydrides. Adv. Synth. Catal. 2019, 361, 5516–5520. [Google Scholar] [CrossRef]
- Rodríguez-Ferrer, P.; Sanz-Novo, M.; Maestro, A.; Andrés, J.M.; Pedrosa, R. Synthesis of Enantioenriched 3-Amino-3-Substituted Oxindoles by Stereoselective Mannich Reaction Catalyzed by Supported Bifunctional Thioureas. Adv. Synth. Catal. 2019, 361, 3645–3655. [Google Scholar] [CrossRef]
- Lu, J.; Fan, Y.; Sha, F.; Li, Q.; Wu, X.-Y. Copper-catalyzed enantioselective Mannich reaction between N-acylpyrazoles and isatin-derived ketimines. Org. Chem. Front. 2019, 6, 2687–2691. [Google Scholar] [CrossRef]
- Huang, Q.; Cheng, Y.; Yuan, H.; Chang, X.; Li, P.; Li, W. Organocatalytic enantioselective Mannich-type addition of 5H-thiazol-4-ones to isatin-derived imines: Access to 3-substituted 3-amino-2-oxindoles featured by vicinal sulfur-containing tetrasubstituted stereocenters. Org. Chem. Front. 2018, 5, 3226–3230. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Wei, Z.; Cao, J.; Liang, D.; Lin, Y.; Duan, H. Direct enantio- and diastereoselective Mannich reactions of isatin-derived ketimines with oxo-indanecarboxylates catalyzed by chiral thiourea derived from hydroquinidine. Org. Biomol. Chem. 2018, 16, 8927–8932. [Google Scholar] [CrossRef]
- Sawa, M.; Miyazaki, S.; Yonesaki, R.; Morimoto, H.; Ohshima, T. Catalytic Enantioselective Decarboxylative Mannich-Type Reaction of N -Unprotected Isatin-Derived Ketimines. Org. Lett. 2018, 20, 5393–5397. [Google Scholar] [CrossRef] [PubMed]
- Newhouse, T.; Baran, P.S.; Hoffmann, R.W. The economies of synthesis. Chem. Soc. Rev. 2009, 38, 3010. [Google Scholar] [CrossRef] [PubMed]
- Wender, P.A.; Verma, V.A.; Paxton, T.J.; Pillow, T.H. Function-oriented synthesis, step economy, and drug design. Acc. Chem. Res. 2008, 41, 40–49. [Google Scholar] [CrossRef]
- Trost, B. The atom economy--a search for synthetic efficiency. Science 1991, 254, 1471–1477. [Google Scholar] [CrossRef] [PubMed]
- Ding, R.; De los Santos, Z.A.; Wolf, C. Catalytic Asymmetric Mannich Reaction of α-Fluoronitriles with Ketimines: Enantioselective and Diastereodivergent Construction of Vicinal Tetrasubstituted Stereocenters. ACS Catal. 2019, 9, 2169–2176. [Google Scholar] [CrossRef]
- Kang, T.; Hou, L.; Ruan, S.; Cao, W.; Liu, X.; Feng, X. Lewis acid-catalyzed asymmetric reactions of β,γ-unsaturated 2-acyl imidazoles. Nat. Commun. 2020, 11, 3869. [Google Scholar] [CrossRef]
- Kang, T.; Cao, W.; Hou, L.; Tang, Q.; Zou, S.; Liu, X.; Feng, X. Chiral Zinc(II)-Catalyzed Enantioselective Tandem α-Alkenyl Addition/Proton Shift Reaction of Silyl Enol Ehters with Ketimines. Angew. Chem. Int. Ed. 2019, 58, 2464–2468. [Google Scholar] [CrossRef] [PubMed]
- Takeda, T.; Kondoh, A.; Terada, M. Construction of Vicinal Quaternary Stereogenic Centers by Enantioselective Direct Mannich-Type Reaction Using a Chiral Bis(guanidino)iminophosphorane Catalyst. Angew. Chem. Int. Ed. 2016, 55, 4734–4737. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Kumagai, N.; Shibasaki, M. Direct Catalytic Asymmetric Mannich-type Reaction of α,β-Unsaturated γ-Butyrolactam with Ketimines. Chem. A Eur. J. 2016, 22, 3296–3299. [Google Scholar] [CrossRef] [PubMed]
- Sawa, M.; Morisaki, K.; Kondo, Y.; Morimoto, H.; Ohshima, T. Direct Access to N-Unprotected α- and/or β-Tetrasubstituted Amino Acid Esters via Direct Catalytic Mannich-Type Reactions Using N-Unprotected Trifluoromethyl Ketimines. Chem. A Eur. J. 2017, 23, 17022–17028. [Google Scholar] [CrossRef] [PubMed]
- Trost, B.M.; Hung, C.-I.J.; Scharf, M.J. Direct Catalytic Asymmetric Vinylogous Additions of α,β- and β,γ-Butenolides to Polyfluorinated Alkynyl Ketimines. Angew. Chem. Int. Ed. 2018, 57, 11408–11412. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Wang, Z.; Deng, Y.; Zhu, L.; Peng, F.; Lan, Y.; Shao, Z. Enantiodivergence by minimal modification of an acyclic chiral secondary aminocatalyst. Nat. Commun. 2019, 10, 5182. [Google Scholar] [CrossRef]
- Homma, C.; Takeshima, A.; Kano, T.; Maruoka, K. Construction of chiral α- tert -amine scaffolds via amine-catalyzed asymmetric Mannich reactions of alkyl-substituted ketimines. Chem. Sci. 2021, 12, 1445–1450. [Google Scholar] [CrossRef]
- Suto, Y.; Kanai, M.; Shibasaki, M. Catalytic Enantioselective Mannich-type Reactions of Ketoimines. J. Am. Chem. Soc. 2007, 129, 500–501. [Google Scholar] [CrossRef]
- Hayashi, M.; Sano, M.; Funahashi, Y.; Nakamura, S. Cinchona Alkaloid Amide/Copper(II) Catalyzed Diastereo- and Enantioselective Vinylogous Mannich Reaction of Ketimines with Siloxyfurans. Angew. Chem. Int. Ed. 2013, 52, 5557–5560. [Google Scholar] [CrossRef]
- Du, Y.; Xu, L.-W.; Shimizu, Y.; Oisaki, K.; Kanai, M.; Shibasaki, M. Asymmetric Reductive Mannich Reaction to Ketimines Catalyzed by a Cu(I) Complex. J. Am. Chem. Soc. 2008, 130, 16146–16147. [Google Scholar] [CrossRef] [PubMed]
- Reep, C. Development of Axial-Chiral Lewis Base Catalysts for Asymmetric Synthesis. Ph.D. Thesis, Florida Institute of Technology, Melbourne, FL, USA, July 2021. (in preparation) Experimental Data: A round-bottom flask with a stir bar was flame-dried then charged with (R)-3,3′-bis(4-methylphenyl)-1,1′-biisoquinoline N,N′-dioxide (12 mg, 0.025 mmol), activated 4 Å molecular sieves powder (250 mg, g/mmol) and CH2Cl2 freshly distilled over CaH2 (750 μL). The mixture was stirred for 1 h at rt, cooled to –78 °C and then treated with a solution of trichlorosilane freshly distilled over CaH2 (51 µL, 0.5 mmol) in CH2Cl2 (125 μL). The resulting solution was stirred for 15 min at –78 °C. N,N-Dimethylacrylamide that was distilled over CaH2 and stored in a Schlenk flask over 4 Å molecular sieves (26 µL, 0.25 mmol) was added as a solution in CH2Cl2 (125 µL). The mixture was stirred for 15 min at –78 °C and then treated with a solution of benzylacetone-derived hydrazone (33 mg, 0.124 mmol) in CH2Cl2 (500 µL). The reaction mixture was stirred for 16 h at –40 °C, then quenched by pouring into saturated NaHCO3 solution cooled to 0 °C. The mixture was filtered into a separatory funnel via a short pad of celite, extracted with CH2Cl2, dried over Na2SO4, and concentrated In Vacuo. The yields of anti- and syn-31 were determined by 1H NMR using 1,1,2,2-tetrachloroethane (53 µL, 0.5 mmol) as an internal standard in CDCl3 (anti-31, 88%; syn-31, 8%), then purified by preparative TLC. anti-31: 1H NMR (400 MHz, CDCl3) δ 10.82 (br s, 1H), 7.9-7.88 (m, 2H), 7.47-7.41 (m, 3H), 7.20-7.17 (m, 2H), 7.14-7.10 (m,1H), 7.05 (d, J. = 6.8 Hz, 2H), 5.36 (br s, 1H), 3.10 (s, 3H), 2.99 (s, 3H), 2.95 (q, J. = 6.8 Hz, 1H), 2.71 (dt, J. = 4.4, 12.8 Hz, 1H), 2.57 (dt, J. = 5.2, 12.4, Hz, 1H), 1.92 (dt, J. = 4.4, 12.8 Hz, 1H), 1.61-1.53 (m, 1H), 1.31 (d, J. = 6.4 Hz, 3H), 1.30 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 176.9, 162.8, 142.3, 133.4, 130.9, 128.5, 128.5, 128.4, 126.8, 125.7, 59.7, 44.8, 38.5, 38.2, 36.3, 29.9, 23.4, 13.5; HRMS (ESI): Exact mass calculated for C22H29N3NaO2+ [M + Na]+ expected: 390.2152, found: 390.2186; HPLC analysis, e.r. = 51:49, tR (major) 26.7 min, tR (minor) 35.6 min (Daicel Chiralcel® AS-H with an AS-H guard column, hexane/2-propanol = 80:20, 0.5 mL/min); See ref. 105 for its X-ray crystallographic data for structural analysis. [Google Scholar]
- Sugiura, M.; Sato, N.; Kotani, S.; Nakajima, M. Lewis base-catalyzed conjugate reduction and reductive aldol reaction of α,β-unsaturated ketones using trichlorosilane. Chem. Commun. 2008, 2, 4309. [Google Scholar] [CrossRef]
- Sugiura, M.; Sato, N.; Sonoda, Y.; Kotani, S.; Nakajima, M. Diastereo- and Enantioselective Reductive Aldol Reaction with Trichlorosilane Using Chiral Lewis Bases as Organocatalysts. Chem. Asian J. 2010, 5, 478–481. [Google Scholar] [CrossRef]
- DePorre, Y.C.; Annand, J.R.; Bar, S.; Schindler, C.S. Lewis-Base-Catalyzed Reductive Aldol Reaction To Access Quaternary Carbons. Org. Lett. 2018, 20, 2580–2584. [Google Scholar] [CrossRef]
- Allais, C.; Tsai, A.S.; Nuhant, P.; Roush, W.R. Generation of Stereochemically Defined Tetrasubstituted Enolborinates by 1,4-Hydroboration of α,β-Unsaturated Morpholine Carboxamides with (Diisopinocampheyl)borane. Angew. Chem. Int. Ed. 2013, 52, 12888–12891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuhant, P.; Allais, C.; Roush, W.R. Diisopinocampheylborane-Mediated Reductive Aldol Reactions: Highly Enantio- and Diastereoselective Synthesis of syn Aldols from N -Acryloylmorpholine. Angew. Chem. Int. Ed. 2013, 52, 8703–8707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crystallographic Data for the Structural Analysis have been Deposited with the Cambridge Crystallographic Data Centre, CCDC No. 2077332 for Compound 31. Copy of this Information may Be Obtained Free of Charge from, The Director, CCDC 12 Union Road, Cambridge CB2 1EZ, UK. Available online: https://www.ccdc.cam.ac.uk/ (accessed on 6 June 2021).
- Baudequin, C.; Zamfir, A.; Tsogoeva, S.B. Highly enantioselective organocatalytic formation of a quaternary carbon center via chiral Brønsted acid catalyzed self-coupling of enamides. Chem. Commun. 2008, 4637–4639. [Google Scholar] [CrossRef] [PubMed]
- Yazaki, R.; Nitabaru, T.; Kumagai, N.; Shibasaki, M. Direct Catalytic Asymmetric Addition of Allylic Cyanides to Ketoimines. J. Am. Chem. Soc. 2008, 130, 14477–14479. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Yoshino, T.; Morimoto, H.; Matsunaga, S.; Shibasaki, M. Stereodivergent Direct Catalytic Asymmetric Mannich-Type Reactions of α-Isothiocyanato Ester with Ketimines. Angew. Chem. Int. Ed. 2011, 50, 4382–4385. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Takada, H.; Kumagai, N.; Shibasaki, M. Direct Catalytic Asymmetric Vinylogous Mannich-Type Reaction of γ-Butenolides with Ketimines. Angew. Chem. Int. Ed. 2013, 52, 7310–7313. [Google Scholar] [CrossRef] [PubMed]
- Ortín, I.; Dixon, D.J. Direct Catalytic Enantio- and Diastereoselective Mannich Reaction of Isocyanoacetates and Ketimines. Angew. Chem. Int. Ed. 2014, 53, 3462–3465. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; Iwanaga, M.; Shiomi, N.; Nakane, D.; Masuda, H.; Nakamura, S. Direct Asymmetric Mannich-Type Reaction of α-Isocyanoacetates with Ketimines using Cinchona Alkaloid/Copper(II) Catalysts. Angew. Chem. Int. Ed. 2014, 53, 8411–8415. [Google Scholar] [CrossRef]
- De la Campa, R.; Gammack Yamagata, A.D.; Ortín, I.; Franchino, A.; Thompson, A.L.; Odell, B.; Dixon, D.J. Catalytic enantio- and diastereoselective Mannich reaction of α-substituted isocyanoacetates and ketimines. Chem. Commun. 2016, 52, 10632–10635. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, S.; Yamaji, R.; Iwanaga, M. Enantioselective construction of imidazolines having vicinal tetra-substituted stereocenters by direct Mannich reaction of α-substituted α-isocyanoacetates with ketimines. Chem. Commun. 2016, 52, 7462–7465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.; Kawato, Y.; Kumagai, N.; Shibasaki, M. Catalytic Asymmetric Mannich-Type Reaction of N-Alkylidene-α-Aminoacetonitrile with Ketimines. Angew. Chem. Int. Ed. 2015, 54, 5183–5186. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Yamaji, R.; Hayashi, M. Direct Enantioselective Vinylogous Mannich Reaction of Ketimines with γ-Butenolide by Using Cinchona Alkaloid Amide/Zinc(II) Catalysts. Chem. A Eur. J. 2015, 21, 9615–9618. [Google Scholar] [CrossRef]
- Talbot, F.J.T.; Dherbassy, Q.; Manna, S.; Shi, C.; Zhang, S.; Howell, G.P.; Perry, G.J.P.; Procter, D.J. Copper-Catalyzed Borylative Couplings with C−N Electrophiles. Angew. Chem. Int. Ed. 2020, 59, 20278–20289. [Google Scholar] [CrossRef] [PubMed]
- Huo, H.-X.; Duvall, J.R.; Huang, M.-Y.; Hong, R. Catalytic asymmetric allylation of carbonyl compounds and imines with allylic boronates. Org. Chem. Front. 2014, 1, 303–320. [Google Scholar] [CrossRef]
- Yus, M.; González-Gómez, J.C.; Foubelo, F. Catalytic Enantioselective Allylation of Carbonyl Compounds and Imines. Chem. Rev. 2011, 111, 7774–7854. [Google Scholar] [CrossRef]
- Kanai, M.; Wada, R.; Shibuguchi, T.; Shibasaki, M. Cu(I)-catalyzed asymmetric allylation of ketones and ketimines. Pure Appl. Chem. 2008, 80, 1055–1062. [Google Scholar] [CrossRef]
- Luo, Y.; Hepburn, H.B.; Chotsaeng, N.; Lam, H.W. Enantioselective Rhodium-Catalyzed Nucleophilic Allylation of Cyclic Imines with Allylboron Reagents. Angew. Chem. Int. Ed. 2012, 51, 8309–8313. [Google Scholar] [CrossRef] [PubMed]
- Hepburn, H.; Chotsaeng, N.; Luo, Y.; Lam, H. Enantioselective Rhodium-Catalyzed Allylation of Cyclic Imines with Potassium Allyltrifluoroborates. Synthesis 2013, 45, 2649–2661. [Google Scholar] [CrossRef] [Green Version]
- Hepburn, H.B.; Lam, H.W. The Isomerization of Allylrhodium Intermediates in the Rhodium-Catalyzed Nucleophilic Allylation of Cyclic Imines. Angew. Chem. Int. Ed. 2014, 53, 11605–11610. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Shao, Q.; Yang, G.; Zhang, W. Cobalt-Catalyzed Asymmetric Allylation of Cyclic Ketimines. Chem. A Eur. J. 2018, 24, 1241–1245. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Hyodo, K.; Nakamura, M.; Nakane, D.; Masuda, H. Catalytic Enantioselective Allylation of Ketimines by Using Palladium Pincer Complexes with Chiral Bis(imidazoline)s. Chem. A Eur. J. 2013, 19, 7304–7309. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Q.; Zhou, B.; Yang, C.; Li, X.; Cheng, J.-P. Bi(III)-Catalyzed Enantioselective Allylation Reactions of Ketimines. Iscience 2019, 16, 511–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ran, G.-Y.; Chen, C.; Yang, X.-X.; Zhao, Z.; Du, W.; Chen, Y.-C. Cu(I)-Catalyzed Asymmetric α-Allenylation of Activated Ketimines with 3-Butynoates. Org. Lett. 2020, 22, 4732–4736. [Google Scholar] [CrossRef]
- Dong, G.; Bao, M.; Xie, X.; Jia, S.; Hu, W.; Xu, X. Asymmetric Allylation by Chiral Organocatalyst-Promoted Formal Hetero-Ene Reactions of Alkylgold Intermediates. Angew. Chem. Int. Ed. 2021, 60, 1992–1999. [Google Scholar] [CrossRef] [PubMed]
- Bhakta, U.; Kattamuri, P.V.; Siitonen, J.H.; Alemany, L.B.; Kürti, L. Enantioselective Catalytic Allylation of Acyclic Ketiminoesters: Synthesis of α-Fully-Substituted Amino Esters. Org. Lett. 2019, 21, 9208–9211. [Google Scholar] [CrossRef]
- Fager, D.C.; Morrison, R.J.; Hoveyda, A.H. Regio- and Enantioselective Synthesis of Trifluoromethyl-Substituted Homoallylic α-Tertiary NH2-Amines by Reactions Facilitated by a Threonine-Based Boron-Containing Catalyst. Angew. Chem. Int. Ed. 2020, 59, 11448–11455. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.-Y.; Zheng, H.; Ji, D.-W.; Min, X.-T.; Hu, Y.-C.; Chen, Q.-A. Copper-Catalyzed Asymmetric Carboboronation of Allenes to Access α-Quaternary Amino Esters with Adjacent Stereocenters. Cell Rep. Phys. Sci. 2020, 1, 100067. [Google Scholar] [CrossRef]
- Wada, R.; Shibuguchi, T.; Makino, S.; Oisaki, K.; Kanai, M.; Shibasaki, M. Catalytic Enantioselective Allylation of Ketoimines. J. Am. Chem. Soc. 2006, 128, 7687–7691. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Romiti, F.; Torker, S.; Hoveyda, A.H. Catalytic diastereo- and enantioselective additions of versatile allyl groups to N–H ketimines. Nat. Chem. 2017, 9, 1269–1275. [Google Scholar] [CrossRef]
- Li, D.; Park, Y.; Yoon, W.; Yun, H.; Yun, J. Asymmetric Synthesis of 1-Benzazepine Derivatives via Copper-Catalyzed Intramolecular Reductive Cyclization. Org. Lett. 2019, 21, 9699–9703. [Google Scholar] [CrossRef] [PubMed]
- Trost, B.M.; Stambuli, J.P.; Silverman, S.M.; Schwörer, U. Palladium-Catalyzed Asymmetric [3 + 2] Trimethylenemethane Cycloaddition Reactions. J. Am. Chem. Soc. 2006, 128, 13328–13329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trost, B.M.; Silverman, S.M. Enantioselective Construction of Highly Substituted Pyrrolidines by Palladium-Catalyzed Asymmetric [3+2] Cycloaddition of Trimethylenemethane with Ketimines. J. Am. Chem. Soc. 2010, 132, 8238–8240. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.N.; Cramer, N. syn-Selective Rhodium(I)-Catalyzed Allylations of Ketimines Proceeding through a Directed C-H Activation/Allene Addition Sequence. Angew. Chem. Int. Ed. 2010, 49, 8181–8184. [Google Scholar] [CrossRef]
- Tran, D.N.; Cramer, N. Rhodium-Catalyzed Dynamic Kinetic Asymmetric Transformations of Racemic Allenes by the [3+2] Annulation of Aryl Ketimines. Angew. Chem. Int. Ed. 2013, 52, 10630–10634. [Google Scholar] [CrossRef]
- Peng, Z. Development of Helical Chiral Catalysts and Their Application in Asymmetric Catalysis. Ph.D. Thesis, University of Miami, Miami, FL, USA, August 2014. [Google Scholar]
- Guo, H.; Fan, Y.C.; Sun, Z.; Wu, Y.; Kwon, O. Phosphine Organocatalysis. Chem. Rev. 2018, 118, 10049–10293. [Google Scholar] [CrossRef] [PubMed]
- Ni, H.; Chan, W.-L.; Lu, Y. Phosphine-Catalyzed Asymmetric Organic Reactions. Chem. Rev. 2018, 118, 9344–9411. [Google Scholar] [CrossRef]
- Pellissier, H. Recent developments in the asymmetric organocatalytic Morita−Baylis−Hillman reaction. Tetrahedron 2017, 73, 2831–2861. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.-L.; Shi, M. The highly enantioselective catalytic aza-Morita–Baylis–Hillman reaction. Org. Chem. Front. 2014, 1, 587–595. [Google Scholar] [CrossRef]
- Yao, Y.; Li, J.-L.; Zhou, Q.-Q.; Dong, L.; Chen, Y.-C. Enantioselective Aza-Morita-Baylis-Hillman Reaction with Ketimines and Acrolein Catalyzed by Organic Assemblies. Chem. A Eur. J. 2013, 19, 9447–9451. [Google Scholar] [CrossRef]
- Hu, F.-L.; Wei, Y.; Shi, M.; Pindi, S.; Li, G. Asymmetric catalytic aza-Morita–Baylis–Hillman reaction for the synthesis of 3-substituted-3-aminooxindoles with chiral quaternary carbon centers. Org. Biomol. Chem. 2013, 11, 1921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takizawa, S.; Rémond, E.; Arteaga, F.A.; Yoshida, Y.; Sridharan, V.; Bayardon, J.; Jugé, S.; Sasai, H. P-chirogenic organocatalysts: Application to the aza-Morita–Baylis–Hillman (aza-MBH) reaction of ketimines. Chem. Commun. 2013, 49, 8392. [Google Scholar] [CrossRef]
- Han, X.; Chan, W.L.; Yao, W.; Wang, Y.; Lu, Y. Phosphine-mediated highly enantioselective spirocyclization with ketimines as substrates. Angew. Chem. Int. Ed. 2016, 55, 6492–6496. [Google Scholar] [CrossRef] [PubMed]
- Sankar, M.G.; Garcia-Castro, M.; Golz, C.; Strohmann, C.; Kumar, K. Engaging Allene-Derived Zwitterions in an Unprecedented Mode of Asymmetric [3+2]-Annulation Reaction. Angew. Chem. Int. Ed. 2016, 55, 9709–9713. [Google Scholar] [CrossRef] [PubMed]
- Rainoldi, G.; Faltracco, M.; Spatti, C.; Silvani, A.; Lesma, G. Organocatalytic access to enantioenriched spirooxindole-based 4-methyleneazetidines. Molecules 2017, 22, 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Sharma, V.; Kaur, J.; Kumar, N.; Chimni, S.S. Maleimide as an efficient nucleophilic partner in the aza-Morita–Baylis–Hillman reaction: Synthesis of chiral 3-substituted-3-aminooxindoles. Org. Biomol. Chem. 2015, 13, 5629–5635. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Sako, M.; Kishi, K.; Sasai, H.; Hatakeyama, S.; Takizawa, S. An enantioselective organocatalyzed aza-Morita–Baylis–Hillman reaction of isatin-derived ketimines with acrolein. Org. Biomol. Chem. 2015, 13, 9022–9028. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Li, T.-Z.; Qian, J.-Y.; Sha, F.; Wu, X.-Y. Enantioselective aza-Morita–Baylis–Hillman reaction between acrylates and N-Boc isatin ketimines: Asymmetric construction of chiral 3-substituted-3-aminooxindoles. Org. Biomol. Chem. 2014, 12, 8072–8078. [Google Scholar] [CrossRef] [PubMed]
- Hirata, S.; Tanaka, K.; Matsui, K.; Arteaga, F.A.; Yoshida, Y.; Takizawa, S.; Sasai, H. Chiral bifunctional organocatalysts bearing a 1,3-propanediamine unit for the aza-MBH reaction. Tetrahedron Asymmetry 2013, 24, 1189–1192. [Google Scholar] [CrossRef]
- Takizawa, S.; Arteaga, F.A.; Yoshida, Y.; Suzuki, M.; Sasai, H. Organocatalyzed Formal [2 + 2] Cycloaddition of Ketimines with Allenoates: Facile Access to Azetidines with a Chiral Tetrasubstituted Carbon Stereogenic Center. Org. Lett. 2013, 15, 4142–4145. [Google Scholar] [CrossRef]
- Takizawa, S.; Arteaga, F.A.; Yoshida, Y.; Suzuki, M.; Sasai, H. Enantioselective Organocatalyzed Formal [4 + 2] Cycloaddition of Ketimines with Allenoates: Easy Access to a Tetrahydropyridine Framework with a Chiral Tetrasubstituted Stereogenic Carbon Center. Asian J. Org. Chem. 2014, 3, 412–415. [Google Scholar] [CrossRef]
- Li, E.; Jin, H.; Jia, P.; Dong, X.; Huang, Y. Bifunctional-Phosphine-Catalyzed Sequential Annulations of Allenoates and Ketimines: Construction of Functionalized Poly-heterocycle Rings. Angew. Chem. Int. Ed. 2016, 55, 11591–11594. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Reep, C.; Jarvis, J.; Naumann, B.; Captain, B.; Takenaka, N. Asymmetric Catalytic Ketimine Mannich Reactions and Related Transformations. Catalysts 2021, 11, 712. https://doi.org/10.3390/catal11060712
Xu C, Reep C, Jarvis J, Naumann B, Captain B, Takenaka N. Asymmetric Catalytic Ketimine Mannich Reactions and Related Transformations. Catalysts. 2021; 11(6):712. https://doi.org/10.3390/catal11060712
Chicago/Turabian StyleXu, Changgong, Carlyn Reep, Jamielyn Jarvis, Brandon Naumann, Burjor Captain, and Norito Takenaka. 2021. "Asymmetric Catalytic Ketimine Mannich Reactions and Related Transformations" Catalysts 11, no. 6: 712. https://doi.org/10.3390/catal11060712
APA StyleXu, C., Reep, C., Jarvis, J., Naumann, B., Captain, B., & Takenaka, N. (2021). Asymmetric Catalytic Ketimine Mannich Reactions and Related Transformations. Catalysts, 11(6), 712. https://doi.org/10.3390/catal11060712