Altering the Stereoselectivity of Whole-Cell Biotransformations via the Physicochemical Parameters Impacting the Processes
Abstract
:1. Introduction
2. Whole-Cell Biocatalytic Synthesis of Chiral Derivatives—Main Strategies
2.1. Asymmetric Bioreduction
2.2. Kinetically Controlled Resolution of Racemic Mixture
3. Modifications of the Cell Activity
3.1. Biocatalyst Cultivation
3.2. Incubation of Biocatalyst under Starvation Conditions
3.3. Whole-Cell Biocatalyst Immobilization
3.3.1. Adsorption on a Carrier
3.3.2. Entrapment
3.3.3. Encapsulation
3.3.4. Immobilization as a Factor Altering the Course of the Reaction—Examples
4. Selected Reaction Parameters
5. Substrate Engineering
6. Various Solvents as Reaction Media
6.1. Organic Solvents
6.2. Ionic Liquids (ILs)
6.3. Deep Eutectic Solvents (DESs)
Natural Deep Eutectic Solvents
6.4. Supercritical Carbon Dioxide
7. Chemical Additives as Modulators of Biocatalyst Activity
7.1. Affecting the Coenzyme Regeneration System
7.1.1. Chemical Additives in Asymmetric Reductions
7.1.2. Chemical Additives in Asymmetric Oxidation
7.1.3. Oxidase-Based Resolution of Racemic Mixtures
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lin, B.; Tao, Y. Whole-cell biocatalysts by design. Microb. Cell Factories 2017, 16, 106. [Google Scholar] [CrossRef] [Green Version]
- Sheldon, R.A.; Woodley, J. Role of Biocatalysis in Sustainable Chemistry. Chem. Rev. 2018, 118, 801–838. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Snajdrova, R.; Moore, J.C.; Baldenius, K.; Bornscheuer, U.T. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew. Chem. Int. Ed. 2021, 60, 88–119. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.A.; Brady, D. The limits to biocatalysis: Pushing the envelope. Chem. Commun. 2018, 54, 6088–6104. [Google Scholar] [CrossRef]
- D’Amato, R.J.; Loughnan, M.S.; Flynn, E.; Folkman, J. Thalidomide is an inhibitor of angiogenesis. Proc. Natl. Acad. Sci. USA 1994, 91, 4082–4085. [Google Scholar] [CrossRef] [Green Version]
- Du, P.-X.; Wei, P.; Lou, W.-Y.; Zong, M.-H. Biocatalytic anti-Prelog reduction of prochiral ketones with whole cells of Acetobacter pasteurianus GIM1.158. Microb. Cell Factories 2014, 13, 84. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Ye, L.; Guo, F.; Yang, X.; Yu, H. Biocatalytic anti-Prelog reduction of prochiral ketones with whole cells of a newly isolated strain Empedobacter brevis ZJUY-1401. J. Mol. Catal. B Enzym. 2015, 117, 31–37. [Google Scholar] [CrossRef]
- Prelog, V. Specification of the stereospecificity of some oxido-reductases by diamond lattice sections. Pure Appl. Chem. 1964, 9, 119–130. [Google Scholar] [CrossRef]
- Garzón-Posse, F.; Becerra-Figueroa, L.; Hernández-Arias, J.; Gamba-Sánchez, D. Whole Cells as Biocatalysts in Organic Transformations. Molecules 2018, 23, 1265. [Google Scholar] [CrossRef] [Green Version]
- Kazlauskas, R.; Weissfloch, A.N.E.; Rappaport, A.T.; Cuccia, L.A. A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa. J. Org. Chem. 1991, 56, 2656–2665. [Google Scholar] [CrossRef]
- Melais, N.; Aribi-Zouioueche, L.; Riant, O. The effect of the migrating group structure on enantioselectivity in lipase-catalyzed kinetic resolution of 1-phenylethanol. Comptes Rendus Chim. 2016, 19, 971–977. [Google Scholar] [CrossRef]
- Gandomkar, S.; Jost, E.; Loidolt, D.; Swoboda, A.; Pickl, M.; Elaily, W.; Daniel, B.; Fraaije, M.W.; Macheroux, P.; Kroutil, W. Biocatalytic Enantioselective Oxidation of Sec -Allylic Alcohols with Flavin-Dependent Oxidases. Adv. Synth. Catal. 2019, 361, 5264–5271. [Google Scholar] [CrossRef] [Green Version]
- Górak, M.; Żymańczyk-Duda, E. Application of cyanobacteria for chiral phosphonate synthesis. Green Chem. 2015, 17, 4570–4578. [Google Scholar] [CrossRef] [Green Version]
- Serafin-Lewańczuk, M.; Klimek-Ochab, M.; Brzezińska-Rodak, M.; Żymańczyk-Duda, E. Fungal synthesis of chiral phos-phonic synthetic platform—Scope and limitations of the method. Bioorg. Chem. 2018, 77, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Serafin-Lewańczuk, M.; Brzezińska-Rodak, M.; Lubiak-Kozłowska, K.; Majewska, P.; Klimek-Ochab, M.; Olszewski, T.K.; Żymańczyk-Duda, E. Phosphonates enantiomers receiving with fungal enzymatic systems. Microb. Cell Factories 2021, 20, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kozyra, K.; Brzezińska-Rodak, M.; Klimek-Ochab, M.; Żymańczyk-Duda, E. Biocatalyzed kinetic resolution of racemic mixtures of chiral α-aminophosphonic acids. J. Mol. Catal. B Enzym. 2013, 91, 32–36. [Google Scholar] [CrossRef]
- Lubiak-Kozłowska, K.; Brzezińska-Rodak, M.; Klimek-Ochab, M.; Olszewski, T.K.; Serafin-Lewańczuk, M.; Żymańczyk-Duda, E. (S)-Thienyl and (R)-Pirydyl phosphonate Derivatives Synthesized by Stereoselective Resolution of Their Racemic Mixtures With Rhodotorula mucilaginosa (DSM 70403)—Scaling Approaches. Front. Chem. 2020, 8, 589720. [Google Scholar] [CrossRef] [PubMed]
- Klibanov, A.M. Immobilized Enzymes and Cells as Practical Catalysts. Science 1983, 219, 722–727. [Google Scholar] [CrossRef]
- Bilal, M.; Zhao, Y.; Noreen, S.; Shah, S.Z.H.; Bharagava, R.N.; Iqbal, H.M.N. Modifying bio-catalytic properties of enzymes for efficient biocatalysis: A review from immobilization strategies viewpoint. Biocatal. Biotransform. 2019, 37, 159–182. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Van Pelt, S. Enzyme immobilisation in biocatalysis: Why, what and how. Chem. Soc. Rev. 2013, 42, 6223–6235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jesionowski, T.; Zdarta, J.; Krajewska, B. Enzyme immobilization by adsorption: A review. Adsorption 2014, 20, 801–821. [Google Scholar] [CrossRef] [Green Version]
- Qiu, S.; Wang, Y.-J.; Yu, H.; Cheng, F.; Zheng, Y.-G. t-Butyl 6-cyano-(3R,5R)-dihydroxyhexanoate synthesis via asymmetric reduction by immobilized cells of carbonyl reductase and glucose dehydrogenase co-expression E. coli. Process. Biochem. 2019, 80, 43–51. [Google Scholar] [CrossRef]
- Kisukuri, C.M.; Andrade, L.H. Production of chiral compounds using immobilized cells as a source of biocatalysts. Org. Biomol. Chem. 2015, 13, 10086–10107. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.H.; Kim, A.M. An Overview of Techniques in Enzyme Immobilization. Appl. Sci. Converg. Technol. 2017, 26, 157–163. [Google Scholar] [CrossRef]
- Nagaoka, T.; Shiigi, H.; Tokonami, S.; Saimatsu, K. Entrapment of Whole Cell Bacteria into Conducting Polymers. J. Flow Inject. Anal. 2012, 29, 7–10. Available online: https://www.jstage.jst.go.jp/article/jfia/29/1/29_7/pdf/-char/en (accessed on 23 June 2021).
- Kermasha, S.; Gibbs, B.F. Encapsulation in the food industry: A review. Int. J. Food Sci. Nutr. 1999, 50, 213–224. [Google Scholar] [CrossRef]
- Rathore, S.; Desai, P.M.; Liew, C.V.; Chan, L.W.; Heng, P.W.S. Microencapsulation of microbial cells. J. Food Eng. 2013, 116, 369–381. [Google Scholar] [CrossRef]
- Swetha, E.; Vijitha, C.; Veeresham, C. Enantioselective Conversion of Racemic Sotalol to R(-)-Sotalol by Lipase AP6. Indian J. Pharm. Sci. 2018, 80, 676–685. [Google Scholar] [CrossRef]
- Vijitha, C.; Swetha, E.; Veeresham, C. Enantioselective Conversion of Racemic Felodipine to S(-)-Felodipine by Aspergillus niger and Lipase AP6 Enzyme. Adv. Microbiol. 2016, 6, 1062–1074. [Google Scholar] [CrossRef] [Green Version]
- Ettireddy, S.; Chandupatla, V.; Veeresham, C. Enantioselective Resolution of (R,S)-Carvedilol to (S)-(-)-Carvedilol by Biocatalysts. Nat. Prod. Bioprospect. 2017, 7, 171–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, Y.-P.; Xu, S.-Z.; Liu, Z.-Q.; Zheng, Y.-G.; Shen, Y.-C. Enantioselective biocatalytic hydrolysis of (R,S)-mandelonitrile for production of (R)-(−)-mandelic acid by a newly isolated mutant strain. J. Ind. Microbiol. Biotechnol. 2011, 38, 337–345. [Google Scholar] [CrossRef]
- Xue, Y.-P.; Xu, M.; Chen, H.-S.; Liu, Z.-Q.; Wang, Y.-J.; Zheng, Y.-G. A Novel Integrated Bioprocess for Efficient Production of (R)-(−)-Mandelic Acid with ImmobilizedAlcaligenes faecalisZJUTB10. Org. Process. Res. Dev. 2013, 17, 213–220. [Google Scholar] [CrossRef]
- Żymańczyk-Duda, E.; Dunal, N.; Brzezińska-Rodak, M.; Osiewała, A.; Olszewski, T.; Klimek-Ochab, M.; Serafin-Lewańczuk, M. First biological conversion of chiral heterophosphonate derivative—Scaling and paths of conversion discussion. Bioorg. Chem. 2019, 93, 102751. [Google Scholar] [CrossRef]
- Ghaffari-Moghaddam, M.; Eslahi, H.; Aydin, Y.A.; Saloglu, D. Enzymatic processes in alternative reaction media: A mini review. J. Biol. Methods 2015, 2, e25. [Google Scholar] [CrossRef] [Green Version]
- Cuesta, S.M.; Rahman, S.A.; Furnham, N.; Thornton, J.M. The Classification and Evolution of Enzyme Function. Biophys. J. 2015, 109, 1082–1086. [Google Scholar] [CrossRef] [Green Version]
- Lau, P.C.; Grosse, S. The fundamentals and fun of biocatalysis. In Marine Enzymes for Biocatalysis: Sources, Biocatalytic Characteristics and Bioprocesses of Marine Enzymes; Woodhead Publishing Limited: Sawston, UK, 2013. [Google Scholar] [CrossRef]
- Venkataraman, S.; Chadha, A. Biocatalytic deracemisation of aliphatic β-hydroxy esters: Improving the enantioselectivity by optimisation of reaction parameters. J. Ind. Microbiol. Biotechnol. 2015, 42, 173–180. [Google Scholar] [CrossRef]
- Hasegawa, J.; Ogura, M.; Tsuda, S.; Maemoto, S.-I.; Kutsuki, H.; Ohashi, T. High-yield Production of Optically Active 1,2-Diols from the Corresponding Racemates by Microbial Stereoinversion. Agric. Biol. Chem. 1990, 54, 1819–1827. [Google Scholar] [CrossRef] [Green Version]
- Kaliaperumal, T.; Gummadi, S.N.; Chadha, A. Candida parapsilosisATCC 7330 can also deracemise 1-arylethanols. Biocatal. Biotransform. 2011, 29, 262–270. [Google Scholar] [CrossRef]
- Amrutkar, S.M.; Banoth, L.; Banerjee, U.C. One-pot synthesis of (R)-1-(1-naphthyl)ethanol by stereoinversion using Candida parapsilosis. Tetrahedron Lett. 2013, 54, 3274–3277. [Google Scholar] [CrossRef]
- Şahin, E.; Serencam, H.; Dertli, E. Whole cell application of Lactobacillus paracasei BD101 to produce enantiomerically pure (S)-cyclohexyl(phenyl)methanol. Chirality 2019, 31, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Şahin, E. Production of (R )-1-(1,3-benzodioxol-5-yl)ethanol in high enantiomeric purity by Lactobacillus paracasei BD101. Chirality 2018, 30, 189–194. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Zheng, G.; Gao, S. Preparation of the enantiomerically enriched precursor of lamivudine (3TC™) via asymmetric catalysis mediated by Klebsiella oxytoca. Process. Biochem. 2019, 81, 77–84. [Google Scholar] [CrossRef]
- Ramos-Martín, J.; Khiari, O.; Alcántara, A.; Sánchez-Montero, J. Biocatalysis at Extreme Temperatures: Enantioselective Synthesis of both Enantiomers of Mandelic Acid by Transesterification Catalyzed by a Thermophilic Lipase in Ionic Liquids at 120 °C. Catalysts 2020, 10, 1055. [Google Scholar] [CrossRef]
- Sun, J.; Huang, J.; Ding, X.; Wang, P. Efficient Enantioselective Biocatalytic Production of a Chiral Intermediate of Sitagliptin by a Newly Filamentous Fungus Isolate. Appl. Biochem. Biotechnol. 2016, 180, 695–706. [Google Scholar] [CrossRef] [PubMed]
- Şahin, E.; Dertli, E. Highly Enantioselective Production of Chiral Secondary Alcohols with Candida zeylanoides as a New Whole Cell Biocatalyst. Chem. Biodivers. 2017, 14, e1700121. [Google Scholar] [CrossRef] [PubMed]
- Pölloth, B.; Sibi, M.P.; Zipse, H. The Size-Accelerated Kinetic Resolution of Secondary Alcohols. Angew. Chem. Int. Ed. 2021, 60, 774–778. [Google Scholar] [CrossRef]
- Chen, C.-A.; Sih, C.J. Chemoenzymatic Synthesis of Conjugated Linoleic Acid. J. Org. Chem. 1998, 63, 9620–9621. [Google Scholar] [CrossRef]
- Adamczyk, M.; Chen, Y.-Y.; Fishpaugh, J.R.; Gebler, J.C. Lipase mediated diastereoselective hydrolysis of steroidal 3-(O-carboxymethyl) oxime methyl esters. Tetrahedron Asymmetry 1993, 4, 1467–1468. [Google Scholar] [CrossRef]
- Lopes, R.D.O.; Ribeiro, J.B.; Ramos, A.D.S.; Miranda, L.S.; Leal, I.C.R.; Leite, S.G.F.; De Souza, R.O.M.A. Highly enantioselective bioreduction of 4-bromoacetophenone. Tetrahedron Asymmetry 2011, 22, 1763–1766. [Google Scholar] [CrossRef]
- Cao, C.; Matsuda, T. Biocatalysis in Organic Solvents, Supercritical Fluids and Ionic Liquids. In Organic Synthesis Using Biocatalysis; Elsevier: Amsterdam, The Netherlands, 2016; pp. 67–97. [Google Scholar]
- Yang, Z.; Pan, W. Ionic liquids: Green solvents for nonaqueous biocatalysis. Enzym. Microb. Technol. 2005, 37, 19–28. [Google Scholar] [CrossRef]
- Pätzold, M.; Siebenhaller, S.; Kara, S.; Liese, A.; Syldatk, C.; Holtmann, D. Deep Eutectic Solvents as Efficient Solvents in Biocatalysis. Trends Biotechnol. 2019, 37, 943–959. [Google Scholar] [CrossRef]
- Klibanov, A.M. Improving enzymes by using them in organic solvents. Nat. Cell Biol. 2001, 409, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Laane, C.; Boeren, S.; Vos, K.; Veeger, C. Rules for optimization of biocatalysis in organic solvents. Biotechnol. Bioeng. 1987, 30, 81–87. [Google Scholar] [CrossRef]
- Belafriekh, A.; Secundo, F.; Serra, S.; Djeghaba, Z. Enantioselective enzymatic resolution of racemic alcohols by lipases in green organic solvents. Tetrahedron Asymmetry 2017, 28, 473–478. [Google Scholar] [CrossRef]
- Matsumoto, M.; Sugimoto, T.; Ishiguro, Y.; Yamaguchi, H.; Kondo, K. Effect of organic solvents and ionic liquids on resolution of 2-epoxyhexane by whole cells of Rhodotorula glutinis in a two-liquid phase system. J. Chem. Technol. Biotechnol. 2013, 89, 522–527. [Google Scholar] [CrossRef]
- Peng, F.; Zhao, Y.; Li, F.-Z.; Ou, X.-Y.; Zeng, Y.-J.; Zong, M.-H.; Lou, W.-Y. Highly enantioselective resolution of racemic 1-phenyl-1,2-ethanediol to (S)-1-phenyl-1,2-ethanediol by Kurthia gibsonii SC0312 in a biphasic system. J. Biotechnol. 2020, 308, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Welton, T. Ionic liquids: A brief history. Biophys. Rev. 2018, 10, 691–706. [Google Scholar] [CrossRef] [Green Version]
- Vanda, H.; Dai, Y.; Wilson, E.G.; Verpoorte, R.; Choi, Y.H. Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. Comptes Rendus Chim. 2018, 21, 628–638. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Nakashima, K.; Kamiya, N.; Goto, M. Recent advances of enzymatic reactions in ionic liquids. Biochem. Eng. J. 2010, 48, 295–314. [Google Scholar] [CrossRef]
- Uddin, M.N.; Basak, D.; Hopefl, R.; Minofar, B. Potential Application of Ionic Liquids in Pharmaceutical Dosage Forms for Small Molecule Drug and Vaccine Delivery System. J. Pharm. Pharm. Sci. 2020, 23, 158–176. [Google Scholar] [CrossRef]
- Egorova, K.S.; Gordeev, E.G.; Ananikov, V.P. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chem. Rev. 2017, 117, 7132–7189. [Google Scholar] [CrossRef] [PubMed]
- Greer, A.J.; Jacquemin, J.; Hardacre, C. Industrial Applications of Ionic Liquids. Molecules 2020, 25, 5207. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhou, S.; Zhao, Y.; Xia, J.; Liu, X.; Xu, J.; He, B.; Wu, B.; Zhang, J. Asymmetric whole-cell bioreduction of sterically bulky 2-benzoylpyridine derivatives in aqueous hydrophilic ionic liquid media. Chem. Eng. J. 2017, 316, 919–927. [Google Scholar] [CrossRef]
- Xiao, Z.-J.; Du, P.-X.; Lou, W.-Y.; Wu, H.; Zong, M.-H. Using water-miscible ionic liquids to improve the biocatalytic anti-Prelog asymmetric reduction of prochiral ketones with whole cells of Acetobacter sp. CCTCC M209061. Chem. Eng. Sci. 2012, 84, 695–705. [Google Scholar] [CrossRef]
- Choi, H.J.; Uhm, K.-N.; Kim, H.-K. Production of chiral compound using recombinant Escherichia coli cells co-expressing reductase and glucose dehydrogenase in an ionic liquid/water two phase system. J. Mol. Catal. B Enzym. 2011, 70, 114–118. [Google Scholar] [CrossRef]
- Castiglione, K.; Fu, Y.; Polte, I.; Leupold, S.; Meo, A.; Weuster-Botz, D. Asymmetric whole-cell bioreduction of (R)-carvone by recombinant Escherichia coli with in situ substrate supply and product removal. Biochem. Eng. J. 2017, 117, 102–111. [Google Scholar] [CrossRef]
- Peng, Q.; Wang, X.; Shang, M.; Huang, J.; Guan, G.; Li, Y.; Shi, B. Isolation of a novel alkaline-stable lipase from a metagenomic library and its specific application for milkfat flavor production. Microb. Cell Factories 2014, 13, 1. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Vigier, K.D.O.; Royer, S.; Jerome, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef]
- Bubalo, M.C.; Mazur, M.; Radošević, K.; Redovniković, I.R. Baker’s yeast-mediated asymmetric reduction of ethyl 3-oxobutanoate in deep eutectic solvents. Process. Biochem. 2015, 50, 1788–1792. [Google Scholar] [CrossRef]
- Maugeri, Z.; De María, P.D. Whole-Cell Biocatalysis in Deep-Eutectic-Solvents/Aqueous Mixtures. ChemCatChem 2014, 6, 1535–1537. [Google Scholar] [CrossRef]
- Vitale, P.; Abbinante, V.M.; Perna, F.M.; Salomone, A.; Cardellicchio, C.; Capriati, V. Unveiling the Hidden Performance of Whole Cells in the Asymmetric Bioreduction of Aryl-containing Ketones in Aqueous Deep Eutectic Solvents. Adv. Synth. Catal. 2016, 359, 1049–1057. [Google Scholar] [CrossRef]
- Xu, P.; Xu, Y.; Li, X.-F.; Zhao, B.-Y.; Zong, M.-H.; Lou, W.-Y. Enhancing Asymmetric Reduction of 3-Chloropropiophenone with Immobilized Acetobacter sp. CCTCC M209061 Cells by Using Deep Eutectic Solvents as Cosolvents. ACS Sustain. Chem. Eng. 2015, 3, 718–724. [Google Scholar] [CrossRef]
- Chen, H.; Qian, F.; Lin, H.; Wang, P.; Chen, H.; Chen, W. Using Choline Chloride-Based DESs as Co-Solvent for 3,5-Bis(trifluoromethyl) Acetophenone Bioreduction with Rhodococcus erythropolis XS1012. Catalysts 2019, 10, 30. [Google Scholar] [CrossRef] [Green Version]
- Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural Deep Eutectic Solvents—Solvents for the 21st Century. ACS Sustain. Chem. Eng. 2014, 2, 1063–1071. [Google Scholar] [CrossRef]
- Panić, M.; Elenkov, M.M.; Roje, M.; Bubalo, M.C.; Redovniković, I.R. Plant-mediated stereoselective biotransformations in natural deep eutectic solvents. Process. Biochem. 2018, 66, 133–139. [Google Scholar] [CrossRef]
- Matsuda, T.; Marukado, R.; Mukouyama, M.; Harada, T.; Nakamura, K. Asymmetric reduction of ketones by Geotrichum candidum: Immobilization and application to reactions using supercritical carbon dioxide. Tetrahedron Asymmetry 2008, 19, 2272–2275. [Google Scholar] [CrossRef]
- Brandenbusch, C.; Bühler, B.; Hoffmann, P.; Sadowski, G.; Schmid, A. Efficient phase separation and product recovery in organic-aqueous bioprocessing using supercritical carbon dioxide. Biotechnol. Bioeng. 2010, 107, 642–651. [Google Scholar] [CrossRef]
- Ütkür, F.Ö.; Tran, T.T.; Collins, J.; Brandenbusch, C.; Sadowski, G.; Schmid, A.; Bühler, B. Integrated organic–aqueous biocatalysis and product recovery for quinaldine hydroxylation catalyzed by living recombinant Pseudomonas putida. J. Ind. Microbiol. Biotechnol. 2012, 39, 1049–1059. [Google Scholar] [CrossRef]
- Brandenbusch, C.; Glonke, S.; Collins, J.; Hoffrogge, R.; Grunwald, K.; Bühler, B.; Schmid, A.; Sadowski, G. Process boundaries of irreversible scCO2-assisted phase separation in biphasic whole-cell biocatalysis. Biotechnol. Bioeng. 2015, 112, 2316–2323. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, D.; Yan, Y. Effect of ionic liquids, organic solvents and supercritical CO2 pretreatment on the conformation and catalytic properties of Candida rugosa lipase. J. Mol. Catal. B Enzym. 2013, 90, 123–127. [Google Scholar] [CrossRef]
- Lozano, P.; Bernal, J.M.; Vaultier, M. Towards continuous sustainable processes for enzymatic synthesis of biodiesel in hydrophobic ionic liquids/supercritical carbon dioxide biphasic systems. Fuel 2011, 90, 3461–3467. [Google Scholar] [CrossRef]
- Badgujar, K.; Bhanage, B. Immobilization of lipase on biocompatible co-polymer of polyvinyl alcohol and chitosan for synthesis of laurate compounds in supercritical carbon dioxide using response surface methodology. Process. Biochem. 2015, 50, 1224–1236. [Google Scholar] [CrossRef]
- Badgujar, V.C.; Badgujar, K.C.; Yeole, P.M.; Bhanage, B.M. Enhanced biocatalytic activity of immobilized steapsin lipase in supercritical carbon dioxide for production of biodiesel using waste cooking oil. Bioprocess Biosyst. Eng. 2018, 42, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Gremos, S.; Kekos, D.; Kolisis, F. Supercritical carbon dioxide biocatalysis as a novel and green methodology for the enzymatic acylation of fibrous cellulose in one step. Bioresour. Technol. 2012, 115, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, T. Recent progress in biocatalysis using supercritical carbon dioxide. J. Biosci. Bioeng. 2013, 115, 233–241. [Google Scholar] [CrossRef]
- Dos Santos, V.H.P.; Neto, D.M.C.; Júnior, V.L.; Borges, W.D.S.; Silva, E.D.O. Fungal Biotransformation: An Efficient Approach for Stereoselective Chemical Reactions. Curr. Org. Chem. 2020, 24, 2902–2953. [Google Scholar] [CrossRef]
- Tassano, E.; Hall, M. Enzymatic self-sufficient hydride transfer processes. Chem. Soc. Rev. 2019, 48, 5596–5615. [Google Scholar] [CrossRef]
- Puetz, H.; Puchľová, E.; Vranková, K.; Hollmann, F. Biocatalytic Oxidation of Alcohols. Catalysts 2020, 10, 952. [Google Scholar] [CrossRef]
- Hoyos, P.; Sinisterra, J.-V.; Molinari, F.; Alcántara, A.R.; de María, P.D. Biocatalytic Strategies for the Asymmetric Synthesis of α-Hydroxy Ketones. Acc. Chem. Res. 2010, 43, 288–299. [Google Scholar] [CrossRef]
- Torres, E.; Ayala, M. Biocatalysis by Metalloenzymes. In Comprehensive Inorganic Chemistry II Vol. 6 Homogeneous Catalytic Applications, 2nd ed.; Kenneth, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Chapter 6.24; pp. 685–735. [Google Scholar] [CrossRef]
- Wang, N.; Xu, Y.; Peng, C.; Wang, X.; Wei, Y.; Li, K.; Wang, S.; Xu, A.; Gao, J. Identification of a newly isolated Rhodotorula mucilaginosa NQ1 and its development for the synthesis of bulky carbonyl compounds by whole-cell bioreduction. Lett. Appl. Microbiol. 2021, 72, 399–407. [Google Scholar] [CrossRef]
- Zu, H.; Gu, J.; Zhang, H.; Fan, A.; Nie, Y.; Xu, Y. Highly enantioselective synthesis of (R)-1,3-butanediol via deracemization of the corresponding racemate by a whole-cell stereoinverting cascade system. Microb. Cell Factories 2020, 19, 1–11. [Google Scholar] [CrossRef]
- Rao, D.H.S.; Chatterjee, A.; Padhi, S.K. Biocatalytic approaches for enantio and diastereoselective synthesis of chiral β-nitroalcohols. Org. Biomol. Chem. 2021, 19, 322–337. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, T.; Yamanaka, R.; Nakamura, K. Recent progress in biocatalysis for asymmetric oxidation and reduction. Tetrahedron Asymmetry 2009, 20, 513–557. [Google Scholar] [CrossRef]
- Iwata, H.; Tanaka, R.; Ishiguro, M. Structures of the alkaline hydrolysis products of penem antibiotic, SUN5555. J. Antibiot. 1990, 43, 901–903. [Google Scholar] [CrossRef] [PubMed]
- Żymańczyk-Duda, E.; Brzezińska-Rodak, M.; Klimek-Ochab, M.; Lejczak, B. Application of the Beauveria bassiana Strain for the Enantioselective Oxidation of the Diethyl 1-Hydroxy-1-Phenylmethanephosphonate. Curr. Microbiol. 2011, 62, 1168–1172. [Google Scholar] [CrossRef] [Green Version]
Substrate | Cultivation Condition | Biotransformation Time (h) | Starvation Period (h) | Enantiomeric * Excess (%) |
---|---|---|---|---|
1a | YM (72 h) | 72 | 0 | 33 |
PDB (120 h) | 24 | 0 | 94 | |
PDB (120) | 24 | 24 | 96 | |
PDB2 (120) | 24 | 0 | 39 | |
PDB2 (120) | 24 | 48 | ≥98 | |
PDB2 (120) | 48 | 48 | ≥99 | |
1b | YM (72) | 72 | 0 | 33 |
PDB (72) | 72 | 0 | 32 | |
PDB (120) | 24 | 0 | 92 | |
PDB (120) | 24 | 48 | 95 | |
PDB2 (120) | 24 | 48 | 93 |
Type of Modification | Advantages of the Process | Disadvantages of the Process | Examples of Processes | Ref. |
---|---|---|---|---|
Biocatalyst cultivation under different conditions | Possible activation of different groups of enzymes with the desired activity and enantioselectivity. Starvation conditions may trigger alternative metabolic paths and modes of transport across the cell membrane | Improperly selected conditions can lead to reductions in selectivity and even cell death | Kinetic resolution of racemic aminophosphonate based on oxidase activity preceded by a pre-incubation stage under starvation conditions | [14,15,16,17] |
Kinetic resolution of racemic aminophosphonate based on oxidase activity preceded by cultivation on different media (YM or PDB) | [15] | |||
Immobilization | Stabilization of biocatalyst activity, resistance to the toxicity of the reagents. Possible switch of some enzymes bounded with the cell envelope | Possible decrease in activity; difficulties in mass transport | Enantioselective conversion of racemic substrates with biocatalysts immobilized in calcium alginate | [28,29,30] |
Enantioselective hydrolysis of racemic mandelonitrile with biocatalysts immobilized in alginate biocatalyst | [32] | |||
Enantioselective oxidative deamination with biocatalysts immobilized on polyurethane foam or entrapped in agar–agar | [33] | |||
Reaction parameters | Properly selected, reaction parameters ensure the maximum level of activity of a given group of enzymes. By manipulating the pH or temperature, it is possible to deactivate isoenzymes with a given stereoselectivity that are more sensitive to external factors or force the synthesis of enzymes of a desired activity after a longer incubation time | Possible deactivation of desired enzymes caused by unsuitable factors, such as temperature, pH, and mixing, etc., or the viability of the cells | Deracemization of aliphatic β-ketoesters in pH-optimized procedure | [37] |
Stereoinversion of S-1-(1-naphtyl)ethanol in optimal pH and temperature | [40] | |||
Enantioselective bioreduction of cyclohexyl(phenyl)methanone in optimal pH and agitation conditions | [41,42] | |||
Enantioselective hydrolysis of racemic substrates with optimal pH and temperature | [43] | |||
Asymmetric reduction of acetophenone for the optimal time | [46] | |||
Substrate engineering | Selectivity can be enhanced by modifying the structure to ensure a perfect fit with the enzyme binding pocket | The location of the substituent being in the wrong place may cause a decrease of activity or exclude the possibility of reaction through steric obstacles | Bioreduction of substituted acetophenones | [7,9,50] |
Various solvents as reaction media | Improving the solubility of substrates and the permeability of the cell membrane | Toxic impact on the viable cells; destruction of cellular envelope and lysis | Kinetic resolution of racemic epoxide in a mixture of solvents | [57] |
Selective biooxidation of racemic diol in a biphasic system | [58] | |||
Enantioselective bioreductions in ionic liquids | [65] | |||
Enantioselective bioreduction of aryl ketones with addition of hydrophilic ionic liquids | [9,66] | |||
Bioreduction of different ketones in deep eutectic solvent with water addition | [71,72,73,74,75] | |||
Asymmetric bioreduction in natural deep eutectic solvents mixed with water | [77] | |||
Bioreduction of aromatic ketones in supercritical carbon dioxide | [87] | |||
Chemical additives | Chemical additives affect dehydrogenase activity via the impact on the balance between the oxidized and reduced forms of coenzymes. They can also act as proton acceptors or donors, interfering only with the cellular cofactor regeneration system, or they can affect the redox paths as substrates or intermediates | If the wrong amount is used, the activity of the biocatalyst can be deactivated, mostly as an effect of toxicity or the disruption of cell integrity | Asymmetric bioreduction with glucose as a co-substrate | [93,94] |
Asymmetric bioreduction with ethanol as a co-substrate | [7] | |||
Asymmetric bioreduction with 2-propanol as a co-substrate | [95] | |||
Selective cascade oxidation–reduction system with acetone and glucose as a co-substrates | [94] | |||
Enantioselective oxidative kinetic resolution of hydroxyphosphonate with cyclohexanone as a co-substrate | [98] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raczyńska, A.; Jadczyk, J.; Brzezińska-Rodak, M. Altering the Stereoselectivity of Whole-Cell Biotransformations via the Physicochemical Parameters Impacting the Processes. Catalysts 2021, 11, 781. https://doi.org/10.3390/catal11070781
Raczyńska A, Jadczyk J, Brzezińska-Rodak M. Altering the Stereoselectivity of Whole-Cell Biotransformations via the Physicochemical Parameters Impacting the Processes. Catalysts. 2021; 11(7):781. https://doi.org/10.3390/catal11070781
Chicago/Turabian StyleRaczyńska, Agnieszka, Joanna Jadczyk, and Małgorzata Brzezińska-Rodak. 2021. "Altering the Stereoselectivity of Whole-Cell Biotransformations via the Physicochemical Parameters Impacting the Processes" Catalysts 11, no. 7: 781. https://doi.org/10.3390/catal11070781
APA StyleRaczyńska, A., Jadczyk, J., & Brzezińska-Rodak, M. (2021). Altering the Stereoselectivity of Whole-Cell Biotransformations via the Physicochemical Parameters Impacting the Processes. Catalysts, 11(7), 781. https://doi.org/10.3390/catal11070781