Microwave-Catalyzed Conversion of Phenolic Resin Waste to Activated Carbon and Its Applications for Removing Ammonium from Water
Abstract
:1. Introduction
2. Results and Discussion
2.1. Topography of AC Derived from Phenolic Resin Waste
2.2. Specific Surface Area and Micropore Volume of AC
2.3. AC Surface Functional Groups
2.4. Ammonium Removal from Water with AC
2.5. Discussion of Microwave Effects on Carbonization
3. Materials and Methods
3.1. Materials
3.2. Activation and Measurement of Dielectric Properties
3.3. Experimental Apparatus
3.4. Carbonization Procedures
3.5. Characterization of Prepared AC
3.6. Ammonium Removal with Prepared AC
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Narayan, L. Phenolic Resins Market Share, Size, Trends, Industry Analysis Report; Polaris Market Research: New York, NY, USA, 2020. [Google Scholar]
- The European Parliament and of the Council. Directive (EU) 2018/850 of the European Parliament and of the Council of 30 May 2018 amending Directive 1999/31/EC on the landfill of waste. Off. J. Eur. Union 2018, 150, 100–108. [Google Scholar]
- Ma, Y. Comparison of activated carbons prepared from wheat straw via ZnCl 2 and KOH activation. Waste Biomass Valorization 2017, 8, 549–559. [Google Scholar] [CrossRef]
- Rajak, V.; Kumar, S.; Thombre, N.; Mandal, A. Synthesis of activated charcoal from saw-dust and characterization for adsorptive separation of oil from oil-in-water emulsion. Chem. Eng. Commun. 2018, 205, 897–913. [Google Scholar] [CrossRef]
- Salimova, A.; Liu, F.; Wang, Y.; Wang, S.; Verichev, K. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars. Front. Environ. Sci. Eng. 2020, 14, 1–13. [Google Scholar]
- Nanda, S.; Dalai, A.K.; Berruti, F.; Kozinski, J.A. Biochar as an Exceptional Bioresource for Energy, Agronomy, Carbon Sequestration, Activated Carbon and Specialty Materials. Waste Biomass Valorization 2016, 7, 201–235. [Google Scholar] [CrossRef]
- Spanu, D.; Binda, G.; Dossi, C.; Monticelli, D. Biochar as an alternative sustainable platform for sensing applications: A review. Microchem. J. 2020, 159, 105506. [Google Scholar] [CrossRef]
- Kubota, M.; Hata, A.; Matsuda, H. Preparation of activated carbon from phenolic resin by KOH chemical activation under microwave heating. Carbon 2009, 47, 2805–2811. [Google Scholar] [CrossRef]
- Guo, J.; Lua, A. Surface functional groups on oil-palm-shell adsorbents prepared by H3PO4 and KOH activation and their effects on adsorptive capacity. Chem. Eng. Res. Des. 2003, 81, 585–590. [Google Scholar] [CrossRef]
- Wei, X.-Q.; Li, Q.-H.; Li, H.-C.; Li, H.-J.; Chen, S.-X. The use of ZnCl2 activation to prepare low-cost porous carbons coated on glass fibers using mixtures of Novolac, polyethylene glycol and furfural as carbon precursors. New Carbon Mater. 2015, 30, 579–586. [Google Scholar] [CrossRef]
- Grant, E.; Halstead, B.J. Dielectric parameters relevant to microwave dielectric heating. Chem. Soc. Rev. 1998, 27, 213–224. [Google Scholar]
- Jones, D.A.; Lelyveld, T.; Mavrofidis, S.; Kingman, S.; Miles, N. Microwave heating applications in environmental engineering—A review. Resour. Conserv. Recycl. 2002, 34, 75–90. [Google Scholar] [CrossRef]
- Appleton, T.; Colder, R.; Kingman, S.; Lowndes, I.; Read, A. Microwave technology for energy-efficient processing of waste. Appl. Energy 2005, 81, 85–113. [Google Scholar] [CrossRef]
- Luque, R.; Menendez, J.A.; Arenillas, A.; Cot, J. Microwave-assisted pyrolysis of biomass feedstocks: The way forward? Energy Environ. Sci. 2012, 5, 5481–5488. [Google Scholar] [CrossRef]
- Yahya, M.A.; Al-Qodah, Z.; Ngah, C.Z. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renew. Sustain. Energy Rev. 2015, 46, 218–235. [Google Scholar] [CrossRef]
- Ahmed, M.J. Application of agricultural based activated carbons by microwave and conventional activations for basic dye adsorption. J. Environ. Chem. Eng. 2016, 4, 89–99. [Google Scholar] [CrossRef]
- Ao, W.; Fu, J.; Mao, X.; Kang, Q.; Ran, C.; Liu, Y.; Zhang, H.; Gao, Z.; Li, J.; Liu, G. Microwave assisted preparation of activated carbon from biomass: A review. Renew. Sustain. Energy Rev. 2018, 92, 958–979. [Google Scholar] [CrossRef]
- Dote, Y.; Sekito, T.; Ueda, K.; Sakamoto, R.; Suzuki, T.; Sano, S. Removal of ammonia from aqueous solution for swine wastewater with swine manure compost-based char. Water Pract. Technol. 2015, 10, 409–414. [Google Scholar] [CrossRef]
- Jantarakasem, C.; Kasuga, I.; Kurisu, F.; Furumai, H. Temperature-Dependent Ammonium Removal Capacity of Biological Activated Carbon Used in a Full-Scale Drinking Water Treatment Plant. Environ. Sci. Technol. 2020, 54, 13257–13263. [Google Scholar] [CrossRef] [PubMed]
- Ternero-Hidalgo, J.J.; Rosas, J.M.; Palomo, J.; Valero-Romero, M.J.; Rodríguez-Mirasol, J.; Cordero, T. Functionalization of activated carbons by HNO3 treatment: Influence of phosphorus surface groups. Carbon 2016, 101, 409–419. [Google Scholar] [CrossRef]
- De Souza, L.K.; Wickramaratne, N.P.; Ello, A.S.; Costa, M.J.; da Costa, C.E.; Jaroniec, M. Enhancement of CO2 adsorption on phenolic resin-based mesoporous carbons by KOH activation. Carbon 2013, 65, 334–340. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, C.J.; Vishnyakov, A.; Thommes, M.; Smarsly, B.M.; Kleitz, F.; Neimark, A.V. Cavitation in metastable liquid nitrogen confined to nanoscale pores. Langmuir 2010, 26, 10147–10157. [Google Scholar] [CrossRef]
- Thommes, M. Physical adsorption characterization of nanoporous materials. Chem. Ing. Tech. 2010, 82, 1059–1073. [Google Scholar] [CrossRef]
- Lowell, S.; Shields, J.E. Powder Surface Area and Porosity; Springer Science & Business Media: Berlin, Germany, 2013; Volume 2. [Google Scholar]
- Sing, K.S.; Williams, R.T. Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt. Sci. Technol. 2004, 22, 773–782. [Google Scholar] [CrossRef]
- Chen, R.; Xu, X.; Lu, S.; Zhang, Y.; Lo, S. Pyrolysis study of waste phenolic fibre-reinforced plastic by thermogravimetry/Fourier transform infrared/mass spectrometry analysis. Energy Convers. Manag. 2018, 165, 555–566. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, J.; Wu, S.; Yuan, Z.; Hu, Z.; Wu, R.; Liu, Q. The pyrolysis mechanism of phenol formaldehyde resin. Polym. Degrad. Stab. 2012, 97, 1527–1533. [Google Scholar] [CrossRef]
- Costa, L.; Di Montelera, L.R.; Camino, G.; Weil, E.; Pearce, E. Structure-charring relationship in phenol-formaldehyde type resins. Polym. Degrad. Stab. 1997, 56, 23–35. [Google Scholar] [CrossRef]
- Morterra, C.; Low, M. IR studies of carbons—VII. The pyrolysis of a phenol-formaldehyde resin. Carbon 1985, 23, 525–530. [Google Scholar] [CrossRef]
- Summers, R. Alkaline hydrolysis of cured phenol–formaldehyde resins at high temperatures. J. Polym. Sci. Polym. Chem. Ed. 1978, 16, 1669–1682. [Google Scholar] [CrossRef]
- Clegg, S.L.; Brimblecombe, P. Solubility of ammonia in pure aqueous and multicomponent solutions. J. Phys. Chem. 1989, 93, 7237–7248. [Google Scholar] [CrossRef]
- Zhu, Y.; Kolar, P.; Shah, S.B.; Cheng, J.J.; Lim, P.K. Avocado seed-derived activated carbon for mitigation of aqueous ammonium. Ind. Crop. Prod. 2016, 92, 34–41. [Google Scholar] [CrossRef]
- Takaya, C.; Fletcher, L.; Singh, S.; Anyikude, K.; Ross, A. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere 2016, 145, 518–527. [Google Scholar] [CrossRef]
- Boopathy, R.; Karthikeyan, S.; Mandal, A.B.; Sekaran, G. Adsorption of ammonium ion by coconut shell-activated carbon from aqueous solution: Kinetic, isotherm, and thermodynamic studies. Environ. Sci. Pollut. Res. 2013, 20, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Love, C.; Kolar, P.; Classen, J.; Das, L. Adsorption of ammonia on ozonated activated carbon. Trans. ASABE 2011, 54, 1931–1940. [Google Scholar] [CrossRef]
- Mishra, R.R.; Sharma, A.K. Microwave–material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Compos. Part A Appl. Sci. Manuf. 2016, 81, 78–97. [Google Scholar] [CrossRef]
- Zhekov, S.S.; Franek, O.; Pedersen, G.F. Dielectric Properties of Common Building Materials for Ultrawideband Propagation Studies [Measurements Corner]. IEEE Antennas Propag. Mag. 2020, 62, 72–81. [Google Scholar] [CrossRef]
- Kuan, W.H.; Huang, Y.F.; Chang, C.C.; Lo, S.L. Catalytic pyrolysis of sugarcane bagasse by using microwave heating. Bioresour. Technol. 2013, 146, 324–329. [Google Scholar] [CrossRef]
Specific Surface Area | Pore Volume | |||||
---|---|---|---|---|---|---|
Atotal * (m2/g) | Amicro + (m2/g) | Aexternal # (m2/g) | Vtotal $ (cm3/g) | Vmicro % (cm3/g) | Vmeso † (cm3/g) | |
ACP-MW | 272 | 243 | 29 | 0.17 | 0.12 | 0.05 |
ACP-EH | 595 | 406 | 189 | 0.36 | 0.21 | 0.16 |
ACK-MW | 924 | 793 | 131 | 0.46 | 0.41 | 0.05 |
ACK-EH | 822 | 777 | 46 | 0.41 | 0.40 | 0.01 |
P Content (%) | K Content (%) | ||
---|---|---|---|
ACP-MW | ACP-EH | ACK-MW | ACK-EH |
6.08 | 1.21 | 0.21 | 0.20 |
Dielectric Parameters | Raw Waste Resin | Resin Activated Using H3PO4 | Resin Activated Using KOH |
---|---|---|---|
ε′ * | 1.68 | 7.76 | 2.31 |
ε″ † | 0.00 | 3.75 | 0.14 |
Approximate Analysis (wt %) | Elemental Analysis (wt% on Dry Basis) | BET Specific Surface Area (m2/g) | ||||||
---|---|---|---|---|---|---|---|---|
moisture | ash | volatile | fixed carbon | C | H | O | N | 0.12 |
2.2 | 10.3 | 56.3 | 31.2 | 74.9 | 6.0 | 16.3 | 2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuan, W.-H.; Hu, Y.-S.; Chiu, C.-Y.; Hung, K.-Y.; Chou, S.-S. Microwave-Catalyzed Conversion of Phenolic Resin Waste to Activated Carbon and Its Applications for Removing Ammonium from Water. Catalysts 2021, 11, 783. https://doi.org/10.3390/catal11070783
Kuan W-H, Hu Y-S, Chiu C-Y, Hung K-Y, Chou S-S. Microwave-Catalyzed Conversion of Phenolic Resin Waste to Activated Carbon and Its Applications for Removing Ammonium from Water. Catalysts. 2021; 11(7):783. https://doi.org/10.3390/catal11070783
Chicago/Turabian StyleKuan, Wen-Hui, Yi-Show Hu, Chen-Yi Chiu, Kuo-Yung Hung, and Shan-Shan Chou. 2021. "Microwave-Catalyzed Conversion of Phenolic Resin Waste to Activated Carbon and Its Applications for Removing Ammonium from Water" Catalysts 11, no. 7: 783. https://doi.org/10.3390/catal11070783
APA StyleKuan, W.-H., Hu, Y.-S., Chiu, C.-Y., Hung, K.-Y., & Chou, S.-S. (2021). Microwave-Catalyzed Conversion of Phenolic Resin Waste to Activated Carbon and Its Applications for Removing Ammonium from Water. Catalysts, 11(7), 783. https://doi.org/10.3390/catal11070783