Comparison of Synthetic and Natural Zeolite Catalysts’ Behavior in the Production of Lactic Acid and Ethyl Lactate from Biomass-Derived Dihydroxyacetone
Abstract
1. Introduction
2. Results
2.1. Structural Properties of Zeolite Catalysts
2.2. Porous Structure of Zeolite Catalysts
2.3. Metal Distribution in Zeolite Catalysts
2.4. Catalytic Tests
3. Discussion
3.1. Structure of Metal-Modified Zeolite Catalysts
3.2. Characteristics of Active Sites in Metal-Modified Zeolite Catalysts
3.3. Catalytic Conversion of DHA in the Liquid Phase over Metal-Modified Seolite Catalysts
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pacala, S.; Socolow, R. Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies. Science 2004, 305, 968–972. [Google Scholar] [CrossRef]
- Werpy, T.; Petersen, G.; Aden, A.; Bozell, J.; Holladay, J.; White, J.; Manheim, A. Report No. NREL/TP510–35523. Top Value Added Chemicals from Biomass:Results of Screening for Potential Candidates from Sugars and Synthesis Gas; National Renewable Energy Laboratory: Golden, CO, USA, 2004; Volume 1, pp. 1–77. [Google Scholar]
- Huber, W.; Iborra, S.; Corma, A. Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chem. Rev. 2006, 106, 4044–4098. [Google Scholar] [CrossRef]
- Langan, P.; Gnanakaran, S.; Rector, K.D.; Pawley, N.; Fox, D.T.; Cho, D.W.; Hammel, K.E. Exploring new strategies for cellulosic biofuels production. Energy Environ. Sci. 2011, 4, 3820–3833. [Google Scholar] [CrossRef]
- da Costa Sousa, L.; Chundawat, S.P.S.; Balan, V.; Dale, B.E. Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr. Opin. Biotechnol. 2009, 20, 339–347. [Google Scholar] [CrossRef]
- Himmel, M.E.; Ding, S.Y.; Johnson, D.K.; Adney, W.S.; Nimlos, M.R.; Brady, J.W.; Foust, T.D. Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production. Science 2007, 315, 804–807. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, T. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts. Acc. Chem. Res. 2013, 46, 1377–1386. [Google Scholar] [CrossRef]
- Czekaj, I.; Sobuś, N. Nano-Design of Zeolite-Based Catalysts for Selective Conversion of Biomass into Chemicals; Wydawnictwo PK: Kraków, Poland, 2018; ISBN 978-83-7242-785-4. [Google Scholar]
- Rutkowska, M.; Piwowarska, Z.; Micek, E.; Chmielarz, L. Hierarchical Fe-, Cu- and Co-Beta zeolites obtained by mesotemplate-free method. Part I: Synthesis and catalytic activity in N2O decomposition. Microporous Mesoporous Mater. 2015, 209, 54–65. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, T.; Ding, Y. One-step synthesis of pyruvic acid from glycerol oxidation over Pb promoted Pt/activated carbon catalysts. Chin. J. Catal. 2017, 38, 928–937. [Google Scholar] [CrossRef]
- Dusselier, M.; van Wouwe, P.; Dewaele, A.; Makshina, E.; Sels, B.F. Lactic acid as a platform chemical in the biobased economy: The role of chemocatalysis. Energy Environ. Sci. 2013, 6, 1415–1442. [Google Scholar] [CrossRef]
- Corma, A.; Iborra, S.; Velty, A. Chemical Routes for the Transformation of Biomass into Chemicals. Chem. Rev. 2007, 107, 2411–2502. [Google Scholar] [CrossRef]
- Xu, P.; Qiu, J.H.; Gao, C.; Ma, C.Q. Biotechnological routes to pyruvate production. J. Biosci. Bioeng. 2008, 105, 169–175. [Google Scholar] [CrossRef]
- Yasukawa, T.; Ninomiya, W.; Ooyachi, K.; Aoki, N.; Mae, K. Efficient Oxidative Dehydrogenation of Lactate to Pyruvate Using a Gas−Liquid Micro Flow System. Ind. Eng. Chem. Res. 2011, 50, 3858–3863. [Google Scholar] [CrossRef]
- Dapsens, P.Y.; Kusema, B.T.; Mondelli, C.; Pérez-Ramírez, J. Gallium-modified zeolites for the selective conversion of bio-based dihydroxyacetone into C1–C4 alkyl lactates. J. Molec. Catal. A Chem. 2014, 388–389, 141–147. [Google Scholar] [CrossRef]
- Dapsens, P.Y.; Menart, M.J.; Mondelli, C.; Pérez-Ramírez, J. Production of bio-derived ethyl lactate on GaUSY zeolites prepared by post-synthetic galliation. Green Chem. 2014, 16, 589–593. [Google Scholar] [CrossRef][Green Version]
- Taarning, E.; Saravanamurugan, S.; Spangsberg Holm, M.; Xiong, J.; West, R.M.; Christensen, C.H. Zeolite-Catalyzed Isomerization of Triose Sugars. ChemSusChem. 2009, 2, 625–627. [Google Scholar] [CrossRef]
- Fjermestad, T.; Svelle, S.; Swang, O. Mechanistic Comparison of the Dealumination in SSZ-13 and the Desilication in SAPO-34. J. Phys. Chem. C 2013, 117, 13442–13451. [Google Scholar] [CrossRef]
- Malola, S.; Svelle, S.; Bleken, F.L.; Swang, O. Detailed Reaction Paths for Zeolite Dealumination and Desilication from Density Functional Calculations. Angew. Chem. Int. Ed. 2012, 51, 652–655. [Google Scholar] [CrossRef]
- Pinxt, H.H.C.M.; Kuster, B.F.M.; Marin, G.B. Promoter effects in the Pt-catalysed oxidation of propylene glycol. Appl. Catal. A. 2000, 191, 45–54. [Google Scholar] [CrossRef]
- Tsujino, T.; Ohigashi, S.; Sugiyama, S.; Kawashiro, K.; Hayashi, H. Oxidation of propylene glycol and lactic acid to pyruvic acid in aqueous phase catalyzed by lead-modified palladium-on-carbon and related systems. J. Mol. Catal. 1992, 71, 25–35. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, T.; Ding, Y.J. Oxidative dehydrogenation of lactic acid to pyruvic acid over Pb-Pt bimetallic supported on carbon materials. Appl. Catal. A 2017, 533, 59–65. [Google Scholar] [CrossRef]
- Finogenova, T.V.; Morgunov, I.G.; Kamzolova, S.V.; Chernyavskaya, O.G. Organic Acid Production by the Yeast Yarrowia lipolytica: A Review of Prospects. Appl. Biochem. Microbiol. 2005, 41, 418–425. [Google Scholar] [CrossRef]
- Sugiyama, S.; Kikumoto, T.; Tanaka, H.; Nakagawa, K.; Sotowa, K.I.; Maehara, K.; Himeno, Y.; Ninomiya, W. Enhancement of Catalytic Activity on Pd/C and Te–Pd/C During the Oxidative Dehydrogenation of Sodium Lactate to Pyruvate in an Aqueous Phase Under Pressurized Oxygen. Catal. Lett. 2009, 131, 129–134. [Google Scholar] [CrossRef]
- Ai, M. Catalytic activity of iron phosphate doped with a small amount of molybdenum in the oxidative dehydrogenation of lactic acid to pyruvic acid. Appl. Catal. A 2002, 234, 235–243. [Google Scholar] [CrossRef]
- Sharninghausen, L.S.; Campos, J.; Manas, M.G.; Crabtree, R.H. Efficient selective and atom economic catalytic conversion of glycerol to lactic acid. Nat.Commun. 2014, 5, 5084. [Google Scholar] [CrossRef]
- Shen, Y.H.; Zhang, S.H.; Li, H.J.; Ren, Y.; Liu, H.C. Efficient Synthesis of Lactic Acid by Aerobic Oxidation of Glycerol on Au–Pt/TiO2 Catalysts. Chem. Eur. J. 2010, 16, 7368–7371. [Google Scholar] [CrossRef] [PubMed]
- Purushothaman, R.K.P.; van Haveren, J.; van Es, D.S.; Melián Cabrera, I.; Meeldijk, J.D.; Heeres, H.J. An efficient one pot conversion of glycerol to lactic acid using bimetallic gold-platinum catalysts on a nanocrystalline CeO2 support. Appl. Catal. B 2014, 147, 92–100. [Google Scholar] [CrossRef]
- Roy, D.; Subramaniam, B.; Chaudhari, R.V. Cu-Based Catalysts Show Low Temperature Activity for Glycerol Conversion to Lactic Acid. ACS Catal. 2011, 1, 548–551. [Google Scholar] [CrossRef]
- Hayashi, H.; Sugiyama, S.; Katayama, Y.; Kawashiro, K.; Shigemoto, N. An alloy phase of Pd3Pb and the activity of Pb/Pd/C catalysts in the liquid-phase oxidation of sodium lactate to pyruvate. J. Mol. Catal. 1994, 91, 129–137. [Google Scholar] [CrossRef]
- Chang, C.C.; Cho, H.J.; Wang, Z.; Wang, X.; Fan, W. Fluoride-free synthesis of a Sn-BEA catalyst by dry gel conversion. Green Chem. 2015, 17, 2943–2951. [Google Scholar] [CrossRef]
- Cho, H.J.; Gould, N.S.; Vattipalli, V.; Sabnis, S.; Chaikittisilp, W.; Okubo, T.; Xu, B.; Fan, W. Fabrication of hierarchical Lewis acid Sn-BEA with tunable hydrophobicity for cellulosic sugar isomerization. Microporous Mesoporous Mater. 2019, 278, 387–396. [Google Scholar] [CrossRef]
- Shwan, S.; Jansson, J.; Olsson, L.; Skoglundh, M. Chemical deactivation of Fe-BEA as NH3-SCR catalyst—Effect of phosphorous. Appl. Catal. B Environ. 2014, 147, 111–123. [Google Scholar] [CrossRef]
- Davari, N.; Farhadian, M.; Nazar, A.R.S.; Homayoonfal, M. Degradation of diphenhydramine by the photocatalysts of ZnO/Fe2O3 and TiO2/Fe2O3 based on clinoptilolite: Structural and operational comparison. J. Environ. Chem. Eng. 2017, 5, 5707–5720. [Google Scholar] [CrossRef]
- Wilken, N.; Nedyalkova, R.; Kamasamudram, K.; Li, J.; Currier, N.W.; Vedaiyan, R.; Yezerets, A.; Olsson, L. Investigation of the Effect of Accelerated Hydrothermal Aging on the Cu Sites in a Cu-BEA Catalyst for NH3-SCR Applications. Top Catal. 2013, 56, 317–322. [Google Scholar] [CrossRef]
- Maćkiewicz, E.; Szynkowska, M.I. Oxidation of odorous nitrogen-containing compounds: Ammonia and trimethylamine over Cu/zeolite catalysts. Reac. Kinet Mech. Cat 2014, 111, 763–773. [Google Scholar] [CrossRef]
- Yosefi, L.; Haghighi, M.; Allahyari, S.; Ashkriz, S. The beneficial use of HCl-activated natural zeolite in ultrasound assisted synthesis of Cu/clinoptilolite–CeO2 nanocatalyst used for catalytic oxidation of diluted toluene in air at low temperature. J. Chem. Technol. Biotechnol. 2014, 90, 765–774. [Google Scholar] [CrossRef]
- Meneau, F.; Sankar, G.; Morgante, N.; Cristol, S.; Catlow, C.R.A.; Thomas, J.M.; Greaves, G.N. Characterization of zinc oxide nanoparticles encapsulated into zeolite-Y: An in-situ combined X-ray diffraction, XAFS, and SAXS study. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2003, 199, 499–503. [Google Scholar] [CrossRef]
- Colyer, L.M.; Greaves, G.N.; Carr, S.W.; Fox, K.K. Collapse and Recrystallization Processes in Zinc-Exchanged Zeolite-A: A Combined X-ray Diffraction, XAFS, and NMR Study. J. Phys. Chem. B 1997, 101, 10105–10114. [Google Scholar] [CrossRef]
- Popovych, N.O.; Kyriienko, P.I.; Millot, Y.; Valentin, L.; Gurgul, J.; Socha, R.P.; Żukrowski, J.; Soloviev, S.O.; Dzwigaj, S. Sn-BEA zeolites prepared by two-step postsynthesis method: Physicochemical properties and catalytic activity in processes based on MPV reduction. Microporous Mesoporous Mater. 2018, 268, 178–188. [Google Scholar] [CrossRef]
- Boroń, P.; Chmielarz, L.; Gurgul, J.; Łątka, K.; Gil, B.; Krafft, J.M.; Dzwigaj, S. The influence of the preparation procedures on the catalytic activity of Fe-BEA zeolites in SCR of NO with ammonia and N2O decomposition. Catal. Today 2014, 235, 210–225. [Google Scholar] [CrossRef]
- Urquieta-González, E.A.; Martins, L.; Peguin, R.P.S.; Batista, M.S. Identification of Extra-Framework Species on Fe/ZSM-5 and Cu/ZSM-5 Catalysts Typical Microporous Molecular Sieves with Zeolitic Structure. Mater. Res. 2002, 5, 321–327. [Google Scholar] [CrossRef]
- Aboul-Gheit, A.K.; Ahmed, S.M.; Hanafy, S.A. Exchanged zeolites with transition metals of the first period as photocatalyts for n-hexadecane degradation. J. Mol. Catal. A-Chem. 2008, 288, 52–57. [Google Scholar] [CrossRef]
- Courtney, T.D.; Chang, C.C.; Gorte, R.J.; Lobo, R.F.; Fan, W.; Nikolakis, V. Effect of water treatment on Sn-BEA zeolite: Origin of 960 cm−1 FTIR peak. Microporous Mesoporous Mater. 2015, 210, 69–76. [Google Scholar] [CrossRef]
- Pieterse, J.A.Z.; Pirngruber, G.D.; van Bokhoven, J.A.; Booneveld, S. Hydrothermal stability of Fe-ZSM-5 and Fe-BEA prepared by wet ion-exchange for N2O decomposition. Appl. Catal. B Environ. 2007, 71, 16–22. [Google Scholar] [CrossRef]
- Vimont, A.; Thibault-Starzyk, F.; Lavalley, J.C. Infrared Spectroscopic Study of the Acidobasic Properties of Beta Zeolite. J. Phys. Chem. B 2000, 104, 286–291. [Google Scholar] [CrossRef]
- Isernia, L.F. FTIR study of the relation, between extra-framework aluminum species and the adsorbed molecular water, and its effect on the acidity in ZSM-5 steamed zeolite. Mater. Res. 2013, 4, 792–802. [Google Scholar] [CrossRef]
- Mauvezin, M.; Delahay, G.; Coq, B.; Kieger, S.; Jumas, J.C.; Olivier-Fourcade, J. Identification of Iron Species in Fe−BEA: Influence of the Exchange Level. J. Phys. Chem. B 2001, 105, 928–935. [Google Scholar] [CrossRef]
- Nosuhi, M.; Nezamzadeh-Ejhieh, A. High catalytic activity of Fe(II)-clinoptilolite nanoparticales for indirect voltammetric determination of dichromate: Experimental design by response surface methodology (RSM). Electrochim. Acta 2017, 223, 47–62. [Google Scholar] [CrossRef]
- Amiri, M.; Nezamzadeh-Ejhieh, A. Improvement of the photocatalytic activity of cupric oxide by deposition onto a natural clinoptilolite substrate. Mater. Sci. Semicond. Process. 2015, 31, 501–508. [Google Scholar] [CrossRef]
- Doula, M.K.; Ioannou, A. The effect of electrolyte anion on Cu adsorption–desorption by clinoptilolite. Microporous Mesoporous Mater. 2003, 58, 115–130. [Google Scholar] [CrossRef]
- Nezamzadeh-Ejhieh, A.; Khodabakhshi-Chermahini, F. Incorporated ZnO onto nano clinoptilolite particles as the active centers in the photodegradation of phenylhydrazine. J. Ind. Eng. Chem. 2014, 20, 695–704. [Google Scholar] [CrossRef]
Sample | SBET [m2/g] | Vp total [cm3/g] | Vp micro [cm3/g] |
---|---|---|---|
H-BEA | 515 | 0.51 | 0.16 |
Na-BEA | 447 | 0.60 | 0.14 |
Sn-BEA | 341 | 0.54 | 0.01 |
Fe-BEA | 451 | 0.58 | 0.14 |
Cu-BEA | 422 | 0.54 | 0.14 |
Zn-BEA | 525 | 0.54 | 0.17 |
CLI | 29 | 0.06 | 0.006 |
Sn-CLI | 165 | 0.15 | 0.025 |
Fe-CLI | 58 | 0.11 | 0.007 |
Cu-CLI | 44 | 0.08 | 0.01 |
Zn-CLI | 33 | 0.08 | 0.01 |
Catalyst | XRD | M State | UV-VIS | M State | ATR-FTIR | M State |
---|---|---|---|---|---|---|
Sn-CLI | 2θ = 26.7° | SnO2 | 270 nm | Octahedral tin species | ||
Fe-CLI | 2θ = 33–35° | Fe2O3 | 300 nm; 500 nm | Isolated form of Fe3+; FeOx Oligomers or Fe2O3 nanoparticles | 790–947 cm−1 | Si-O-T skeleton (T = Si, Al, Fe) |
Cu-CLI | 2θ = 35–36°; 2θ = 39–41°; 2θ = 49–50° | Cu+; Cu2+; CuO | 275 nm | Cu2+ | 422, 497 and 600 cm−1 | CuO |
Zn-CLI | 250–280 nm | Isolated ZnO | 475–798 cm−1 | ZnO | ||
Sn-BEA | 2θ = 26.7° and 2θ = 34° | SnO2 | 225 nm | Sn(IV) tetrahedron | 947–948 cm−1 | Form of Sn4+ |
Fe-BEA | 2θ = 33.2° or 35.5° 2θ = 37° | Fe2O3 FeO | 300 nm; 500 nm | Isolated form of Fe3+; FeOx Oligomers or Fe2O3 nanoparticles | 790–947 cm−1 | Si-O-T skeleton (T = Si, Al, Fe) |
Cu-BEA | 2θ = 36°, 50° | CuO | 275 nm | Cu2+ | 948–950 cm−1; 422, 497 and 600 cm−1 | Si-O-T skeleton (T = Si, Al, Cu); CuO |
Zn-BEA | 2θ = 36–38 | ZnO | 250–280 nm | Isolated ZnO | 1550 cm−1 and 1726 cm−1; 475–798 cm−1 | ZnO; |
Catalyst | DHA Conversion [%] | Process Time [h] | Selectivity [%] | LA + EL Yield [%] | PAC Yield [%] | |||||
---|---|---|---|---|---|---|---|---|---|---|
LA | EL | EA | AC | PAC | Others | |||||
CLI | 93.2 | 3 | 17.0 | 5.6 | 5.8 | 4.9 | - | 66.7 | 21.1 | - |
Sn-CLI | 97.7 | 3 | 6.6 | 20.7 | 18.5 | 1.5 | 2.1 | 50.7 | 26.7 | 2.1 |
Fe-CLI | 97.3 | 3 | 13.8 | 4.4 | 30.8 | 2.1 | 10.7 | 38.2 | 17.7 | 10.4 |
Cu-CLI | 95.0 | 3 | 17.1 | 7.9 | 5.0 | 5.1 | 3.9 | 60.9 | 23.8 | 3.7 |
Zn-CLI | 97.0 | 3 | 9.9 | 16.2 | 3.7 | 2.5 | 39.5 | 28.2 | 25.3 | 38.3 |
Na-BEA | 99.8 | 3 | 0.2 | 49.6 | 4.2 | - | 37.7 | 8.3 | 49.7 | 37.6 |
Sn-BEA | 99.7 | 3 | 1.4 | 27.3 | 0.7 | - | 60.6 | 10.1 | 28.6 | 60.4 |
Fe-BEA | 99.2 | 3 | 7.6 | 15.1 | 11.6 | 0.6 | 33.5 | 31.6 | 22.5 | 33.2 |
Cu-BEA | 99.1 | 3 | 1.5 | 36.7 | 2.8 | - | 34.1 | 24.9 | 37.9 | 33.8 |
Zn-BEA | 99.4 | 3 | 1.3 | 32.6 | 2.5 | 0.3 | 39.1 | 24.1 | 33.7 | 38.9 |
Catalyst | DHA Conversion [%] | Time [h] | Selectivity [%] | LA Yield [%] | EL Yield [%] | Carbon Balance [%] | ||||
LA | EL | EA | PAL | |||||||
CLI | 100 | 5 | 40.1 | 59.9 | - | - | 40.1 | 59.9 | 99.0 | |
Sn-CLI | 100 | 5 | 100 | - | - | - | 100 | - | 97.1 | |
Fe-CLI | 100 | 5 | - | - | 100 | - | - | - | 95.0 | |
Cu-CLI | 100 | 5 | - | 83.5 | 16.5 | - | - | 83.5 | 97.9 | |
Zn-CLI | 100 | 5 | 47.6 | 52.4 | - | - | 47.6 | 52.4 | 95.5 | |
Na-BEA | 100 | 5 | 98.7 | - | 1.3 | - | 98.7 | - | 93.5 | |
Sn-BEA | 100 | 5 | 95.9 | - | 4.1 | - | 95.9 | - | 95.2 | |
Fe-BEA | 99.9 | 5 | 30.2 | 7.6 | 53.0 | - | 27.5 | 6.9 | 95.2 | |
Cu-BEA | 100 | 5 | 92.9 | - | 7.1 | - | 92.9 | - | 95.3 | |
Zn-BEA | 100 | 5 | 51.9 | - | 0.6 | 47.5 | 51.9 | - | 95.3 |
Parameters | Unit | |
---|---|---|
Crystal structure | IUPAC | BEA |
BET area | m2/g | 544 |
Na | ppm | 40 |
C | ppm | 30 |
Silicon module | - | 24,7 |
Parameters | Unit | |
---|---|---|
Crystal structure | IUPAC | CLI |
BET area | m2/g | 25 |
Al | [%] | 5–14 |
Si | [%] | 23–32 |
K | [%] | 2–14 |
Ca | [%] | 1–2.5 |
Fe | [%] | 0.01–1.5 |
O | [%] | 40–50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobuś, N.; Czekaj, I. Comparison of Synthetic and Natural Zeolite Catalysts’ Behavior in the Production of Lactic Acid and Ethyl Lactate from Biomass-Derived Dihydroxyacetone. Catalysts 2021, 11, 1006. https://doi.org/10.3390/catal11081006
Sobuś N, Czekaj I. Comparison of Synthetic and Natural Zeolite Catalysts’ Behavior in the Production of Lactic Acid and Ethyl Lactate from Biomass-Derived Dihydroxyacetone. Catalysts. 2021; 11(8):1006. https://doi.org/10.3390/catal11081006
Chicago/Turabian StyleSobuś, Natalia, and Izabela Czekaj. 2021. "Comparison of Synthetic and Natural Zeolite Catalysts’ Behavior in the Production of Lactic Acid and Ethyl Lactate from Biomass-Derived Dihydroxyacetone" Catalysts 11, no. 8: 1006. https://doi.org/10.3390/catal11081006
APA StyleSobuś, N., & Czekaj, I. (2021). Comparison of Synthetic and Natural Zeolite Catalysts’ Behavior in the Production of Lactic Acid and Ethyl Lactate from Biomass-Derived Dihydroxyacetone. Catalysts, 11(8), 1006. https://doi.org/10.3390/catal11081006