Improved Sulfur Resistance of COMMERCIAl V2O5-WO3/TiO2 SCR Catalyst Modified by Ce and Cu
Abstract
:1. Introduction
2. Results and Discussion
2.1. NOx Conversion
2.2. Structure Investigation
2.3. Surface Analysis by XPS
2.4. Redox Property
2.5. Surface Acidity and NO Adsorption
2.6. Reaction between Ammonia and Adsorbed Nitrogen Oxides Species
2.7. Possible Mechanism of Ce- and Cu-Promoting Effects on S-Poisoned Commercial Catalyst
3. Experimental
3.1. Catalyst Preparation
3.2. NH3-SCR Activity Test
3.3. Catalyst Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Radojevic, M. Reduction of nitrogen oxides in flue gases. Environ. Pollut. 1998, 102, 685–689. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, S.; Pantaleo, G.; Liotta, L.F. WO3–V2O5 Active Oxides for NOx SCR by NH3: Preparation Methods, Catalysts’ Composition, and Deactivation Mechanism—A Review. Catalysts 2019, 9, 527. [Google Scholar] [CrossRef] [Green Version]
- Topsoe, N.; Dumesic, J.; Topsoe, H. Vanadia-Titania Catalysts for Selective Catalytic Reduction of Nitric-Oxide by Ammonia: I.I. Studies of Active Sites and Formulation of Catalytic Cycles. J. Catal. 1995, 151, 241–252. [Google Scholar] [CrossRef]
- Busca, G.; Lietti, L.; Ramis, G.; Berti, F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review. Appl. Catal. B Environ. 1998, 18, 1–36. [Google Scholar] [CrossRef]
- Kwon, D.W.; Park, K.H.; Hong, S.C. Enhancement of SCR activity and SO2 resistance on VOx/TiO2 catalyst by addition of molybdenum. Chem. Eng. J. 2016, 284, 315–324. [Google Scholar] [CrossRef]
- Xu, L.W.; Wang, C.Z.; Chang, H.Z.; Wu, Q.R.; Zhang, T.; Li, J.H. New Insight into SO2 Poisoning and Regeneration of CeO2-WO3/TiO2 and V2O5-WO3/TiO2 Catalysts for Low-Temperature NH3-SCR. Environ. Sci. Technol. 2018, 52, 7064–7071. [Google Scholar] [CrossRef]
- Zheng, Y.; Jensen, A.D.; Johnsson, J.E. Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant. Appl. Catal. B Environ. 2005, 60, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.-J.; Shu, H.; Zhang, Y.-H.; Fan, H.-M.; Zhang, Y.-P.; Yang, L.-J. Formation and decomposition of NH4HSO4 during selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalysts. Fuel Process. Technol. 2016, 150, 141–147. [Google Scholar] [CrossRef]
- Muzio, L.; Bogseth, S.; Himes, R.; Chien, Y.-C.; Dunn-Rankin, D. Ammonium bisulfate formation and reduced load SCR operation. Fuel 2017, 206, 180–189. [Google Scholar] [CrossRef]
- Liu, C.X.; Wang, H.J.; Zhang, Z.Y.; Liu, Q.L. The Latest Research Progress of NH3-SCR in the SO2 Resistance of the Catalyst in Low Temperatures for Selective Catalytic Reduction of NOx. Catalysts 2020, 10, 1034. [Google Scholar] [CrossRef]
- Cheng, K.; Liu, J.; Zhang, T.; Li, J.; Zhao, Z.; Wei, Y.; Jiang, G.; Duan, A. Effect of Ce doping of TiO2 support on NH3-SCR activity over V2O5-WO3/CeO2-TiO2 catalyst. J. Environ. Sci. 2014, 26, 2106–2113. [Google Scholar] [CrossRef]
- Song, L.; Chao, J.; Fang, Y.; He, H.; Li, J.; Qiu, W.; Zhang, G. Promotion of ceria for decomposition of ammonia bisulfate over V2O5-MoO3/TiO2 catalyst for selective catalytic reduction. Chem. Eng. J. 2016, 303, 275–281. [Google Scholar] [CrossRef]
- Xu, T.; Wu, X.; Gao, Y.; Lin, Q.; Hu, J.; Weng, D. Comparative study on sulfur poisoning of V2O5-Sb2O3/TiO2 and V2O5-WO3/TiO2 monolithic catalysts for low-temperature NH3-SCR. Catal. Commun. 2017, 93, 33–36. [Google Scholar] [CrossRef]
- Li, C.; Shen, M.; Wang, J.; Wang, J.; Zhai, Y. New insights into the promotional mechanism of ceria for activity and ammonium bisulfate resistance over V/WTi catalyst for selective catalytic reduction of NO with NH3. Appl. Catal. A Gen. 2018, 560, 153–164. [Google Scholar] [CrossRef]
- Ye, D.; Qu, R.; Zheng, C.; Cen, K.; Gao, X. Mechanistic investigation of enhanced reactivity of NH4HSO4 and NO on Nb- and Sb-doped VW/Ti SCR catalysts. Appl. Catal. A Gen. 2018, 549, 310–319. [Google Scholar] [CrossRef]
- Kang, T.H.; Youn, S.; Kim, D.H. Improved catalytic performance and resistance to SO2 over V2O5-WO3/TiO2 catalyst physically mixed with Fe2O3 for low-temperature NH3-SCR. Catal. Today 2021, 376, 95–103. [Google Scholar] [CrossRef]
- Liang, Q.; Li, J.; Yue, T. Promotional effect of CeO2 on low-temperature selective catalytic reduction of NO by NH3 over V2O5-WO3/TiO2 catalysts. Environ. Technol. Innov. 2021, 21, 101209. [Google Scholar] [CrossRef]
- Peng, Y.; Li, J.; Shi, W.; Xu, J.; Hao, J. Design Strategies for Development of SCR Catalyst: Improvement of Alkali Poisoning Resistance and Novel Regeneration Method. Environ. Sci. Technol. 2012, 46, 12623–12629. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, S.; Li, J.; Zhu, J.; Ma, L. Novel V2O5-CeO2/TiO2 catalyst with low vanadium loading for the selective catalytic reduction of NOx by NH3. Appl. Catal. B Environ. 2014, 158, 11–19. [Google Scholar] [CrossRef]
- Wang, H.; Wang, B.; Sun, Q.; Li, Y.; Xu, W.Q.; Li, J. New insights into the promotional effects of Cu and Fe over V2O5-WO3/TiO2 NH3-SCR catalysts towards oxidation of Hg0. Catal. Commun. 2017, 100, 169–172. [Google Scholar] [CrossRef]
- Ali, S.; Chen, L.; Yuan, F.; Li, R.; Zhang, T.; Bakhtiar, S.H.; Leng, X.; Niu, X.; Zhu, Y. Synergistic effect between copper and cerium on the performance of Cux-Ce0.5–x-Zr0.5 (x = 0.1–0.5) oxides catalysts for selective catalytic reduction of NO with ammonia. Appl. Catal. B Environ. 2017, 210, 223–234. [Google Scholar] [CrossRef]
- Yan, Q.H.; Chen, S.N.; Zhang, C.; Wang, Q.; Louis, B. Synthesis and catalytic performance of Cu1Mn0.5Ti0.5Ox mixed oxide as low-temperature NH3-SCR catalyst with enhanced SO2 resistance. Appl. Catal. B Environ. 2018, 238, 236–247. [Google Scholar] [CrossRef]
- Liu, H.; Fan, Z.; Sun, C.; Yu, S.; Feng, S.; Chen, W.; Chen, D.; Tang, C.; Gao, F.; Dong, L. Improved activity and significant SO2 tolerance of samarium modified CeO2-TiO2 catalyst for NO selective catalytic reduction with NH3. Appl. Catal. B Environ. 2019, 244, 671–683. [Google Scholar] [CrossRef]
- Xu, T.; Wu, X.; Liu, X.; Cao, L.; Lin, Q.; Weng, D. Effect of barium sulfate modification on the SO2 tolerance of V2O5/TiO2 catalyst for NH3-SCR reaction. J. Environ. Sci. 2017, 57, 110–117. [Google Scholar] [CrossRef]
- Zhu, N.; Shan, W.; Lian, Z.; Zhang, Y.; Liu, K.; He, H. A superior Fe-V-Ti catalyst with high activity and SO2 resistance for the selective catalytic reduction of NOx with NH3. J. Hazard. Mater. 2020, 382, 120970. [Google Scholar] [CrossRef]
- Wang, X.; Du, X.; Liu, S.; Yang, G.; Chen, Y.; Zhang, L.; Tu, X. Understanding the deposition and reaction mechanism of ammonium bisulfate on a vanadia SCR catalyst: A combined DFT and experimental study. Appl. Catal. B Environ. 2020, 260, 118168. [Google Scholar] [CrossRef]
- Francisco, M.; Mastelaro, V.; Nascente, P.; Florentino, A. Activity and Characterization by XPS, HR-TEM, Raman Spectroscopy, and BET Surface Area of CuO-CeO2-TiO2 Catalysts. J. Phys. Chem. B 2001, 105, 10515–10522. [Google Scholar] [CrossRef]
- Stakheev, A.Y.; Shpiro, E.S.; Apijok, J. XPS and XAES Study of TiO2-SiO2 Mixed Oxide System. J. Phys. Chem. 1993, 97, 5668–5672. [Google Scholar] [CrossRef]
- Li, C.; Shen, M.; Yu, T.; Wang, J.; Wang, J.; Zhai, Y. The mechanism of ammonium bisulfate formation and decomposition over V/WTi catalysts for NH3-selective catalytic reduction at various temperatures. Phys. Chem. Chem. Phys. 2017, 19, 15194–15206. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Li, W.; Wang, H.; Chen, J.; Wen, J.; Xu, S.; Tian, X.; Gao, L.; Hou, Z.; Zhang, Q.; et al. Enhanced performance of iron-cerium NO reduction catalysts by sulfuric acid treatment: The synergistic effect of surface acidity and redox capacity. Appl. Catal. A Gen. 2021, 621, 118200. [Google Scholar] [CrossRef]
- Yu, Y.; Miao, J.; He, C.; Chen, J.; Li, C.; Douthwaite, M. The remarkable promotional effect of SO2 on Pb-poisoned V2O5-WO3/TiO2 catalysts: An in-depth experimental and theoretical study. Chem. Eng. J. 2018, 338, 191–201. [Google Scholar] [CrossRef] [Green Version]
- Miao, J.; Yi, X.; Su, Q.; Li, H.; Chen, J.; Wang, J. Poisoning Effects of Phosphorus, Potassium and Lead on V2O5-WO3/TiO2 Catalysts for Selective Catalytic Reduction with NH3. Catalysts 2020, 10, 345. [Google Scholar] [CrossRef] [Green Version]
- Alemany, L.J.; Lietti, L.; Ferlazzo, N.; Forzatti, P.; Busca, G.; Giamello, E.; Bregani, F. Reactivity and Physicochemical Characterization of V2O5-WO3/TiO2 De-NOx Catalysts. J. Catal. 1995, 155, 117–130. [Google Scholar] [CrossRef]
- Qu, R.; Ye, D.; Zheng, C.; Gao, X.; Luo, Z.; Ni, M.; Cen, K. Exploring the role of V2O5 in the reactivity of NH4HSO4 with NO on V2O5/TiO2 SCR catalysts. RSC Adv. 2016, 6, 102436–102443. [Google Scholar] [CrossRef]
- Li, H.; Miao, J.; Su, Q.; Yu, Y.; Chen, Y.; Chen, J.; Wang, J. Improvement in alkali metal resistance of commercial V2O5–WO3/TiO2 SCR catalysts modified by Ce and Cu. J. Mater. Sci. 2019, 54, 14707–14719. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, M.; Tang, F.; Ruan, L.; Yang, H.; Li, N. Effect of Ce doping into V2O5-WO3/TiO2 catalysts on the selective catalytic reduction of NOx by NH3. J. Rare Earths 2017, 35, 1206–1215. [Google Scholar] [CrossRef]
- Xiao, H.; Chen, Y.; Qi, C.; Ru, Y. Effect of Na poisoning catalyst (V2O5–WO3/TiO2) on denitration process and SO3 formation. Appl. Surf. Sci. 2018, 433, 341–348. [Google Scholar] [CrossRef]
- Romeo, M.; Bak, K.; El Fallah, J.; Le Normand, F.; Hilaire, L. XPS Study of the reduction of cerium dioxide. Surf. Interface Anal. 1993, 20, 508–512. [Google Scholar] [CrossRef]
- Beche, E.; Charvin, P.; Perarnau, D.; Abanades, S.; Flamant, G. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf. Interface Anal. 2008, 40, 264–267. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Wu, S.; Zou, W.; Yu, S.; Shao, Y.; Dong, L. Promotional Effect of Ce on Iron-Based Catalysts for Selective Catalytic Reduction of NO with NH3. Catalysts 2016, 6, 112. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Chen, S.; Gao, S.; Zhang, J.; Wang, H.; Wu, Z. Niobium oxide confined by ceria nanotubes as a novel SCR catalyst with excellent resistance to potassium, phosphorus, and lead. Appl. Catal. B Environ. 2018, 231, 299–309. [Google Scholar] [CrossRef]
- Xing, Y.; Zhang, H.; Su, W.; Li, K.; Zhang, J.; Shi, J.; Tian, J.; Wang, J. Mineral-derived catalysts optimized for selective catalytic reduction of NOx with NH3. J. Clean. Prod. 2021, 289, 125756. [Google Scholar] [CrossRef]
- Wang, D.; Luo, J.; Yang, Q.; Yan, J.; Zhang, K.; Zhang, W.; Peng, Y.; Li, J.; Crittenden, J.C. Deactivation Mechanism of Multipoisons in Cement Furnace Flue Gas on Selective Catalytic Reduction Catalysts. Environ. Sci. Technol. 2019, 53, 6937–6944. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, S.; Hu, W.; Zhu, X.; Qu, R.; Wu, W.; Zheng, C.; Gao, X. New insight into alkali resistance and low temperature activation on vanadia-titania catalysts for selective catalytic reduction of NO. Appl. Surf. Sci. 2019, 466, 99–109. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, Y.; Liu, S.; Zheng, C.; Gao, X.; Nova, I.; Tronconi, E. Improvement in activity and alkali resistance of a novel V-Ce(SO4)2/Ti catalyst for selective catalytic reduction of NO with NH3. Appl. Catal. B Environ. 2017, 206, 449–460. [Google Scholar] [CrossRef] [Green Version]
- Ye, D.; Qu, R.; Song, H.; Gao, X.; Luo, Z.; Ni, M.; Cen, K. New insights into the various decomposition and reactivity behaviors of NH4HSO4 with NO on V2O5/TiO2 catalyst surfaces. Chem. Eng. J. 2016, 283, 846–854. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Li, J.; Hao, J. High calcium resistance of CeO2-WO3 SCR catalysts: Structure investigation and deactivation analysis. Chem. Eng. J. 2017, 317, 70–79. [Google Scholar] [CrossRef]
- Arfaoui, J.; Ghorbel, A.; Petitto, C.; Delahay, G. Novel V2O5-CeO2-TiO2-SO42—Nanostructured aerogel catalyst for the low temperature selective catalytic reduction of NO by NH3 in excess O2. Appl. Catal. B Environ. 2018, 224, 264–275. [Google Scholar] [CrossRef]
- Li, L.; Zhang, L.; Ma, K.; Zou, W.; Cao, Y.; Xiong, Y.; Tang, C.; Dong, L. Ultra-low loading of copper modified TiO2/CeO2 catalysts for low-temperature selective catalytic reduction of NO by NH3. Appl. Catal. B Environ. 2017, 207, 366–375. [Google Scholar] [CrossRef]
- Zhao, W.; Dou, S.; Zhang, K.; Wu, L.; Wang, Q.; Shang, D.; Zhong, Q. Promotion effect of S and N co-addition on the catalytic performance of V2O5/TiO2 for NH3-SCR of NOX. Chem. Eng. J. 2019, 364, 401–409. [Google Scholar] [CrossRef]
- Miao, J.; Li, H.; Su, Q.; Yu, Y.; Chen, Y.; Chen, J.; Wang, J. The combined promotive effect of SO2 and HCl on Pb-poisoned commercial NH3-SCR V2O5-WO3/TiO2 catalysts. Catal. Commun. 2019, 125, 118–122. [Google Scholar] [CrossRef]
- Kwon, D.W.; Kim, D.H.; Lee, S.; Kim, J.; Ha, H.P. A dual catalytic strategy by the nature of the functionalization effect as well as active species on vanadium-based catalyst for enhanced low temperature SCR. Appl. Catal. B Environ. 2021, 289, 120032. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, X.; Lin, Q.; Hu, J.; Ran, R.; Weng, D. SO2 promoted V2O5-MoO3/TiO2 catalyst for NH3-SCR of NO at low temperatures. Appl. Catal. A Gen. 2019, 570, 42–50. [Google Scholar] [CrossRef]
- Huang, Q.; Song, L.; He, H.; Qiu, W.; Su, Y. Effects of SO2 Treatment of Commercial Catalysts on Selective Catalytic Reduction of NOx by NH3. Chem. Res. Chin. Universities 2016, 32, 414–417. [Google Scholar] [CrossRef]
- Giraud, F.; Geantet, C.; Guilhaume, N.; Loridant, S.; Gros, S.; Porcheron, L.; Kanniche, M.; Bianchi, D. Experimental Microkinetic Approach of De-NOx by NH3 on V2O5/WO3/TiO2 Catalysts. 2. Impact of Superficial Sulfate and/or VxOy Groups on the Heats of Adsorption of Adsorbed NH3 Species. J. Phys. Chem. C 2014, 118, 15677–15692. [Google Scholar] [CrossRef]
- Nova, I.; Lietti, L.; Tronconi, E.; Forzatti, P. Dynamics of SCR reaction over a TiO2-supported vanadia-tungsta commercial catalyst. Catal. Today 2000, 60, 73–82. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, S.; Li, J.; Ma, L. Promoting effect of MoO3 on the NOx reduction by NH3 over CeO2/TiO2 catalyst studied with in situ DRIFTS. Appl. Catal. B Environ. 2014, 144, 90–95. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.; Ge, M. DRIFT Study on Cerium-Tungsten/Titiania Catalyst for Selective Catalytic Reduction of NOx with NH3. Environ. Sci. Technol. 2010, 44., 9590–9596. [Google Scholar] [CrossRef]
- Azambre, B.; Zenboury, L.; Koch, A.; Weber, J.V. Adsorption and Desorption of NOx on Commercial Ceria-Zirconia (CexZr1-xO2) Mixed Oxides: A Combined TGA, TPD-MS, and DRIFTS study. J. Phys. Chem. C 2009, 113, 13287–13299. [Google Scholar] [CrossRef]
- Wang, P.; Gao, S.; Wang, H.; Chen, S.; Chen, X.; Wu, Z. Enhanced dual resistance to alkali metal and phosphate poisoning: Mo modifying vanadium-titanate nanotubes SCR catalyst. Appl. Catal. A Gen. 2018, 561, 68–77. [Google Scholar] [CrossRef]
- Liu, J.; Meeprasert, J.; Namuangruk, S.; Zha, K.; Li, H.; Huang, L.; Maitarad, P.; Shi, L.; Zhang, D. Facet–Activity Relationship of TiO2 in Fe2O3/TiO2 Nanocatalysts for Selective Catalytic Reduction of NO with NH3: In Situ DRIFTs and DFT Studies. J. Phys. Chem. C 2017, 121, 4970–4979. [Google Scholar] [CrossRef]
Sample | BET Surface Area (m2·g−1) | Total Pore Volume (cm3·g−1) | Average Pore Diameter (nm) |
---|---|---|---|
VWTi | 44.1 | 0.23 | 20.7 |
VWCeCuTi | 41.3 | 0.22 | 21.4 |
VWTi-S | 23.7 | 0.14 | 24.3 |
VWCeCuTi-S | 23.5 | 0.15 | 26.2 |
Samples | Step I (wt. %) | Step II (wt. %) | Step III (wt. %) |
---|---|---|---|
VWTi | 0.7 | 0.2 | 0.8 |
VWCeCuTi | 0.5 | 0 | 1.6 |
VWTi-S | 1.7 | 13.6 | 2.3 |
VWCeCuTi-S | 1.7 | 13.9 | 2.6 |
Samples | Atomic Ratio (%) | Atomic Concentration (at%) | ||
---|---|---|---|---|
V5+/(V5+ + V4+) | Oβ/(Oα + Oβ + Oγ) | V | Ce | |
VWTi | 42.2 | 12.1 | 0.5 | / |
VWCeCuTi | 54.1 | 13.1 | 0.6 | 0.2 |
VWTi-S | 58.5 | 22.9 | 0.2 | / |
VWCeCuTi-S | 63.9 | 27.4 | 0.2 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Yi, X.; Miao, J.; Chen, Y.; Chen, J.; Wang, J. Improved Sulfur Resistance of COMMERCIAl V2O5-WO3/TiO2 SCR Catalyst Modified by Ce and Cu. Catalysts 2021, 11, 906. https://doi.org/10.3390/catal11080906
Li H, Yi X, Miao J, Chen Y, Chen J, Wang J. Improved Sulfur Resistance of COMMERCIAl V2O5-WO3/TiO2 SCR Catalyst Modified by Ce and Cu. Catalysts. 2021; 11(8):906. https://doi.org/10.3390/catal11080906
Chicago/Turabian StyleLi, Huirong, Xianfang Yi, Jifa Miao, Yanting Chen, Jinsheng Chen, and Jinxiu Wang. 2021. "Improved Sulfur Resistance of COMMERCIAl V2O5-WO3/TiO2 SCR Catalyst Modified by Ce and Cu" Catalysts 11, no. 8: 906. https://doi.org/10.3390/catal11080906
APA StyleLi, H., Yi, X., Miao, J., Chen, Y., Chen, J., & Wang, J. (2021). Improved Sulfur Resistance of COMMERCIAl V2O5-WO3/TiO2 SCR Catalyst Modified by Ce and Cu. Catalysts, 11(8), 906. https://doi.org/10.3390/catal11080906