Effect of Anions and Cations on Tartrazine Removal by the Zero-Valent Iron/Peroxymonosulfate Process: Efficiency and Major Radicals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Batch Experiments
2.3. Analytical Methods
3. Results and Discussion
3.1. Effect of SO42− on Tartrazine Removal and Major Radicals
3.2. Effect of NO3− on Tartrazine Removal and Major Radicals
3.3. Effect of Cl− on Tartrazine Removal and Major Radicals
3.4. Effect of HCO3− on Tartrazine Removal and Major Radicals
3.5. Effect of Ca2+ on Tartrazine Removal and Major Radicals
3.6. Effect of Cu2+ on Tartrazine Removal and Major Radicals
3.7. Effect of Mg2+ on Tartrazine Removal and Major Radicals
3.8. Effect of Mn2+ on Tartrazine Removal and Major Radicals
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martinez, L.B.; Diza, C.B.; Morelos, C.S. Synergy of electrochemical and ozonation processes in industrial wastewater treatment. Chem. Eng. J. 2014, 165, 71–77. [Google Scholar] [CrossRef]
- Qazi, U.Y.; Iftikhar, R.; Ikhlaq, A.; Riaz, I.; Jaleel, R.; Nusrat, R.; Javaid, R. Application of Fe RGO for the removal of dyes by catalytic ozonation process. Environ. Sci. Pollut. Res. 2022, 22, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Con, Y.Q.; Li, Z.; Zhang, Y.; Wang, Q.; Xu, Q. Synthesis of α-Fe2O3/TiO2 nanotube arrays for photoelectro-Fenton degradation of phenol. Chem. Eng. J. 2012, 191, 356–363. [Google Scholar]
- Chang, M.-C.; Shu, H.-Y.; Yu, H.-H. An integrated technique using zero-valent iron and UV/H2O2 sequential process for complete decolorization and mineralization of C.I. Acid Black 24 wastewater. J. Hazard. Mater. 2006, 138, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zhang, Y.; Zhou, M.; Cai, J.; Tian, Y. Enhanced removal of emerging contaminants using persulfate activated by UV and pre-magnetized Fe0. Chem. Eng. J. 2019, 361, 908–918. [Google Scholar] [CrossRef]
- Masood, Z.; Ikhlaq, A.; Akram, A.; Qazi, U.Y.; Rizvi, O.S.; Javaid, R.; Alazmi, A.; Madkour, M.; Qi, F. Application of Nanocatalysts in Advanced Oxidation Processes for Wastewater Purification: Challenges and Future Prospects. Catalysts 2022, 12, 741. [Google Scholar] [CrossRef]
- Qazi, U.Y.; Javaid, R.; Ikhlaq, A.; Al-Sodani, K.A.A.; Rizvi, O.S.; Alazmi, A.; Asiri, A.M.; Ibn Shamsah, S.M. Synergistically Improved Catalytic Ozonation Process Using Iron-Loaded Activated Carbons for the Removal of Arsenic in Drinking Water. Water 2022, 14, 2406. [Google Scholar] [CrossRef]
- Fang, X.Y.; Wu, Y.; Xu, L.J.; Gan, L. Fast removal of bisphenol A by coconut shell biochar incorporated α-MnO2 composites via peroxymonosulfate activation. J. Water Process Eng. 2022, 49, 103071. [Google Scholar] [CrossRef]
- Qin, W.; Fang, G.; Wang, Y.; Zhou, D. Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles: Key role of superoxide radicals. Chem. Eng. J. 2018, 348, 526–534. [Google Scholar] [CrossRef]
- Segura, Y.; Martínez, F.; Melero, J.A.; Molina, R.; Chand, R.; Bremner, D.H. Enhancement of the advanced Fenton process (Fe0/H2O2) by ultrasound for the mineralization of phenol. Appl. Catal. B Environ. 2012, 113–114, 100–106. [Google Scholar] [CrossRef]
- Ling, C.; Wu, S.; Dong, T.; Dong, H.; Wang, Z.; Pan, Y.; Han, J. Sulfadiazine removal by peroxymonosulfate activation with sulfide-modified microscale zero-valent iron: Major radicals, the role of sulfur species, and particle size effect. J. Hazard. Mater. 2022, 423, 127082. [Google Scholar] [CrossRef]
- Wang, J.; Hasaer, B.; Yang, M.; Liu, R.; Hu, C.; Liu, H.; Qu, J. Anaerobically-digested sludge disintegration by transition metal ions-activated peroxymonosulfate (PMS): Comparison between Co2+, Cu2+, Fe2+ and Mn2+. Sci. Total Environ. 2020, 713, 136530. [Google Scholar] [CrossRef]
- Zhang, H.; Ji, Q.Q.; Lai, L.D.; Yao, G.; Lai, B. Degradation of p-nitrophenol (PNP) in aqueous solution by mFe/Cu-air-PS system. Chin. Chem. Lett. 2019, 30, 1129–1132. [Google Scholar] [CrossRef]
- Huang, W.; Xiao, S.; Zhong, H.; Yan, M.; Yang, X. Activation of persulfates by carbonaceous materials: A review. Chem. Eng. J. 2021, 418, 129297. [Google Scholar] [CrossRef]
- Giannakis, S.; Lin, K.-Y.A.; Ghanbari, F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs). Chem. Eng. J. 2021, 406, 127083. [Google Scholar] [CrossRef]
- Kohantorabi, M.; Moussavi, G.; Giannakis, S. A review of the innovations in metal and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants. Chem. Eng. J. 2021, 411, 127957. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Liu, Y.-L.; He, P.-N.; Zhang, X.; Wang, L.; Gu, H.-T.; Zhang, H.-C.; Ma, J. Further understanding the role of hydroxylamine in transformation of reactive species in Fe(II)/peroxydisulfate system. Chem. Eng. J. 2021, 418, 129464. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Lin, C.; Zhou, Z.; He, M.; Ouyang, W. Catalytic oxidation of contaminants by Fe0 activated peroxymonosulfate process: Fe(IV) involvement, degradation intermediates and toxicity evaluation. Chem. Eng. J. 2020, 382, 123013. [Google Scholar] [CrossRef]
- Cao, J.; Lai, L.; Lai, B.; Yao, G.; Chen, X.; Song, L. Degradation of tetracycline by peroxymonosulfate activated with zero-valent iron: Performance, intermediates, toxicity and mechanism. Chem. Eng. J. 2019, 364, 45–56. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.; Zhao, P.; Zhou, P.; Liu, Y.; Cheng, X.; Wang, J.; Yang, B.; Guo, H. Enhanced kinetic performance of peroxymonosulfate/ZVI system with the addition of copper ions: Reactivity, mechanism, and degradation pathways. J. Hazard. Mater. 2020, 393, 122399. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wang, Q.; Zhou, M.; Cai, J.; Tian, Y.; Zhang, Y. Kinetic and mechanism study of UV/pre-magnetized-Fe0/oxalate for removing sulfamethazine. J. Hazard. Mater. 2020, 398, 122931. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zhao, Q.; Du, J.; Wang, H.; Li, X.; Ren, N. Enhanced removal of sulfadiazine by sulfidated ZVI activated persulfate process: Performance, mechanisms and degradation pathways. Chem. Eng. J. 2020, 388, 124303. [Google Scholar] [CrossRef]
- Pan, Y.W.; Zhou, M.H.; Li, X.; Xu, L.T.; Tang, Z.X.; Liu, M.M. Novel Fenton-like process (pre-magnetized Fe0/H2O2) for efficient degradation of organic pollutants. Sep. Purif. Technol. 2016, 169, 83–92. [Google Scholar] [CrossRef]
- Pan, Y.W.; Zhou, M.H.; Cai, J.J.; Li, X.; Wang, W.; Li, B.; Sheng, X.J.; Tang, Z.X. Significant enhancement in treatment of salty wastewater by pre-magnetization Fe0/H2O2 process. Chem. Eng. J. 2018, 339, 411–423. [Google Scholar] [CrossRef]
- Pan, Y.W.; Zhou, M.H.; Zhang, Y.; Cai, J.J.; Li, B.; Sheng, X.J. Enhanced degradation of Rhodamine B by pre-magnetized Fe0/PS process: Parameters optimization, mechanism and interferences of ions. Sep. Purif. Technol. 2018, 203, 66–74. [Google Scholar] [CrossRef]
- Fan, X.; Guan, X.; Ma, J.; Ai, H. Kinetics and corrosion products of aqueous nitrate reduction by iron powder without reaction conditions control. J. Environ. Sci. 2009, 21, 1028–1035. [Google Scholar] [CrossRef]
- Long, X.; Xiong, Z.; Huang, R.; Yu, Y.; Zhou, P.; Zhang, H.; Yao, G.; Lai, B. Sustainable Fe(III)/Fe(II) cycles triggered by co-catalyst of weak electrical current in Fe(III)/peroxymonosulfate system: Collaboration of radical and non-radical mechanisms. Appl. Catal. B Environ. 2022, 327, 121716. [Google Scholar] [CrossRef]
- Pan, Y.W.; Zhang, Y.; Zhou, M.H.; Cai, J.J.; Tian, Y.S. Enhanced removal of antibiotics from secondary wastewater effluents by novel UV/pre-magnetized Fe0/H2O2 process. Water Res. 2019, 153, 144–159. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, X.; Yan, Y.; Sun, C.; Wu, H.; He, J.; Wang, D. Heterogeneous activation of peroxymonosulfate by different ferromanganese oxides for tetracycline degradation: Structure dependence and catalytic mechanism. Chem. Eng. J. 2018, 348, 263–270. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, W.; Liu, L.; Xu, J.; Jin, T.; Fu, L.; Pan, Y. Effect of Anions and Cations on Tartrazine Removal by the Zero-Valent Iron/Peroxymonosulfate Process: Efficiency and Major Radicals. Catalysts 2022, 12, 1114. https://doi.org/10.3390/catal12101114
You W, Liu L, Xu J, Jin T, Fu L, Pan Y. Effect of Anions and Cations on Tartrazine Removal by the Zero-Valent Iron/Peroxymonosulfate Process: Efficiency and Major Radicals. Catalysts. 2022; 12(10):1114. https://doi.org/10.3390/catal12101114
Chicago/Turabian StyleYou, Wenqi, Liang Liu, Junjie Xu, Tao Jin, Lichun Fu, and Yuwei Pan. 2022. "Effect of Anions and Cations on Tartrazine Removal by the Zero-Valent Iron/Peroxymonosulfate Process: Efficiency and Major Radicals" Catalysts 12, no. 10: 1114. https://doi.org/10.3390/catal12101114
APA StyleYou, W., Liu, L., Xu, J., Jin, T., Fu, L., & Pan, Y. (2022). Effect of Anions and Cations on Tartrazine Removal by the Zero-Valent Iron/Peroxymonosulfate Process: Efficiency and Major Radicals. Catalysts, 12(10), 1114. https://doi.org/10.3390/catal12101114