Preparation of Cex-Mn0.8Fe0.2O2 Catalysts and Its Anti-Sulfur Denitration Performance
Abstract
:1. Introduction
2. Results and Discussion
2.1. CO-SCR and Anti-Sulfur Performance
2.2. Characterization of Cex-MF Catalysts
3. Experimental
3.1. Preparation of Catalysts
3.2. Catalyst Structure and Morphology Characterization
3.3. Characterization of Catalyst Denitration Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, P.; Mei, X.; Shen, B.; Gao, H.; Yao, Y.; Liang, C.; Xu, H. Effects of system parameters and residual ions on the oxidation removal of NO by Fenton method. Environ. Sci. Pollut. Res. 2021, 28, 2959–2971. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, H.; Lv, H.; Zuo, S.; Zhang, Y.; Yao, C. Photo-assisted SCR removal of NO by upconversion CeO2/Pr3+/attapulgite nanocatalyst. Environ. Sci. Pollut. Res. 2019, 26, 12842–12850. [Google Scholar] [CrossRef] [PubMed]
- Shin, B.S.; Lim, S.Y.; Choung, S.J. WO3 and MoO3 addition effect on V2O5/TiO2 as promoters for removal of NOx and SOx from stationary sources. Korean J. Chem. Eng. 1994, 11, 254–260. [Google Scholar] [CrossRef]
- Wu, Y.W.; Zhou, X.Y.; Mi, T.G.; Hu, B.; Liu, J.; Lu, Q. Effect of WO3 and MoO3 doping on the interaction mechanism between arsenic oxide and V2O5-based SCR catalyst: A theoretical account. Mol. Catal. 2020, 499, 111317. [Google Scholar] [CrossRef]
- Oton, L.F.; Oliveira, A.C.; de Araujo, J.C.; Araujo, R.S.; de Sousa, F.F.; Saraiva, G.D.; Campos, A. Selective catalytic reduction of NOx by CO (CO-SCR) over metal-supported nanoparticles dispersed on porous alumina. Adv. Powder Technol. 2020, 31, 464–476. [Google Scholar] [CrossRef]
- Fernandes, S.O.; Javanaud, C.; Aigle, A.; Michotey, V.D.; Guasco, S.; Deborde, J.; Bonin, P.C. Anaerobic nitrification–denitrification mediated by Mn-oxides in meso-tidal sediments: Implications for N2 and N2O production. J. Mar. Syst. 2015, 39, 325–331. [Google Scholar] [CrossRef]
- Yoosefan, F.; Ashrafi, A.; Vaghefi, S.M. Characterization of Co-Cr-Fe-Mn-Ni High-Entropy Alloy Thin Films Synthesized by Pulse Electrodeposition: Part 2: Effect of Pulse Electrodeposition Parameters on the Wettability and Corrosion Resistance. Met. Mater. Int. 2021, 27, 106–117. [Google Scholar] [CrossRef]
- Cao, C.; Yang, H.; Xiao, J.; Yang, X.; Ren, B.; Xu, L.; Li, X. Catalytic diesel soot elimination over potassium promoted transition metal oxide (Co/Mn/Fe) nanosheets monolithic catalysts. Fuel 2021, 305, 121446. [Google Scholar] [CrossRef]
- Yang, F.; Jiang, L.-X.; Yu, X.-Y.; Liu, F.Y.; Lai, Y.Q.; Jie, L.I. Catalytic effects of NH4+ on hydrogen evolution and manganese electrodeposition on stainless steel. Trans. Nonferrous Met. Soc. China 2019, 29, 2430–2439. [Google Scholar] [CrossRef]
- Wang, K.L.; Wang, X.H.; Liu, Z.S. Low-temperature NH3-SCR denitrification Performance of Mn-Fe-Ce/Al2O3/Cordierite Monolithic Catalyst. Contemp. Chem. Ind. 2015, 44, 2057–2060. [Google Scholar]
- Zhao, S.C.; Liu, L.Z.; Wang, J.Q. Effects of Fe, Ce and Cu on low temperature denitrification and sulfur resistance of Mn/AC catalysts. Appl. Chem. Ind. 2019, 25, 246–252. [Google Scholar]
- Tian, J.; Zhang, K.; Wang, W.; Wang, F.; Dan, J.; Yang, S.; Yu, F. Enhanced selective catalytic reduction of NO with NH3 via porous micro-spherical aggregates of Mn-Ce-Fe-Ti mixed oxide nanoparticles. Green Energy Environ. 2019, 4, 311–321. [Google Scholar] [CrossRef]
- Chong, L.; Wu, S.-S.; Lu, S.-L.; Wu, H.B.; Chen, H.X. Influence of high pressure and manganese addition on Fe-rich phases and mechanical properties of hypereutectic Al−Si alloy with rheo-squeeze casting. Trans. Nonferrous Met. Soc. China 2019, 29, 253–262. [Google Scholar]
- Yang, X.; Wang, X.-F.; Qiao, X.-L.; Jin, Y.; Fan, B. Effect of hydrothermal aging treatment on decomposition of NO by Cu-ZSM-5 and modified mechanism of doping Ce against this influence. Materials 2020, 13, 888. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Yang, J.; Zhang, T.; Jiang, L.; Long, H.; Guo, F.; Kong, M. Role of cerium in improving NO reduction with NH3 over Mn-Ce/ASC catalyst in low-temperature flue gas. Chem. Eng. Res. Des. Trans. Inst. Chem. Eng. 2018, 133, 1–10. [Google Scholar] [CrossRef]
- Ma, L.; Ma, C.; Xie, T.; Cao, L.; Yang, J. The SO2 resisting Pd-doped Pr1-xCexMnO3 perovskites for efficient denitration at low temperature. Chem. Asian J. 2021, 16, 1002–1008. [Google Scholar] [CrossRef]
- Fang, Q.; Zhu, B.; Sun, Y.; Song, W.; Xu, M. Effects of Mn, Fe, and Ce doping on the adsorption property of gas molecules and oxidation of SO2 on the NiO (100) surface. Comput. Mater. Sci. 2020, 180, 109717. [Google Scholar] [CrossRef]
- Lei, Z.; Hao, S.; Yang, J.; Zhang, L.; Fang, B.; Wei, K.; Wei, C. Study on denitration and sulfur removal performance of Mn-Ce supported fly ash catalyst. Chemosphere 2020, 270, 128646. [Google Scholar] [CrossRef]
- Alam, M.M.; Rahman, M.M.; Uddin, M.T.; Asiri, A.M.; Uddin, J.; Islam, M.A. Fabrication of enzyme-less folic acid sensor probe based on facile ternary doped Fe2O3/NiO/Mn2O3 nanoparticles. Curr. Res. Biotechnol. 2020, 2, 176–186. [Google Scholar] [CrossRef]
- Gong, L. Selective External Oxidation of Fe-Mn (1 wt.%) Binary Alloys during Continuous Annealing. Ph.D. Thesis, Université Paris-Saclay, Bures-sur-Yvette, France, 2020; pp. 16–18. [Google Scholar]
- Watanabe, S.; Ma, X.; Song, C. Adsorptive desulfurization of jet fuels over TiO2-CeO2 mixed oxides: Role of surface Ti and Ce cations. Catal. Today 2020, 371, 265–275. [Google Scholar] [CrossRef]
- Wu, D.L.; Tschamber, V.; Limousy, L.; Michelin, L.; Westermann, A.; Azambre, B.; Garin, F. Combined Fixed-Bed Reactor and In Situ DRIFTS Tests of NO Adsorption on a NOx Storage-Reduction System Catalyst. Chem. Eng. Technol. 2014, 37, 204–212. [Google Scholar] [CrossRef]
- Visuvamithiran, P.; Shanthi, K.; Palanichamy, M.; Murugesan, V. Direct synthesis of Mn-Ti-SBA-15 catalyst for the oxidation of ethylbenzene. Catal. Sci. Technol. 2013, 3, 2340–2348. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, H.; Shi, C.; Duan, L.; Li, J.; Zhang, G.; You, Y. Novel Fe-Ce-O mixed metal oxides catalyst prepared by hydrothermal method for Hg 0 oxidation in the presence of NH3. Catal. Commun. 2017, 100, 210–213. [Google Scholar] [CrossRef]
- Peralta, M.A.; Milt, V.G.; Cornaglia, L.M.; Querini, C.A. Stability of Ba, K/CeO2 catalyst during diesel soot combustion: Effect of temperature, water, and sulfur dioxide. J. Catal. 2006, 242, 118–130. [Google Scholar] [CrossRef]
- He, H.-B.; Zhang, Y.-L.; Zeng, J.; Zhang, L.; Zheng, Y.-J.; Ma, Y. Preparation of Vx-Mn0.8Fe0.2O2 catalyst and its anti-sulfur denitration performance. Trans. Nonferrous Met. Soc. China 2021, 31, 183–194. (In Chinese) [Google Scholar]
Sample | Specific Surface Area (m2 g−1) | Pore Volume (cm3 g−1) | Average Pore Diameter (nm) |
---|---|---|---|
MF | 49.702 | 0.208 | 10.387 |
Ce0.05-MF | 54.565 | 0.197 | 9.585 |
Ce0.1-MF | 61.169 | 0.189 | 7.778 |
Ce0.2-MF | 68.489 | 0.165 | 7.125 |
Ce0.4-MF | 77.543 | 0.115 | 3.824 |
Sample | Mass Fraction/% | ||||||
---|---|---|---|---|---|---|---|
Mn2+ | Mn3+ | Mn4+ | Ce3+ | Ce4+ | Oβ | Oα | |
MF catalyst | / | 56.5 | 44.5 | / | / | 62.4 | 38.6 |
MF catalyst after anti-sulfur reaction | 27.9 | 36.8 | 35.3 | / | / | 53.4 | 46.6 |
Ce0.2-MF catalyst | / | 48.6 | 51.4 | 24.4 | 75.6 | 66.3 | 33.7 |
Ce0.2-MF catalyst after anti-sulfur reaction | / | 56.7 | 43.3 | 30.9 | 69.1 | 48.6 | 51.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, C.; Wang, Y.; Zhang, L.; Zeng, J.; He, H. Preparation of Cex-Mn0.8Fe0.2O2 Catalysts and Its Anti-Sulfur Denitration Performance. Catalysts 2022, 12, 1141. https://doi.org/10.3390/catal12101141
Zhang Y, Zhang C, Wang Y, Zhang L, Zeng J, He H. Preparation of Cex-Mn0.8Fe0.2O2 Catalysts and Its Anti-Sulfur Denitration Performance. Catalysts. 2022; 12(10):1141. https://doi.org/10.3390/catal12101141
Chicago/Turabian StyleZhang, Yelin, Chao Zhang, Yusi Wang, Li Zhang, Jing Zeng, and Hanbing He. 2022. "Preparation of Cex-Mn0.8Fe0.2O2 Catalysts and Its Anti-Sulfur Denitration Performance" Catalysts 12, no. 10: 1141. https://doi.org/10.3390/catal12101141
APA StyleZhang, Y., Zhang, C., Wang, Y., Zhang, L., Zeng, J., & He, H. (2022). Preparation of Cex-Mn0.8Fe0.2O2 Catalysts and Its Anti-Sulfur Denitration Performance. Catalysts, 12(10), 1141. https://doi.org/10.3390/catal12101141