Catalytically Active Advanced Two-Dimensional Ultrathin Nanomaterials for Sustainable Energy
Abstract
:1. Introduction
2. The Synthesis of 2D Ultrathin Nanomaterials
3. Regulations on Ultrathin Nanomaterials for Energy Catalysis
4. Summary and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 752–7535. [Google Scholar] [CrossRef]
- Hu, H.; Li, Q.; Li, L.Q.; Teng, X.L.; Feng, Z.X.; Zhang, Y.L.; Wu, M.B.; Qiu, J.S. Laser irradiation of electrode materials for energy storage and conversion. Matter 2020, 3, 95–126. [Google Scholar] [CrossRef]
- Kibsgaard, J.; Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 2019, 4, 430–433. [Google Scholar] [CrossRef] [Green Version]
- Prabhu, P.; Jose, V.; Lee, J.M. Heterostructured catalysts for electrocatalytic and photocatalytic carbon dioxide reduction. Adv. Funct. Mater. 2020, 30, 1910768. [Google Scholar] [CrossRef]
- Arico, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.M.; Schalkwijk, W.V. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377. [Google Scholar] [CrossRef]
- Hou, Y.X.; Lv, J.Q.; Quan, W.W.; Lin, Y.B.; Hong, Z.S.; Huang, Y.Y. Strategies for Electrochemically Sustainable H2 Production in Acid. Adv. Sci. 2022, 9, 2104916. [Google Scholar] [CrossRef]
- Li, L.Q.; Tang, C.; Jin, H.Y.; Davey, K.; Qiao., S.-Z. Main-group elements boost electrochemical nitrogen fixation. Chem 2021, 7, 3232–3255. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, G.; Qu, J.H.; Liu, H.J. Disordering the atomic structure of Co(II) oxide via B-doping: An efficient oxygen vacancy introduction approach for high oxygen evolution reaction electrocatalysts. Small 2018, 14, 1802760. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.F.; Zhang, H.; Li, S.; Wang, R.X.; Sun, X.; Zhou, M.; Zhou, J.F.; Lou, X.W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813. [Google Scholar] [CrossRef]
- Chen, F.; Ma, T.Y.; Zhang, T.R.; Zhang, Y.H.; Huang, H.W. Atomic-level charge separation strategies in semiconductor-based photocatalysts. Adv. Mater. 2021, 33, 2005256. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Gao, Y.; Cao, S.Y.; Chen, H.; Yao, Y.; Hou, J.G.; Sun, L.C. Assembly of highly efcient photocatalytic CO2 conversion systems with ultrathin two-dimensional metal–organic framework nanosheets. Appl. Catal. B 2018, 227, 54–60. [Google Scholar] [CrossRef]
- Li, L.Y.; Xia, Y.B.; Zeng, M.Q.; Fu, L. Facet engineering of ultrathin two-dimensional materials. Chem. Soc. Rev. 2022, 51, 7327–7343. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.F.; Gao, S.; Lei, F.C.; Xie, Y. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev. 2015, 44, 623–636. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mao, J.; Meng, X.G.; Yu, L.; Deng, D.H.; Bao, X.H. Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications. Chem. Rev. 2019, 119, 1806–1854. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.W.; Shen, B.J.; Tong, T.; Fu, J.W.; Yu, J.G. 2D/2D Heterojunction of Ultrathin MXene/Bi2WO6 Nanosheets for Improved Photocatalytic CO2 Reduction. Adv. Funct. Mater. 2018, 28, 1800136. [Google Scholar] [CrossRef]
- Huang, N.; Wang, P.; Jiang, D. Covalent organic frameworks: A materials platform for structural and functional designs. Nat. Rev. Mater. 2016, 1, 16068. [Google Scholar] [CrossRef]
- Zhang, J.; Vukmirovic, M.B.; Xu, Y.; Mavrikakis, M.; Adzic, R.R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. Int. Ed. 2005, 44, 2132–2135. [Google Scholar] [CrossRef]
- Sahoo, D.P.; Das, K.K.; Mansingh, S.; Sultana, S.; Parida, K. Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: A review with insights on synthesis. Coord. Chem. Rev. 2022, 469, 214666. [Google Scholar] [CrossRef]
- Han, Q.; Bai, X.; Man, Z.; He, H.; Li, L.; Hu, J.; Alsaedi, A.; Hayat, T.; Yu, Z.; Zhang, W.; et al. Convincing synthesis of atomically thin, single-crystalline InVO4 sheets toward promoting highly selective and efficient solar conversion of CO2 into CO. J. Am. Chem. Soc. 2019, 141, 4209. [Google Scholar] [CrossRef]
- Pandey, M.; Jacobsen, K.W.; Thygesen, K.S. Atomically thin ordered alloys of transition metal dichalcogenides: Stability and band structures. J. Phys. Chem. C 2016, 120, 23024–23029. [Google Scholar] [CrossRef]
- Zhou, J.D.; Zeng, Q.S.; Lv, D.H.; Sun, L.F.; Niu, L.; Fu, W.; Liu, F.C.; Shen, Z.X.; Jin, C.H.; Liu, Z. Controlled Synthesis of High-Quality Monolayered α-In2Se3 via Physical Vapor Deposition. Nano Lett. 2015, 15, 6400–6405. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.Q.; Tao, L.; Chen, Z.F.; Lai, H.J.; Xie, W.G.; Xu, J.B. Defect Etching of Phase-Transition-Assisted CVD-Grown 2H-MoTe2. Small 2021, 17, 2102146. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.L.; Wang, G.Y.; Tang, Y.N.; Tian, H.; Xu, J.P.; Dai, X.Q.; Xu, H.; Jia, J.F.; Ho, W.; Xie, M.H. Quantum Effects and Phase Tuning in Epitaxial Hexagonal and Monoclinic MoTe2 Monolayers. ACS Nano 2017, 11, 3282–3288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, W.; Feng, W.; Zhang, X.; Chen, X.S.; Liu, G.B.; Qiu, Y.F.; Hasan, T.; Tan, P.H.; Hu, P.A. Anisotropic Growth of Nonlayered CdS on MoS2 Monolayer for Functional Vertical Heterostructures. Adv. Funct. Mater. 2016, 26, 2648–2654. [Google Scholar] [CrossRef] [Green Version]
- Lukowski, M.A.; Daniel, A.S.; English, C.R.; Meng, F.; Forticaux, A.; Hamers, R.J.; Jin, S. Highly Active Hydrogen Evolution Catalysis from Metallic WS2 Nanosheets. Energy Environ. Sci. 2014, 7, 2608–2613. [Google Scholar] [CrossRef]
- Yang, S.B.; Gong, Y.J.; Zhang, J.S.; Zhan, L.; Ma, L.L.; Fang, Z.Y.; Vajtai, R.; Wang, X.C.; Ajayan, P.M. Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution Under Visible Light. Adv. Mater. 2013, 25, 2452–2456. [Google Scholar] [CrossRef]
- Zhu, W.S.; Gao, X.; Li, Q.; Li, H.P.; Chao, Y.H.; Li, M.J.; Mahurin, S.M.; Li, H.M.; Zhu, H.Y.; Dai, S. Controlled gas exfoliation of boron nitride into few-layered nanosheets. Angew. Chem. Int. Ed. 2016, 55, 10766–10770. [Google Scholar] [CrossRef]
- Zheng, Y.J.; Zhou, H.X.; Liu, D.; Floudas, G.; Wagner, M.; Koynov, K.; Mezger, M.; Butt, H.J.; Ikeda, T. Supramolecular Thiophene Nanosheets. Angew. Chem. Int. Ed. 2013, 52, 4845–4848. [Google Scholar] [CrossRef]
- Ji, M.X.; Di, J.; Zhao, J.Z.; Chen, C.; Zhang, Y.; Liu, Z.H.; Li, H.P.; Xia, J.X.; He, M.Q.; Li, H.M. Orientated dominating charge separation via crystal facet homojunction inserted into BiOBr for solar-driven CO2 conversion. J. CO2 Util. 2022, 59, 101957. [Google Scholar] [CrossRef]
- Zhou, Y.E.; Zhang, L.Y.; Lin, L.H.; Wygant, B.R.; Liu, Y.; Zhu, Y.; Zheng, Y.B.; Mullins, C.B.; Zhao, Y.; Zhang, X.H.; et al. Highly Efficient Photoelectrochemical Water Splitting from Hierarchical WO3/BiVO4 Nanoporous Sphere Arrays. Nano Lett. 2017, 17, 8012–8017. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.X.; Shao, Y.F.; Nkudede, E.; Liu, Z.H.; Sun, X.; Zhao, J.Z.; Chen, Z.R.; Yin, S.; Li, H.M.; Xia, J.X. Oxygen vacancy triggering the broad-spectrum photocatalysis of bismuth oxyhalide solid solution for ciprofloxacin removal. J. Colloid Interface Sci. 2022, 626, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.R.; He, J.F.; Yao, T.; Sun, Z.H.; Jiang, Y.; Liu, Q.H.; Jiang, S.; Hu, F.C.; Xie, Z.; He, B.; et al. Half-Unit-Cell α-Fe2O3 Semiconductor Nanosheets with Intrinsic and Robust Ferromagnetism. J. Am. Chem. Soc. 2014, 136, 10393–10398. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.G.; Zhang, Y.F.; Lin, M.S.; Long, J.L.; Zhang, Z.Z.; Lin, H.X.; Wu, J.C.S.; Wang, X.X. Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nat. Commun. 2015, 6, 8340. [Google Scholar] [CrossRef] [Green Version]
- Di, J.; Xia, J.X.; Ji, M.X.; Xu, L.; Yin, S.; Chen, Z.G.; Li, H.M. Bidirectional acceleration of carrier separation spatially via N-CQDs/atomically-thin BiOI nanosheets nanojunctions for manipulating active species in a photocatalytic process. J. Mater. Chem. A 2016, 4, 5051–5061. [Google Scholar] [CrossRef]
- Ji, M.X.; Xia, J.X.; Di, J.; Liu, Y.L.; Chen, R.; Chen, Z.G.; Yin, S.; Li, H.M. Graphene-like boron nitride induced accelerated charge transfer for boosting the photocatalytic behavior of Bi4O5I2 towards bisphenol a removal. Chem. Eng. J. 2018, 331, 355–363. [Google Scholar] [CrossRef]
- Wang, B.; Yang, S.Z.; Chen, H.L.; Gao, Q.; Weng, Y.X.; Zhu, W.S.; Liu, G.P.; Zhang, Y.; Ye, Y.Z.; Zhu, H.Y.; et al. Revealing the role of oxygen vacancies in bimetallic PbBiO2Br atomic layers for boosting photocatalytic CO2 conversion. Appl. Catal. B 2020, 277, 119170. [Google Scholar] [CrossRef]
- Di, J.; Chen, C.; Zhu, C.; Song, P.; Xiong, J.; Ji, M.X.; Zhou, J.D.; Fu, Q.D.; Xu, M.Z.; Hao, W.; et al. Bismuth Vacancy-Tuned Bismuth Oxybromide Ultrathin Nanosheets toward Photocatalytic CO2 Reduction. ACS Appl. Mater. Interfaces 2019, 11, 30786–30792. [Google Scholar] [CrossRef]
- Han, S.G.; Ma, D.D.; Zhou, S.H.; Zhang, K.X.; Wei, W.B.; Du, Y.H.; Wu, X.T.; Xu, Q.; Zou, R.Q.; Zhu, Q.L. Fluorine-tuned single-atom catalysts with dense surface Ni-N4 sites on ultrathin carbon nanosheets for efficient CO2 electroreduction. Appl. Catal. B 2021, 283, 119591. [Google Scholar] [CrossRef]
- Zhang, G.G.; Zhang, M.W.; Ye, X.X.; Qiu, X.Q.; Lin, S.; Wang, X.C. Iodine Modified Carbon Nitride Semiconductors as Visible Light Photocatalysts for Hydrogen Evolution. Adv. Mater. 2014, 26, 805–809. [Google Scholar] [CrossRef]
- Liu, Y.W.; Hua, X.M.; Xiao, C.; Zhou, T.F.; Huang, P.C.; Guo, Z.P.; Pan, B.C.; Xie, Y. Heterogeneous Spin States in Ultrathin Nanosheets Induce Subtle Lattice Distortion To Trigger Efficient Hydrogen Evolution. J. Am. Chem. Soc. 2016, 138, 5087–5092. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.X.; Zhang, Z.Y.; Xia, J.X.; Di, J.; Liu, Y.L.; Chen, R.; Yin, S.; Zhang, S.; Li, H.M. Enhanced photocatalytic performance of carbon quantum dots/BiOBr composite and mechanism investigation. Chin. Chem. Lett. 2018, 29, 805–810. [Google Scholar]
- Maeda, K.; Eguchi, M.; Oshima, T. Perovskite oxide nanosheets with tunable band-edge potentials and high photocatalytic hydrogen-evolution activity. Angew. Chem. Int. Ed. 2014, 53, 13164–13168. [Google Scholar] [CrossRef]
- Tang, S.F.; Lu, X.L.; Zhang, C.; Wei, Z.W.; Si, R.; Lu, T.B. Decorating graphdiyne on ultrathin bismuth subcarbonate nanosheets to promote CO2 electroreduction to formate. Sci. Bull. 2021, 66, 1533–1541. [Google Scholar] [CrossRef]
- Zhao, Y.; Tan, X.; Yang, W.F.; Jia, C.; Chen, X.J.; Ren, W.H.; Smith, S.C.; Zhao, C. Surface Reconstruction of Ultrathin Palladium Nanosheets during Electrocatalytic CO2 Reduction. Angew. Chem. Int. Ed. 2020, 59, 21493–21498. [Google Scholar] [CrossRef] [PubMed]
- Si, S.H.; Shou, H.W.; Mao, Y.Y.; Bao, X.L.; Zhai, G.Y.; Song, K.P.; Wang, Z.Y.; Wang, P.; Liu, Y.Y.; Zheng, Z.K.; et al. Low-Coordination Single Au Atoms on Ultrathin ZnIn2S4 Nanosheets for Selective Photocatalytic CO2 Reduction towards CH4. Angew. Chem. Int. Ed 2022, 61, e202209446. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.F.; Zhao, Y.X.; Waterhouse, G.I.N.; Zheng, L.R.; Cao, X.Z.; Teng, F.; Wu, L.Z.; Tung, C.H.; O’Hare, D.; Zhang, T.R. Layered-Double-Hydroxide Nanosheets as Efficient Visible-Light-Driven Photocatalysts for Dinitrogen Fixation. Adv. Mater. 2017, 29, 1703828. [Google Scholar] [CrossRef]
- Cheng, H.; Ding, L.X.; Chen, G.F.; Zhang, L.L.; Xue, J.; Wang, H.H. Molybdenum Carbide Nanodots Enable Efficient Electrocatalytic Nitrogen Fixation under Ambient Conditions. Adv. Mater. 2018, 30, 1803694. [Google Scholar] [CrossRef]
- Wang, X.C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef]
- Jin, H.Y.; Liu, X.; Jiao, Y.; Vasileff, A.; Zheng, Y.; Qiao, S.Z. Constructing tunable dual active sites on two-dimensional C3N4@MoN hybrid for electrocatalytic hydrogen evolution. Nano Energy 2018, 53, 690–697. [Google Scholar] [CrossRef]
- Hou, Y.D.; Laursen, A.B.; Zhang, J.S.; Zhang, G.G.; Zhu, Y.S.; Wang, X.C.; Dahl, S.; Chorkendorff, I. Layered Nanojunctions for Hydrogen-Evolution Catalysis. Angew. Chem. Int. Ed. 2013, 52, 3621–3625. [Google Scholar] [CrossRef]
- Wang, Y.H.; Liu, L.Z.; Ma, T.Y.; Zhang, Y.H.; Huang, H.W. 2D Graphitic Carbon Nitride for Energy Conversion and Storage. Adv. Funct. Mater. 2021, 31, 2102540. [Google Scholar] [CrossRef]
- Tan, X.Q.; Ng, S.F.; Mohamed, A.R.; Ong, W.J. Point-to-face contact heterojunctions: Interfacial design of 0D nanomaterials on 2D g-C3N4 towards photocatalytic energy applications. Carbon Energy 2022, 4. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.W.; Mao, B.G.; Cao, M.H. Controllable selenium vacancy engineering in basal planes of mechanically exfoliated WSe2 monolayer nanosheets for efficient electrocatalytic hydrogen evolution. Chem. Commun. 2016, 52, 14266. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhan, G.M.; Yu, Y.; Zhang, L.Z. Superior visible light hydrogen evolution of Janus bilayer junctions via atomic-level charge flow steering. Nat. Commun. 2016, 7, 11480. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Wang, C.; Zhang, M.; Ji, M. Catalytically Active Advanced Two-Dimensional Ultrathin Nanomaterials for Sustainable Energy. Catalysts 2022, 12, 1167. https://doi.org/10.3390/catal12101167
Liu F, Wang C, Zhang M, Ji M. Catalytically Active Advanced Two-Dimensional Ultrathin Nanomaterials for Sustainable Energy. Catalysts. 2022; 12(10):1167. https://doi.org/10.3390/catal12101167
Chicago/Turabian StyleLiu, FuJie, Chao Wang, Ming Zhang, and Mengxia Ji. 2022. "Catalytically Active Advanced Two-Dimensional Ultrathin Nanomaterials for Sustainable Energy" Catalysts 12, no. 10: 1167. https://doi.org/10.3390/catal12101167
APA StyleLiu, F., Wang, C., Zhang, M., & Ji, M. (2022). Catalytically Active Advanced Two-Dimensional Ultrathin Nanomaterials for Sustainable Energy. Catalysts, 12(10), 1167. https://doi.org/10.3390/catal12101167