A Review on Photocatalytic Glass Ceramics: Fundamentals, Preparation, Performance Enhancement and Future Development
Abstract
:1. Introduction
2. Photocatalytic Glass-Ceramics (PGCs)
2.1. Mechanism of Photocatalysis
2.2. Classification of PGCs
2.2.1. Volume Crystallization
2.2.2. Surface Crystallization
3. Design and Fabrication of Photocatalytic Glass Ceramics (PGCs)
3.1. Transparency
3.2. Controlled Crystallization
3.2.1. Isothermal Treatment
3.2.2. Elemental Particle Precipitation
3.2.3. Powder Sintering, Co-Melting and Frozen Sorbent Processes
3.2.4. Sol-Gel Process
3.2.5. Laser Induced Crystallization Techniques
4. Modification Strategies of PGCs
4.1. Chemical Etching
4.2. Rare Earth Element Doping
4.3. Visible Light Active Photocatalysis
5. Conclusions and Future Prospects
5.1. Conclusions
5.2. Future Prospects
Funding
Conflicts of Interest
References
- Kumar, S.G.; Devi, L.G. Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 2011, 115, 13211–13241. [Google Scholar] [CrossRef]
- Kabra, K.; Chaudhary, R.; Sawhney, R.L. Treatment of Hazardous Organic and Inorganic Compounds. Ind. Eng. Chem. Res. 2004, 43, 7683–7696. [Google Scholar] [CrossRef]
- Mccullagh, C.; Robertson, J.M.C.; Bahnemann, D.W.; Robertson, P.K.J. The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: A review. Res. Chem. Intermed. 2007, 33, 359–375. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zong, R.; Zhao, J.; Zhu, Y. Dramatic Visible Photocatalytic Degradation Performances Due to Synergetic Effect of TiO2 with PANI. Environ. Sci. Technol. 2008, 42, 3803–3807. [Google Scholar] [CrossRef] [PubMed]
- Fu, J. Photocatalytic properties of glass ceramics containing anatase-type TiO2. Mater. Lett. 2012, 68, 419–422. [Google Scholar] [CrossRef]
- Fu, G.; Vary, P.S.; Lin, C.-T. Anatase TiO2 Nanocomposites for Antimicrobial Coatings. J. Phys. Chem. B 2005, 109, 8889–8898. [Google Scholar] [CrossRef] [PubMed]
- Linsebigler, A.L.; Lu, G.; John, T.; Yates, J. Photocatalysis on Ti02 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95, 735–758. [Google Scholar] [CrossRef]
- Huang, H.; Li, X.; Wang, J.; Dong, F.; Chu, P.K.; Zhang, T.; Zhang, Y. Anionic Group Self-Doping as a Promising Strategy: Band-Gap Engineering and Multi-Functional Applications of High-Performance CO32–-Doped Bi2O2CO3. ACS Catal. 2015, 5, 4094–4103. [Google Scholar] [CrossRef]
- Huang, H.; He, Y.; Li, X.; Li, M.; Zeng, C.; Dong, F.; Du, X.; Zhang, T.; Zhang, Y. Bi2O2(OH)(NO3) as a desirable [Bi2O2]2+ layered photocatalyst: Strong intrinsic polarity, rational band structure and {001} active facets co-beneficial for robust photooxidation capability. J. Mater. Chem. A 2015, 3, 24547–24556. [Google Scholar] [CrossRef]
- Huang, H.; Xiao, K.; He, Y.; Zhang, T.; Dong, F.; Du, X.; Zhang, Y. In situ assembly of BiOI@Bi12O17Cl2 p-n junction: Charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI {001} active facets for robust and nonselective photocatalysis. Appl. Catal. B Environ. 2016, 199, 75–86. [Google Scholar] [CrossRef]
- Huang, H.; He, Y.; Lin, Z.; Kang, L.; Zhang, Y. Two Novel Bi-Based Borate Photocatalysts: Crystal Structure, Electronic Structure, Photoelectrochemical Properties, and Photocatalytic Activity under Simulated Solar Light Irradiation. J. Phys. Chem. C 2013, 117, 22986–22994. [Google Scholar] [CrossRef]
- Hama Aziz, K.H. Application of different advanced oxidation processes for the removal of chloroacetic acids using a planar falling film reactor. Chemosphere 2019, 228, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Hama Aziz, K.H.; Omer, K.M.; Mahyar, A.; Miessner, H.; Mueller, S.; Moeller, D. Application of Photocatalytic Falling Film Reactor to Elucidate the Degradation Pathways of Pharmaceutical Diclofenac and Ibuprofen in Aqueous Solutions. Coatings 2019, 9, 465. [Google Scholar] [CrossRef] [Green Version]
- Romero, M.; Rincon, J.S.M. Surface and Bulk Crystallization of Glass-Ceramic in the Na2O-CaO-ZnO-PbO-Fe2O3-Al2O3-SiO2 System Derived from a Goethite Waste. J. Am. Ceram. Soc. 1999, 82, 1313–1317. [Google Scholar] [CrossRef] [Green Version]
- Brow, R.K.; Schmitt, M.L. A survey of energy and environmental applications of glass. J. Eur. Ceram. Soc. 2009, 29, 1193–1201. [Google Scholar] [CrossRef]
- Lebullenger, R.; Chenu, S.; Rocherullé, J.; Merdrignac-Conanec, O.; Cheviré, F.; Tessier, F.; Bouzaza, A.; Brosillon, S. Glass foams for environmental applications. J. Non-Cryst. Solids 2010, 356, 2562–2568. [Google Scholar] [CrossRef]
- Beall, G.H. Design and Properties of Glass-Ceramics. Annu. Rev. Mater. Sci. 1992, 22, 91–119. [Google Scholar] [CrossRef]
- Karpukhina, N.; Hill, R.G.; Law, R.V. Crystallisation in oxide glasses—A tutorial review. Chem. Soc. Rev. 2014, 43, 2174–2186. [Google Scholar] [CrossRef]
- Righini, G.C.; Pablos-Martin, A.D.; Pascual, M.J.; Ferrari, M. Glass-Ceramics: A Class of Nanostructured Materials for Photonics. La Riv. Del Nuovo Cim. 2015, 38, 311–369. [Google Scholar]
- Höland, W.; Beall, G.H. Chapter 3: Microstructure Control. In Glass-Ceramic Technology, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Komatsu, T. Design and control of crystallization in oxide glasses. J. Non-Cryst. Solids 2015, 428, 156–175. [Google Scholar] [CrossRef]
- Zanotto, E.D. A bright future for glass-ceramics. Am. Ceram. Soc. Bull. 2010, 89, 19–27. [Google Scholar]
- Montazerian, M.; Singh, S.P.; Zanotto, E.D. An analysis of glass--ceramic research and commercialization. Am. Ceram. Soc. Bull. 2015, 94, 30–35. [Google Scholar]
- Stookey, S.D. Catalyzed Crystallization of Glass in Theory and Practice. Ind. Eng. Chem. 1959, 51, 805–808. [Google Scholar] [CrossRef]
- Sakamoto, A.; Yamamoto, S. Glass-Ceramics: Engineering Principles and Applications. Int. J. Appl. Glass Sci. 2010, 1, 237–247. [Google Scholar] [CrossRef]
- Beall, G.H.; Pinckney, L.R. Nanophase Glass-Ceramics. J. Am. Ceram. Soc. 2009, 82, 5–16. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, J.; Zhou, S.; Yue, Y.; Qiu, J. Transparent glass-ceramics functionalized by dispersed crystals. Prog. Mater. Sci. 2018, 97, 38–96. [Google Scholar] [CrossRef]
- Casasola, R.; Rincón, J.M.; Romero, M. Glass–ceramic glazes for ceramic tiles: A review. J. Mater. Sci. 2011, 47, 553–582. [Google Scholar] [CrossRef] [Green Version]
- Pinckney, L.R.; Beall, G.H. Microstructural Evolution in Some Silicate Glass–Ceramics: A Review. J. Am. Ceram. Soc. 2008, 91, 773–779. [Google Scholar] [CrossRef]
- Wenderich, K.; Mul, G. Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review. Chem. Rev. 2016, 116, 14587–14619. [Google Scholar] [PubMed]
- Singh, G.; Sharma, M.; Vaish, R. Emerging trends in glass-ceramic photocatalysts. Chem. Eng. J. 2021, 407, 126971. [Google Scholar] [CrossRef]
- Teh, C.M.; Mohamed, A.R. Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review. J. Alloys Compd. 2011, 509, 1648–1660. [Google Scholar] [CrossRef]
- Li Puma, G.; Bono, A.; Krishnaiah, D.; Collin, J.G. Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: A review paper. J. Hazard. Mater. 2008, 157, 209–219. [Google Scholar] [CrossRef]
- Srikanth, B.; Goutham, R.; Badri Narayan, R.; Ramprasath, A.; Gopinath, K.P.; Sankaranarayanan, A.R. Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment. J. Environ. Manag. 2017, 200, 60–78. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Low, J.; Fang, Y.; Xiao, J.; Chen, X. Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 2015, 3, 2485–2534. [Google Scholar]
- Wen, J.; Xie, J.; Chen, X.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123. [Google Scholar] [CrossRef]
- Zanotto, E.D.; Tsuchida, J.E.; Schneider, J.F.; Eckert, H. Thirty-year quest for structure–nucleation relationships in oxide glasses. Int. Mater. Rev. 2015, 60, 376–391. [Google Scholar] [CrossRef]
- Zanotto, E.D. Glass Crystallization Research-A 36-Year Retrospective. Part I, Fundamental Studies. Int. J. Appl. Glass Sci. 2013, 4, 105–116. [Google Scholar] [CrossRef]
- Schmelzer, J.; Möller, J.; Gutzow, I. Ostwald’s Rule of Stages: The Effect of Elastic Strains and External Pressure. Z. Für Phys. Chem. 1998, 204, 171–181. [Google Scholar] [CrossRef]
- Zanotto, E.D.; Müller, E. A simple method to predict the nucleation mechanism in glass. J. Non-Cryst. Solids 1991, 130, 220–221. [Google Scholar] [CrossRef]
- Yazawa, T.; Machida, F.; Oki, K.; Mineshige, A.; Kobune, M. Novel porous TiO2 glass-ceramics with highly photocatalytic ability. Ceram. Int. 2009, 35, 1693–1697. [Google Scholar] [CrossRef]
- Singh, G.; Kumar, S.; Sharma, S.K.; Sharma, M.; Singh, V.P.; Vaish, R. Antibacterial and photocatalytic active transparent TiO2 crystallized CaO–BaO–B2O3–Al2O3–TiO2–ZnO glass nanocomposites. J. Am. Ceram. Soc. 2019, 102, 3378–3390. [Google Scholar] [CrossRef]
- Fu, J. Photocatalytic properties of TiO2–P2O5 glass ceramics. Mater. Res. Bull. 2011, 46, 2523–2526. [Google Scholar] [CrossRef]
- Fu, J. Highly photocatalytic glass ceramics containing MgTi4(PO4)6 crystals. Mater. Lett. 2014, 118, 84–87. [Google Scholar] [CrossRef]
- Margha, F.H.; Badawy, M.I.; Gad-Allah, T.A. ZnO enriched transparent glass-ceramics for wastewater decontamination. Environ. Prog. Sustain. Energy 2017, 36, 442–447. [Google Scholar] [CrossRef]
- Singh, G.; Kumar, S.; Singh, V.P.; Vaish, R. Transparent ZnO crystallized glass ceramics for photocatalytic and antibacterial applications. J. Appl. Phys. 2019, 125, 175102. [Google Scholar] [CrossRef]
- Almeida, E.F.D.; Paiva, J.a.C.D.; Sombra, A.S.B. Infrared and complex dielectric function studies of LiNbO3 in niobate glass-ceramics. J. Mater. Sci. 2000, 35, 1555–1559. [Google Scholar] [CrossRef]
- Senthil Murugan, G.; Varma, K.B.R.; Takahashi, Y.; Komatsu, T. Nonlinear-optic and ferroelectric behavior of lithium borate–strontium bismuth tantalate glass–ceramic composite. Appl. Phys. Lett. 2001, 78, 4019–4021. [Google Scholar] [CrossRef] [Green Version]
- Marghussian, V.K. Nano-Glass Ceramics: Processing, Properties and Applications; Elsevier: Oxford, UK; Waltham, MA, USA, 2015. [Google Scholar]
- Kerker, K. The Scattering of Light; Academic Press: New York, NY, USA, 1969. [Google Scholar]
- Andreev, N.S. Scattering of visible light by glasses undergoing phase separation and homogenization. J. Non-Cryst. Solids 1978, 30, 99–126. [Google Scholar] [CrossRef]
- Hopper, R.W. Stochastic theory of scattering from idealized spinodal structures: II. Scattering in general and for the basic late stage model. J. Non-Cryst. Solids 1985, 70, 111–142. [Google Scholar] [CrossRef]
- Syam Prasad, N.; Varma, K.B.R.; Takahashi, Y.; Benino, Y.; Fujiwara, T.; Komatsu, T. Evolution and characterization of fluorite-like nano-SrBi2Nb2O9 phase in the SrO–Bi2O3–Nb2O5–Li2B4O7 glass system. J. Solid State Chem. 2003, 173, 209–215. [Google Scholar] [CrossRef]
- Molla, A.R.; Tarafder, A.; Karmakar, B. Synthesis and properties of glasses in the K2O–SiO2–Bi2O3–TiO2 system and bismuth titanate (Bi4Ti3O12) nano glass–ceramics thereof. J. Mater. Sci. 2010, 46, 2967–2976. [Google Scholar] [CrossRef]
- Lin, G.; Luo, F.; Pan, H.; Smedskjaer, M.M.; Teng, Y.; Chen, D.; Qiu, J.; Zhao, Q. Universal Preparation of Novel Metal and Semiconductor Nanoparticle–Glass Composites with Excellent Nonlinear Optical Properties. J. Phys. Chem. C 2011, 115, 24598–24604. [Google Scholar] [CrossRef]
- Singh, S.P.; Karmakar, B. Oxidative control of surface plasmon resonance of bismuth nanometal in bismuth glass nanocomposites. Mater. Chem. Phys. 2010, 119, 355–358. [Google Scholar] [CrossRef]
- Masai, H.; Fujiwara, T.; Mori, H.; Komatsu, T. Fabrication of TiO2 nanocrystallized glass. Appl. Phys. Lett. 2007, 90, 081907. [Google Scholar] [CrossRef]
- Haily, E.; Bih, L.; El Bouari, A.; Lahmar, A.; El Marssi, M.; Manoun, B. Structural, optical, and dielectric properties of Bi2O3-K2O-TiO2-P2O5 glasses and related glass-ceramics. Phase Transit. 2020, 93, 1030–1047. [Google Scholar] [CrossRef]
- Holand, W.; Beall, G.H. Chapter 2: Composition Systems for Glass-Ceramics. In Glass Ceramic Technology; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Sharma, S.K.; Singh, V.P.; Chauhan, V.S.; Kushwaha, H.S.; Vaish, R. Photocatalytic self-cleaning transparent 2Bi2O3-B2O3 glass ceramics. J. Appl. Phys. 2017, 122, 094901. [Google Scholar] [CrossRef]
- Singh, V.P.; Kushwaha, H.S.; Vaish, R. Photocatalytic study on SrBi2B2O7 (SrO-Bi2O3-B2O3) transparent glass ceramics. Materials Res. Bull. 2018, 99, 453–459. [Google Scholar] [CrossRef]
- Bertrand, A.; Carreaud, J.; Delaizir, G.; Shimoda, M.; Duclère, J.-R.; Colas, M.; Belleil, M.; Cornette, J.; Hayakawa, T.; Genevois, C.; et al. New Transparent Glass-Ceramics Based on the Crystallization of “Anti-glass” Spherulites in the Bi2O3–Nb2O5–TeO2 System. Cryst. Growth Des. 2015, 15, 5086–5096. [Google Scholar] [CrossRef]
- Deubener, J.; Allix, M.; Davis, M.J.; Duran, A.; Höche, T.; Honma, T.; Komatsu, T.; Krüger, S.; Mitra, I.; Müller, R.; et al. Updated definition of glass-ceramics. J. Non-Cryst. Solids 2018, 501, 3–10. [Google Scholar] [CrossRef]
- Margha, F.H.; Abdel-Wahed, M.S.; Gad-Allah, T.A. Nanocrystalline Bi2O3–B2O3– (MoO3 or V2O5) glass-ceramic systems for organic pollutants degradation. Ceram. Int. 2015, 41, 5670–5676. [Google Scholar] [CrossRef]
- Lee, Y.K.; Lee, J.S.; Heo, J.; Im, W.B.; Chung, W.J. Phosphor in glasses with Pb-free silicate glass powders as robust color-converting materials for white LED applications. Opt. Lett. 2012, 37, 3276–3278. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Liu, W.; Qu, G.; Lu, A.; Han, G. Sintering behavior, microstructure and mechanical properties of various fluorine-containing Y-SiAlON glass-ceramics. J. Non-Cryst. Solids 2014, 388, 62–67. [Google Scholar] [CrossRef]
- Sainz, M.A.; Miranzo, P.; Osendi, M.I. Sintering behaviour and properties of YAlSiO and YAlSiON glass-ceramics. Ceram. Int. 2011, 37, 1485–1492. [Google Scholar] [CrossRef]
- Gajc, M.; Surma, H.B.; Klos, A.; Sadecka, K.; Orlinski, K.; Nikolaenko, A.E.; Zdunek, K.; Pawlak, D.A. Nanoparticle Direct Doping: Novel Method for Manufacturing Three-Dimensional Bulk Plasmonic Nanocomposites. Adv. Funct. Mater. 2013, 23, 3443–3451. [Google Scholar] [CrossRef]
- Karaksina, E.V.; Shiryaev, V.S.; Ketkova, L.A. Preparation of composite materials for fiber optics based on chalcogenide glasses containing ZnS (ZnSe): Cr (2+) crystals. J. Non-Cryst. Solids 2013, 377, 220–224. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, D.; Tian, W.; Ji, Z.; Hintzen, H.T.J.M. Impact of Eu3+ Dopants on Optical Spectroscopy of Ce3+: Y3Al5O12-Embedded Transparent Glass-Ceramics. J. Am. Ceram. Soc. 2015, 98, 2445–2450. [Google Scholar] [CrossRef]
- Huang, J.; Hu, X.; Shen, J.; Wu, D.; Yin, C.; Xiang, R.; Yang, C.; Liang, X.; Xiang, W. Facile synthesis of a thermally stable Ce3+: Y3Al5O12 phosphor-in-glass for white LEDs. Cryst. Eng. Comm. 2015, 17, 7079–7085. [Google Scholar] [CrossRef]
- Chai, G.; Dong, G.; Qiu, J.; Zhang, Q.; Yang, Z. 2.7 μm Emission from Transparent Er3+, Tm3+ Codoped Yttrium Aluminum Garnet (Y3Al5O12) Nanocrystals–Tellurate Glass Composites by Novel Comelting Technology. J. Phys. Chem. C 2012, 116, 19941–19950. [Google Scholar] [CrossRef]
- Nakanishi, T.; Katayama, Y.; Ueda, J.; Honma, T.; Tanabe, S.; Komatsu, T. Fabrication of Eu: SrAl2O4-based glass ceramics using Frozen sorbet method. J. Ceram. Soc. Jpn. 2011, 119, 609–615. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, T.; Tanabe, S. Novel Eu2+- Activated Glass Ceramics Precipitated with Green and Red Phosphors for High-Power White LED. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 1171–1176. [Google Scholar] [CrossRef]
- Nakanishi, T.; Tanabe, S. Preparation and luminescent properties of Eu2+-activated glass ceramic phosphor precipitated with β-Ca2SiO4 and Ca3Si2O7. Phys. Status Solidi A 2009, 206, 919–922. [Google Scholar] [CrossRef]
- Hench, L.L.; West, J.K. The Sol-Gel Process. Chem. Rev. 1990, 90, 33–72. [Google Scholar] [CrossRef]
- Ciriminna, R.; Fidalgo, A.; Pandarus, V.; Beland, F.; Ilharco, L.M.; Pagliaro, M. The sol-gel route to advanced silica-based materials and recent applications. Chem. Rev. 2013, 113, 6592–6620. [Google Scholar] [CrossRef]
- Gorni, G.; Velázquez, J.J.; Mosa, J.; Balda, R.; Fernández, J.; Durán, A.; Castro, Y. Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials. Materials 2018, 11, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bocker, C.; Bhattacharyya, S.; Höche, T.; Rüssel, C. Size distribution of BaF2 nanocrystallites in transparent glass ceramics. Acta Mater. 2009, 57, 5956–5963. [Google Scholar] [CrossRef]
- Kajihara, K. Recent advances in sol–gel synthesis of monolithic silica and silica-based glasses. J. Asian Ceram. Soc. 2018, 1, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Prakashan, V.P.; Sajna, M.S.; Gejo, G.; Sanu, M.S.; Biju, P.R.; Cyriac, J.; Unnikrishnan, N.V. Perceiving impressive optical properties of ternary SiO2-TiO2-ZrO2:Eu3+ sol-gel glasses with high reluctance for concentration quenching: An experimental approach. J. Non-Cryst. Solids 2018, 482, 116–125. [Google Scholar] [CrossRef]
- Liu, X.; Jin, Z.; Bu, S.; Yin, T. Influences of Solvent on Properties of TiO2 Porous Films Prepared by a Sol-Gel Method from the System Containing PEG. J. Sol-Gel Sci. Technol. 2005, 36, 103–111. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, D.; Luo, W.; Wang, Y.; Yu, Y.; Liu, F. Transparent glass ceramic containing Er3+: CaF2 nano-crystals prepared by sol–gel method. Mater. Lett. 2007, 61, 3988–3990. [Google Scholar] [CrossRef]
- Jun, S.; Lee, J.; Jang, E. Highly Luminescent and Photostable Quantum Dot-Silica Monolith and Its Application to Light-Emitting Diodes. ACS NANO 2013, 7, 1472–1477. [Google Scholar] [CrossRef]
- Cui, H.; Wang, M.; Ren, W.; Liu, Y.; Zhao, Y. Highly transparent silica monoliths embedded with high concentration oxide nanoparticles. J. Sol-Gel Sci. Technol. 2013, 66, 512–517. [Google Scholar] [CrossRef]
- Stato, R.; Benino, Y.; Fujiwara, T.; Komatsu, T. YAG laser-induced crystalline dot patterning in samarium tellurite glasses. J. Non-Cryst. Solids 2001, 289, 228–232. [Google Scholar] [CrossRef]
- Honma, T.; Benino, Y.; Fujiwara, T.; Komatsu, T.; Sato, R. Nonlinear optical crystal-line writing in glass by yttrium aluminum garnet laser irradiation. Appl. Phys. Lett. 2003, 82, 892–894. [Google Scholar] [CrossRef]
- Hasegawa, S.; Shinozaki, K.; Honma, T.; Dimitrov, V.; Kim, H.G.; Komatsu, T. Dielectric properties of glass-ceramics with Ba1−xY2x/3Nb2O6 nanocrystals and laser patterning of highly oriented crystal lines. J. Non-Cryst. Solids 2016, 452, 74–81. [Google Scholar] [CrossRef]
- Abe, M.; Benino, Y.; Fujiwara, T.; Komatsu, T.; Sato, R. Writing of nonlinear optical Sm2(MoO4)3 crystal lines at the surface of glass by samarium atom heat processing. J. Appl. Phys. 2005, 97, 123516. [Google Scholar] [CrossRef]
- Miura, K.; Qiu, J.; Inouye, H.; Mitsuyu, T.; Hirao, K. Photowritten optical waveguides in various glasses with ultrashort pulse laser. Appl. Phys. Lett. 1997, 71, 3329–3331. [Google Scholar] [CrossRef]
- Honma, T.; Benino, Y.; Fujiwara, T.; Komatsu, T. Line patterning with large refractive index changes in the deep inside of glass by nanosecond pulsed YAG laser irradiation. Solid State Commun. 2005, 135, 193–196. [Google Scholar] [CrossRef]
- Petrov, A.Y. A new dimension for nonlinear photonic crystals. Nat. Photonics 2018, 12, 570–571. [Google Scholar] [CrossRef]
- Liu, S.; Switkowski, K.; Xu, C.; Tian, J.; Wang, B.; Lu, P.; Krolikowski, W.; Sheng, Y. Nonlinear wavefront shaping with optically induced three-dimensional nonlinear photonic crystals. Nat. Commun. 2019, 10, 3208. [Google Scholar] [CrossRef] [Green Version]
- Wei, D.; Wang, C.; Wang, H.; Hu, X.; Wei, D.; Fang, X.; Zhang, Y.; Wu, D.; Hu, Y.; Li, J.; et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat. Photonics 2018, 12, 596–600. [Google Scholar] [CrossRef]
- Xu, T.; Switkowski, K.; Chen, X.; Liu, S.; Koynov, K.; Yu, H.; Zhang, H.; Wang, J.; Sheng, Y.; Krolikowski, W. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nat. Photonics 2018, 12, 591–595. [Google Scholar] [CrossRef]
- Chen, F.; De Aldana, J.R.V. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photonics Rev. 2014, 8, 251–275. [Google Scholar] [CrossRef]
- Stone, A.; Sakakura, M.; Shimotsuma, Y.; Miura, K.; Hirao, K.; Dierolf, V.; Jain, H. Femtosecond laser-writing of 3D crystal architecture in glass: Growth dynamics and morphological control. Mater. Des. 2018, 146, 228–238. [Google Scholar] [CrossRef]
- Huang, X.; Guo, Q.; Yang, D.; Xiao, X.; Liu, X.; Xia, Z.; Fan, F.; Qiu, J.; Dong, G. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photonics 2019, 14, 82–88. [Google Scholar] [CrossRef]
- Xia, M.; Luo, J.; Chen, C.; Liu, H.; Tang, J. Semiconductor Quantum Dots-Embedded Inorganic Glasses: Fabrication, Luminescent Properties, and Potential Applications. Adv. Opt. Mater. 2019, 7, 1900851. [Google Scholar] [CrossRef]
- Miura, K.; Qiu, J.; Mitsuyu, T. Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses. Opt. Lett. 2000, 25, 408–410. [Google Scholar] [CrossRef]
- Peruchon, L.; Puzenat, E.; Herrmann, J.M.; Guillard, C. Photocatalytic efficiencies of self-cleaning glasses. Influence of physical factors. Photochem. Photobiol. Sci. 2009, 8, 1040–1046. [Google Scholar] [CrossRef]
- Ponraj, C.; Vinitha, G.; Daniel, J. A review on the visible light active BiFeO3 nanostructures as suitable photocatalyst in the degradation of different textile dyes. Environ.Nanotechnol. Monit. Manag. 2017, 7, 110–120. [Google Scholar]
- Soltani, T.; Lee, B.-K. Enhanced formation of sulfate radicals by metal-doped BiFeO3 under visible light for improving photo-Fenton catalytic degradation of 2-chlorophenol. Chem. Eng. J. 2017, 313, 1258–1268. [Google Scholar] [CrossRef]
- Soltani, T.; Lee, B.-K. Improving heterogeneous photo-Fenton catalytic degradation of toluene under visible light irradiation through Ba-doping in BiFeO3 nanoparticles. J. Mol. Catal. A Chem. 2016, 425, 199–207. [Google Scholar] [CrossRef]
- Masai, H.; Fujiwara, T.; Mori, H. Effect of SnO addition on optical absorption of bismuth borate glass and photocatalytic property of the crystallized glass. Appl. Phys. Lett. 2008, 92, 141902. [Google Scholar] [CrossRef]
- Masai, H.; Toda, T.; Takahashi, Y.; Fujiwara, T. Fabrication of anatase precipitated glass-ceramics possessing high transparency. Appl. Phys. Lett. 2009, 94, 151910. [Google Scholar] [CrossRef]
- Yoshida, K.; Takahashi, Y.; Ihara, R.; Terakado, N.; Fujiwara, T.; Kato, H.; Kakihana, M. Large enhancement of photocatalytic activity by chemical etching of TiO2 crystallized glass. APL Mater. 2014, 2, 106103. [Google Scholar] [CrossRef]
- Kumar, S.; Kushwaha, H.S.; Singh, V.P.; Vaish, R.; Ilahi, B.; Madhar, N.A. Solar light induced antibacterial performance of TiO2 crystallized glass ceramics. Int. J. Appl. Glass Sci. 2018, 9, 480–486. [Google Scholar] [CrossRef]
- Ida, T.; Shinozaki, K.; Honma, T.; Komatsu, T. Synthesis and photocatalytic properties of α-ZnWO4 nanocrystals in tungsten zinc borate glasses. J. Asian Ceram. Soc. 2018, 2, 253–257. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.K.; Singh, V.P.; Chauhan, V.S.; Kushwaha, H.S.; Vaish, R. Photocatalytic Active Bismuth Fluoride/Oxyfluoride Surface Crystallized 2Bi2O3-B2O3 Glass–Ceramics. J. Electron. Mater. 2018, 47, 3490–3496. [Google Scholar] [CrossRef]
- Sharma, S.K.; Singh, V.P.; Bhargava, A.; Park, S.-H.; Chauhan, V.S.; Vaish, R. Surface crystallization of BiOCl on 2Bi2O3–B2O3 glasses for photocatalytic applications. J. Mater. Sci. Mater. Electron. 2021, 32, 10520–10531. [Google Scholar] [CrossRef]
- Singh, V.P.; Vaish, R. Controlled crystallization of photocatalytic active Bismuth oxyfluoride/Bismuth fluoride on SrO-Bi2O3-B2O3 transparent glass ceramic. J. Eur. Ceram. Soc. 2018, 38, 3635–3642. [Google Scholar] [CrossRef]
- Singh, V.P.; Vaish, R. Hierarchical growth of BiOCl on SrO-Bi2O3-B2O3 glass-ceramics for self-cleaning applications. J. Am. Ceram. Soc. 2018, 101, 2901–2913. [Google Scholar] [CrossRef]
- Singh, G.; Singh, V.; Vaish, R. Controlled crystallization of BiOCl/BiF3 on ZnO–Bi2O3–B2O3 glass surfaces for photocatalytic and self-cleaning applications. Materialias 2019, 5, 100196. [Google Scholar] [CrossRef]
- Thakur, V.; Kushwaha, H.S.; Singh, A.; Vaish, R.; Punia, R.; Singh, L. A study on the structural and photocatalytic degradation of ciprofloxacine using (70B2O3–29Bi2O3–1Dy2O3)– x(BaO–TiO2) glass ceramics. J. Non-Cryst. Solids 2015, 428, 197–203. [Google Scholar] [CrossRef]
- Kushwaha, H.S.; Thomas, P.; Vaish, R. Visible light driven multifunctional photocatalysis in TeO2 -based semiconductor glass ceramics. J. Photonics Energy 2017, 7, 016502. [Google Scholar] [CrossRef]
- Iida, Y.; Akiyama, K.; Kobzi, B.; Sinkó, K.; Homonnay, Z.; Kuzmann, E.; Ristić, M.; Krehula, S.; Nishida, T.; Kubuki, S. Structural analysis and visible light-activated photocatalytic activity of iron-containing soda lime aluminosilicate glass. J. Alloys Compd. 2015, 645, 1–6. [Google Scholar] [CrossRef]
- Margha, F.H.; Radwan, E.K.; Badawy, M.I.; Gad-Allah, T.A. Bi2O3-BiFeO3 Glass-Ceramic: Controllable β-/γ-Bi2O3 Transformation and Application as Magnetic Solar-Driven Photocatalyst for Water Decontamination. ACS Omega 2020, 5, 14625–14634. [Google Scholar] [CrossRef] [PubMed]
- Kadam, S.R.; Panmand, R.P.; Sonawane, R.S.; Gosavi, S.W.; Kale, B.B. A stable Bi2S3 quantum dot–glass nanosystem: Size tuneable photocatalytic hydrogen production under solar light. RSC Adv. 2015, 5, 58485–58490. [Google Scholar] [CrossRef]
- Li, G.; Huang, S.; Shen, Y.; Lou, Z.; Yuan, H.; Zhu, N.; Wei, Y. Synthesis of an efficient lanthanide doped glass-ceramic based near-infrared photocatalyst by a completely waterless solid-state reaction method. Dalton Trans. 2019, 48, 9925–9929. [Google Scholar] [CrossRef]
- Li, G.; Huang, S.; Yuan, H.; Zhu, N.; Wei, Y. Efficient and regenerative near-infrared glass-ceramic photocatalyst fabricated by a facile in-situ etching method. Chem. Eng. J. 2020, 394, 124877. [Google Scholar] [CrossRef]
- Li, G.; Huang, S.; Zhu, N.; Yuan, H.; Ge, D.; Wei, Y. Defect-rich heterojunction photocatalyst originated from the removal of chloride ions and its degradation mechanism of norfloxacin. Chem. Eng. J. 2021, 421, 127852. [Google Scholar] [CrossRef]
- Li, G.; Huang, S.; Zhu, N.; Yuan, H.; Ge, D. Near-infrared responsive upconversion glass-ceramic@BiOBr heterojunction for enhanced photodegradation performances of norfloxacin. J. Hazard. Mater. 2021, 403, 123981. [Google Scholar] [CrossRef]
- Zhihan, Z.; Bofeng, Z.; Dong, W.; Qi, Z.; Cong, T.; Nanwen, Z.; Guobiao, L. A Yb3+/Er3+ co-doped Bi1.95Yb0.04Er0.01V2O8 efficient upconversion glass–ceramic photocatalyst for antibiotic degradation driven by UV–Vis-NIR broad spectrum light. Appl. Surf. Sci. 2022, 583, 152565. [Google Scholar] [CrossRef]
- Li, G.; Huang, S.; Li, K.; Zhu, N.; Zhao, B.; Zhong, Q.; Zhang, Z.; Ge, D.; Wang, D. Near-infrared responsive Z-scheme heterojunction with strong stability and ultra-high quantum efficiency constructed by lanthanide-doped glass. Appl. Catal. B Environ. 2022, 311, 121363. [Google Scholar] [CrossRef]
- Shaikh, S.; Kedia, S.; Singh, A.K.; Sharma, K.; Sinha, S. Surface treatment of 45S5 Bioglass using femtosecond laser to achieve superior growth of hydroxyapatite. J. Laser Appl. 2017, 29, 022004. [Google Scholar] [CrossRef] [Green Version]
- Amanov, A.; Pyun, Y.S.; Vasudevan, V.K. High Strength and Wear Resistance of Tantalum by Ultrasonic Nanocrystalline Surface Modification Technique at High Temperatures. IOP Conf. Ser. Mater. Sci. Eng. 2017, 194, 012032. [Google Scholar] [CrossRef]
- Fu, H.; Zhang, S.; Xu, T.; Zhu, Y.; Chen, J. Photocatalytic Degradation of RhB by Fluorinated Bi2WO6 and Distributions of the Intermediate Products. Environ. Sci. Technol. 2008, 42, 2085–2091. [Google Scholar] [CrossRef]
- Jiang, H.-Y.; Liu, J.; Cheng, K.; Sun, W.; Lin, J. Enhanced Visible Light Photocatalysis of Bi2O3 upon Fluorination. J. Phys. Chem. C 2013, 117, 20029–20036. [Google Scholar] [CrossRef]
- Liu, S.; Yin, K.; Ren, W.; Cheng, B.; Yu, J. Tandem photocatalytic oxidation of Rhodamine B over surface fluorinated bismuth vanadate crystals. J. Mater. Chem. 2012, 22, 17759–17767. [Google Scholar] [CrossRef]
- Liu, S.; Yu, J.; Cheng, B.; Jaroniec, M. Fluorinated semiconductor photocatalysts: Tunable synthesis and unique properties. Adv Colloid Interface Sci. 2012, 173, 35–53. [Google Scholar] [CrossRef]
- Berthier, T.; Fokin, V.M.; Zanotto, E.D. New large grain, highly crystalline, transparent glass–ceramics. J. Non-Cryst. Solids 2008, 354, 1721–1730. [Google Scholar] [CrossRef]
- Baia, L.; Stefan, R.; Kiefer, W.; Popp, J.; Simon, S. Structural investigations of copper doped B2O3–Bi2O3 glasses with high bismuth oxide content. J. Non-Cryst. Solids 2001, 303, 379–386. [Google Scholar]
- Cao, S.; Guo, C.; Lv, Y.; Guo, Y.; Liu, Q. A novel BiOCl film with flowerlike hierarchical structures and its optical properties. Nanotechnol. 2009, 20, 275702. [Google Scholar] [CrossRef] [PubMed]
- Al-Baradi, A.M.; Wahab, E.a.A.; Shaaban, K.S. Preparation and Characteristics of B2O3–SiO2–Bi2O3–TiO2–Y2O3 Glasses and Glass-Ceramics. Silicon 2021, 14, 5277–5287. [Google Scholar] [CrossRef]
- Milewska, K.; Maciejewski, M.; Synak, A.; Lapinski, M.; Mielewczyk-Gryn, A.; Sadowski, W.; Koscielska, B. From Structure to Luminescent Properties of B2O3-Bi2O3-SrF2 Glass and Glass-Ceramics Doped with Eu3+ Ions. Materials 2021, 14, 4490. [Google Scholar] [CrossRef]
- Jamalaiah, B.C.; Viswanadha, G. Erbium doped Bi2O3-B2O3 glass-ceramics containing Bi3B5O12 and CaF2 nanocrystallites for 1.53 μm fiber lasers. J. Eur. Ceram. Soc. 2020, 40, 4578–4588. [Google Scholar] [CrossRef]
- Li, M.; Zhou, X.; Zhang, Y.; Jiang, F.; Sha, S.; Xu, S.; Li, S. Preparation and upconversion luminescent properties of Yb3+/Er3+ doped transparent glass-ceramics containing CaF2 nanocrystals. Ceram. Int. 2020, 46, 25399–25404. [Google Scholar] [CrossRef]
- Panyata, S.; Eitssayeam, S.; Tunkasiri, T.; Munpakdee, A.; Pengpat, K. Crystallization kinetic of Er3+-doped BiO1.5-GeO2-BO1.5 glass-ceramic. Ceram. Int. 2018, 44, S46–S49. [Google Scholar] [CrossRef]
- Sahu, S.P.; Cates, S.L.; Kim, H.I.; Kim, J.H.; Cates, E.L. The Myth of Visible Light Photocatalysis Using Lanthanide Upconversion Materials. Environ. Sci Technol. 2018, 52, 2973–2980. [Google Scholar] [CrossRef]
- Takata, T.; Jiang, J.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020, 581, 411–414. [Google Scholar] [CrossRef]
- Djurišić, A.B.; He, Y.; Ng, A.M.C. Visible-light photocatalysts: Prospects and challenges. APL Mater. 2020, 8, 030903. [Google Scholar] [CrossRef]
Composition Name | Crystallization Method | Major Crystalline Phases | Light | Photocatalysis Experiment | Performance Achieved | Ref. |
---|---|---|---|---|---|---|
CaO–BaO–B2O3–Al2O3–TiO2–ZnO | HT | TiO2 | UV | Escherichia coli degradation | 10 h ~95% bacterial cells degraded | [44] |
20P2O5–75TiO2–2Al2O3–3(Na2O, MgO) | HT | TiO2 | UV | MB dye degradation | 120 min ~100% dye degraded | [7] |
9TiO2–31P2O5 and 76TiO2–24P2O5 | HT | TiO2 | UV | MB dye degradation | 120 min ~55% dye degraded | [45] |
CaO–B2O3–Bi2O3–Al2O3–TiO2 | HT | TiO2 | UV | MB dye degradation | K = 0.59 h−1m−2 degraded | [107] |
4CaO-64B2O3-9BaO-9ZnO-Al2O3-14TiO2 | HT | TiO2 | UV | MB dye degradation | k = 0.78 h−1·m−2 degraded | [108] |
SiO2–Al2O3–B2O3–CaO–TiO2 | HT/ E-HNO3 | TiO2 | UV | MB dye degradation | 20 hr 20 μmol dye degraded | [43] |
14TiO2–23ZnO–45B2O3–18Al2O3–4.5SiO2 | E-HCl | TiO2 | UV | H2 evolved | 1.09μmol/h H2 evolved | [109] |
0.4BaO-0.4TiO2-B2O3 | HT | TiO2 | Visibe | Bacterial degradation | 120 min ~98.3% bacteria degraded | [110] |
12MgO–48TiO2–31P2O5–9SiO2 | HT | MgTi4(PO4)6 | UV | MB dye degradation | 27–32 nmol/L/min dye | [46] |
9.35K2O-9.35CaO-42.05ZnO-23.36B2O3-9.35SiO2-6.54Al2O3 | HT | ZnO | UV | (rhodamine b) RB dye degradation | 150 min ~78.57% dye degraded | [48] |
SiO2-TiO2-ZnO-B2O3-Na2O-K2O-P2O5-Li2O-BaO | HT | ZnO | UV | Red SPD Cotton dye degradation | 275 min ~76% dye degraded | [47] |
WO3–ZnO–B2O3 | HT/ E-HNO3 | α-ZnWO4 | UV and Visible | MB dye degradation | 180 min ~100% dye degraded | [111] |
2Bi2O3-B2O3 | HT | Bi4B2O9 | UV | 17 β-estradiol (pharmaceutical) degradation | 240 min ~80% β-estradiol degraded | [62] |
2Bi2O3-B2O3 | E-HF | BiO0.1F2, BiF3 | Visible | Rhodamine 6G dye degradation | 120 min ~85% dye degraded | [112] |
2Bi2O3-B2O3 | E-HCl | BiOCl | UV | MB dye degradation | 180 min ~100% dye degraded | [113] |
SrO-Bi2O3-B2O3 | HT | SrBi2B2O7 | UV | MB dye degradation | 540 min~50% dye degraded | [63] |
SrO-Bi2O3-B2O3 | E-HF | BiOF/α-BiF3 | UV | MB dye degradation | 540 min ~90% dye degraded | [114] |
SrO-Bi2O3-B2O3 | E-HCl | SrBi2B2O7 | UV | MB dye degradation | 4 h ~100% dye degraded | [115] |
ZnO-Bi2O3-B2O3 | E-HF, HCl | BiOCl/BiF3 | UV | MB dye degradation | 225 min ~90% dye degraded | [116] |
(70B2O3–29Bi2O3–1Dy2O3)–x(BaO–TiO2) | HT | Ba2Ti6O13 | UV | Ciprofloxacin degradation | 268 min−1 m−2 | [117] |
xCaCu3Ti4O12-(100−x) TeO2 (x = 0.25 to 3 mol%) | HT | TiTe3O8, CaTiO3 | Visible | H2 evolved | 135 μmol h−1g−1 H2 evolved | [118] |
15Na2O-15CaO-40Fe2O3-xAl2O3-(30−x)SiO2 | HT | Ca2Fe22O33, CaFe2O4 | Visible | MB dye degradation | K = 9.26 × 10−3 min−1 degraded | [119] |
Fe2O3-Bi2O3 | HT, E-HF, HNO3 | β/γ-Bi2O3, BiFeO3 | Visible | RY160 dye degradation | 120 min ~99% dye degraded | [120] |
52SiO2-10Na2O-6MgO-6B2O3-12K2O-10ZnO-4TiO2 | HT | Bi2S3 quantum dots | solar light | H2 evolved | 6418.8 µmole h−1 g−1 | [121] |
Er3+/Yb3+-CaO-Al2O3-SiO2-CaF2 | HT | TiO2/CaF2 | NIR | MO dye degradation | Not mentioned | [122] |
Er3+/Yb3+/Y3+-SrO-Bi2O3-B2O3 | HT | BiOCl/SrF2 | NIR | Norfloxacin degradation | 90 min 66% NOR and 79% methyl orange degraded | [123] |
Er3+/Yb3+-SrO-Bi2O3-B2O3 | HT | BiOCl/SrF2 | NIR | Norfloxacin degradation | 90 min 98% NOR degraded | [124] |
Yb3+/Tb3+-SrF2-Bi2O3-B2O3 | HT | BiOBr/SrF2 | NIR | Norfloxacin degradation | 90 min 99% NOR degraded | [125] |
Er3+/Yb3+-SrF2-Bi2O3-B2O3-V2O5 | HT | Bi1.95Yb0.04Er0.01V2O8 | NIR | Norfloxacin degradation | 90 min 55.2% NOR degraded | [126] |
Er3+/ Yb3+-SrCO3-Bi2O3-B2O3-TiO2 | HT | Sr2Bi4Ti4O15, SrTiO3 | NIR | Norfloxacin degradation | 90 min 86% NOR degraded | [127] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wang, M.; Tian, Y.; Deng, W. A Review on Photocatalytic Glass Ceramics: Fundamentals, Preparation, Performance Enhancement and Future Development. Catalysts 2022, 12, 1235. https://doi.org/10.3390/catal12101235
Wang J, Wang M, Tian Y, Deng W. A Review on Photocatalytic Glass Ceramics: Fundamentals, Preparation, Performance Enhancement and Future Development. Catalysts. 2022; 12(10):1235. https://doi.org/10.3390/catal12101235
Chicago/Turabian StyleWang, Jun, Mitang Wang, Yingliang Tian, and Wei Deng. 2022. "A Review on Photocatalytic Glass Ceramics: Fundamentals, Preparation, Performance Enhancement and Future Development" Catalysts 12, no. 10: 1235. https://doi.org/10.3390/catal12101235
APA StyleWang, J., Wang, M., Tian, Y., & Deng, W. (2022). A Review on Photocatalytic Glass Ceramics: Fundamentals, Preparation, Performance Enhancement and Future Development. Catalysts, 12(10), 1235. https://doi.org/10.3390/catal12101235