PdPty/V2O5-TiO2: Highly Active Catalysts with Good Moisture- and Sulfur Dioxide-Resistant Performance in Toluene Oxidation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure and Textural Property
2.2. Catalytic Performance
2.3. Catalytic Stability and H2O, CO2, and SO2 Resistance
2.4. Surface Property
2.5. Reducibility and Oxygen Mobility
2.6. Toluene and Sulfur Dioxide Adsorption Behaviors
2.7. Adsorption Mechanisms of Toluene and Sulfur Dioxide
3. Materials and Methods
3.1. Catalyst Preparation
3.1.1. Preparation of the V2O5-TiO2 Support
3.1.2. Preparation of xPt/V2O5-TiO2, xPd/V2O5-TiO2, and xPdPty/V2O5-TiO2
3.2. Catalyst Characterization
3.3. Catalytic Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z.P. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources. Chem. Rev. 2019, 119, 4471–4568. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, Y.; Guo, Y.; Lu, G.; Boreave, A.; Retailleau, L.; Baylet, A.; Giroir-Fendler, A. LaMnO3 perovskite oxides prepared by different methods for catalytic oxidation of toluene. Appl. Catal. B 2014, 148–149, 490–498. [Google Scholar] [CrossRef]
- Ministry of Environment. Contents of New Emission Regulation of Volatile Organic Compounds; Ministry of Environment, Government of Japan: Tokyo, Japan, 2005.
- Kamal, M.S.; Razzak, S.A.; Hossain, M.M. Catalytic oxidation of volatile organic compounds (VOCs)—A review. Atmos. Environ. 2016, 140, 117–134. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Jiang, Z.; Shangguan, W.F. Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review. Catal. Today 2016, 264, 270–278. [Google Scholar] [CrossRef]
- Liotta, L.F. Catalytic oxidation of volatile organic compounds on supported noble metals. Appl. Catal. B 2010, 100, 403–412. [Google Scholar] [CrossRef]
- Peng, R.; Sun, X.; Li, S.J.; Chen, L.M.; Fu, M.L.; Wu, J.L.; Ye, D.Q. Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene. Chem. Eng. 2016, 306, 1234–1246. [Google Scholar] [CrossRef]
- Rui, Z.B.; Tang, M.N.; Ji, W.K.; Ding, J.J.; Ji, H.B. Insight into the enhanced performance of TiO2 nanotube supported Pt catalyst for toluene oxidation. Catal. Today 2017, 297, 159–166. [Google Scholar] [CrossRef]
- Wang, H.; Yang, W.; Tian, P.H.; Zhou, J.; Tang, R.; Wu, S.J. A highly active and anti-coking Pd-Pt/SiO2 catalyst for catalytic combustion of toluene at low temperature. Appl. Catal. A 2017, 529, 60–67. [Google Scholar] [CrossRef]
- Ordoez, S.; Hurtado, P.; Sastre, H. Methane catalytic combustion over Pd/Al2O3 in presence of sulphur dioxide: Development of a deactivation model. Appl. Catal. A 2004, 259, 41–48. [Google Scholar] [CrossRef]
- Zhu, H.F.; Ma, L.; Li, X.N. Progress of the preparation of sulfur-tolerant palladium catalyst for catalytic oxidation of methane. Appl. Chem. Ind. 2018, 47, 2231–2241. [Google Scholar]
- Chenakin, S.P.; Melaet, G.; Szukiewicz, R.; Kruse, N. XPS study of the surface chemical state of a Pd/(SiO2+TiO2) catalyst after methane oxidation and SO2 treatment. J. Catal. 2014, 312, 1–11. [Google Scholar] [CrossRef]
- Xie, S.X.; Yu, Y.B.; Wang, J.; He, H. Effect of SO2 on the performance of Ag-Pd/Al2O3 for the selective catalytic reduction of NOx with C2H5OH. Environ. Sci. 2006, 18, 973–978. [Google Scholar] [CrossRef]
- Venezia, A.M.; Carlo, G.D.; Liotta, L.F.; Pantaleo, G.; Kantcheva, M. Effect of Ti(IV) loading on CH4 oxidation activity and SO2 tolerance of Pd catalysts supported on silica SBA-15 and HMS. Appl. Catal. B 2011, 106, 529–539. [Google Scholar] [CrossRef] [Green Version]
- Ryou, Y.; Lee, J.; Lee, H.; Choung, J.W.; Yoo, S.; Kim, D.H. Roles of ZrO2 in SO2-poisoned Pd/(Ce-Zr)O2 catalysts for CO oxidation. Catal. Today 2015, 258, 518–524. [Google Scholar] [CrossRef]
- Xia, M.R.; Yue, R.L.; Chen, P.X.; Wang, M.Q.; Jiao, T.F.; Zhang, L.; Zhao, Y.F.; Gao, F.F.; Wei, Z.D.; Li, L. Density functional theory investigation of the adsorption behaviors of SO2 and NO2 on a Pt(111) surface. Colloids Surf. A Physicochem. Eng. Asp. 2019, 568, 266–270. [Google Scholar] [CrossRef]
- Ball, D.J.; Stack, R.G.; Crucq, A. Catalysis and Automotive Pollution Control II. Stud. Surf. Sci. Catal. 1991, 71, 337–351. [Google Scholar]
- Hoyos, L.J.; Praliaud, H.; Primet, M. Catalytic combustion of methane over palladium supported on alumina and silica in presence of hydrogen sulfide. Appl. Catal. A 1993, 98, 125–138. [Google Scholar] [CrossRef]
- Lapina, O.B.; Bal’zhinimaev, B.S.; Boghosian, S.; Eriksen, K.M.; Fehrmann, R. Progress on the mechanistic understanding of SO2 oxidation catalysts. Catal. Today 1999, 51, 469–479. [Google Scholar] [CrossRef]
- Mamiyev, Z.; Dillert, R.; Zheng, N.; Bahnemann, D.W. Rh/TiO2-photocatalyzed acceptorless dehydrogenation of N-heterocycles upon visible-light illumination. ACS Catal. 2020, 10, 5542–5553. [Google Scholar]
- Balayeva, N.O.; Zheng, N.; Dillert, R.; Bahnemann, D.W. Visible-light-mediated photocatalytic aerobic dehydrogenation of N-heterocycles by surface-grafted TiO2 and 4-amino-TEMPO. ACS Catal. 2019, 12, 10694–10704. [Google Scholar] [CrossRef]
- Balayeva, N.O.; Fleisch, M.; Bahnemann, D.W. Surface-grafted WO3/TiO2 photocatalysts: Enhanced visible-light activity towards indoor air purification. Catal. Today 2018, 313, 63–71. [Google Scholar] [CrossRef]
- Wang, W.Y.; Yang, Y.Q.; Luo, H.; Wang, T.F.; Liu, W.Y. Ultrasound-assisted preparation of titania–alumina support with high surface area and large pore diameter by modified precipitation method. Alloys Compd. 2011, 509, 3430–3434. [Google Scholar] [CrossRef]
- Gu, Z.H.; Luo, L.T.; Chen, S.F. Effect of calcinations temperature of TiO2-Al2O3 mixed oxides on hydrodesulphurization performance of Au-Pd catalysts. Chem. Technol. 2009, 16, 175–180. [Google Scholar]
- Gomez-Garcí, M.A.; Pitchon, V.; Kiennemann, A. Multifunctional catalysts for de-NOx processes: The case of H3PW12O40·6H2O-metal supported on mixed oxides. Appl. Catal. B 2007, 70, 151–159. [Google Scholar] [CrossRef]
- Gomez-Garcí, M.A.; Thomas, S.; Pitchon, V.; Kiennemann, A. Selective reduction of NOx by liquid hydrocarbons with supported HPW-metal catalysts. Catal. Today 2007, 119, 52–58. [Google Scholar] [CrossRef]
- Tidahy, H.L.; Hosseni, M.; Siffert, S.; Cousin, R.; Lamonier, J.F.; Aboukaïs, A.; Su, B.L.; Giraudon, J.M.; Leclercq, G. Nanostructured macro-mesoporous zirconia impregnated by noble metal for catalytic total oxidation of toluene. Catal. Today 2008, 137, 335–339. [Google Scholar] [CrossRef]
- Hou, Z.X.; Zhou, X.Y.; Lin, T.; Chen, Y.Q.; Lai, X.X.; Feng, J.; Sun, M.M. The promotion effect of tungsten on monolith Pt/Ce0.65Zr0.35O2 catalysts for the catalytic oxidation of toluene. New J. Chem. 2019, 43, 5719–5726. [Google Scholar] [CrossRef]
- Du, X.B.; Dong, F.; Tang, Z.C.; Zhang, J.Y. Precise design and synthesis of Pd/InOx@CoOx core–shell nanofibers for the highly efficient catalytic combustion of toluene. Nanoscale 2020, 12, 12133–12145. [Google Scholar] [CrossRef]
- He, C.; Shen, Q.; Liu, M.X. Toluene destruction over nanometric palladium supported ZSM-5 catalysts: Influences of support acidity and operation condition. J. Porous Mater. 2014, 21, 551–563. [Google Scholar] [CrossRef]
- Li, P.; He, C.; Cheng, J.; Ma, C.Y.; Dou, B.J.; Hao, Z.P. Catalytic oxidation of toluene over Pd/Co3AlO catalysts derived from hydrotalcite-like compounds: Effects of preparation methods. Appl. Catal. B 2011, 101, 570–579. [Google Scholar] [CrossRef]
- Xie, S.H.; Liu, Y.X.; Deng, J.G.; Zhao, X.T.; Yang, J.; Zhang, K.F.; Han, Z.; Arandiyan, H.; Dai, H.X. Effect of transition metal doping on the catalytic performance of Au–Pd/3DOM Mn2O3 for the oxidation of methane and o-xylene. Appl. Catal. B 2017, 206, 221–232. [Google Scholar] [CrossRef]
- Yin, F.X.; Ji, S.F.; Wu, P.Y.; Zhao, F.Z.; Li, C.Y. Preparation, characterization, and methane total oxidation of AAl12O19 and AMAl11O19 hexaaluminate catalysts prepared with urea combustion method. J. Mol. Catal. A 2008, 294, 27–36. [Google Scholar] [CrossRef]
- Zhang, X.F.; Liu, Y.X.; Deng, J.G.; Jing, L.; Wu, L.K.; Dai, H.X. Catalytic performance and SO2 resistance of zirconia-supported platinum-palladium bimetallic nanoparticles for methane combustion. Catal. Today 2022, 402, 0920–5861. [Google Scholar] [CrossRef]
- Fu, X.H.; Liu, Y.X.; Deng, J.G.; Jing, L.; Zhang, X.; Zhang, K.F.; Han, Z.; Jiang, X.Y.; Dai, H.X. Intermetallic compound PtMny-derived Pt–MnOx supported on mesoporous CeO2: Highly efficient catalysts for the combustion of toluene. Appl. Catal. A 2020, 595, 117509. [Google Scholar]
- Tumuluri, U.; Howe, J.D.; Mounfield, W.P., III; Li, M.J.; Chi, M.F.; Hood, Z.D.; Walton, K.S.; Sholl, D.S.; Dai, S.; Wu, Z.L. Effect of Surface Structure of TiO2 Nanoparticles on CO2 Adsorption and SO2 Resistance. Sustain. Chem. Eng. 2017, 10, 9295–9306. [Google Scholar] [CrossRef]
- Pei, W.B.; Liu, Y.X.; Deng, J.G.; Zhang, K.F.; Hou, Z.Q.; Zhao, X.T.; Dai, H.X. Partially embedding Pt nanoparticles in the skeleton of 3DOM Mn2O3: An effective strategy for enhancing catalytic stability in toluene combustion. Appl. Catal. B 2019, 256, 117814. [Google Scholar] [CrossRef]
- Yang, W.; Liu, F.; Xie, L.; Lian, Z.; He, H. Effect of V2O5 additive on the SO2 resistance of a Fe2O3/AC catalyst for NH3-SCR of NOx at low temperatures. Ind. Eng. Chem. Res. 2016, 55, 2677–2685. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, X.; Xie, A.; Luo, S.; Yao, C.; Li, X.; Zuo, S. V2O5-decorated Mn-Fe/attapulgite catalyst with high SO2 tolerance for SCR of NOx with NH3 at low temperature. Chem. Eng. J. 2017, 326, 1074–1085. [Google Scholar] [CrossRef]
- Zhang, S.L.; Zhong, Q. Promotional effect of WO3 on O2− over V2O5/TiO2 catalyst for selective catalytic reduction of NO with NH3. J. Mol. Catal. A 2013, 373, 108–113. [Google Scholar] [CrossRef]
- Rasmi, K.R.; Vanithakumari, S.C.; George, R.P.; Mallika, C.; Mudali, U.K. Nanoparticles of Pt loaded on a vertically aligned TiO2 nanotube bed: Synthesis and evaluation of electrocatalytic activity. RSC Adv. 2015, 5, 108050–108057. [Google Scholar]
- Deng, W.; Dai, Q.G.; Lao, Y.J.; Shi, B.B.; Wang, X.Y. Low temperature catalytic combustion of 1,2-dichlorobenzene over CeO2–TiO2 mixed oxide catalysts. Appl. Catal. B 2016, 181, 848–861. [Google Scholar] [CrossRef]
- Rousseau, S.; Loridant, S.; Delichere, P.; Boreave, A.; Deloume, J.P.; Vernoux, P. La(1−x)SrxCo1−yFeyO3 perovskites prepared by sol–gel method: Characterization and relationships with catalytic properties for total oxidation of toluene. Appl. Catal. B 2009, 88, 438–447. [Google Scholar] [CrossRef]
- Xie, S.H.; Deng, J.G.; Zang, S.M.; Yang, H.G.; Guo, G.S.; Arandiyan, H.; Dai, H.X. Preparation and high catalytic performance of Au/3DOM Mn2O3 for the oxidation of carbon monoxide and toluene. J. Catal. 2015, 322, 38–48. [Google Scholar] [CrossRef]
- Mitome, J.; Karakas, G.; Bryan, A.K.; Ozkan, U.S. Effect of H2O and SO2 on the activity of Pd/TiO2 catalysts in catalytic reduction of NO with methane in the presence of oxygen. Catal. Today 1998, 42, 3–11. [Google Scholar] [CrossRef]
- Peng, R.S.; Li, S.J.; Sun, X.B.; Ren, Q.M.; Chen, L.M.; Fu, M.L.; Wu, J.L.; Ye, D.Q. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts. Appl. Catal. B 2018, 220, 462–470. [Google Scholar] [CrossRef]
- Chen, C.Y.; Wang, X.; Zhang, J.; Pan, S.X.; Bian, C.Q.; Wang, L.; Chen, F.; Meng, X.J.; Zheng, X.M.; Gao, X.H.; et al. Superior Performance in Catalytic Combustion of Toluene over KZSM-5 Zeolite Supported Platinum Catalyst. Catal. Today 2014, 144, 1851–1859. [Google Scholar] [CrossRef]
- Bera, P.; Priolkar, K.R.; Gayen, A.; Sarode, P.R.; Hegde, M.S.; Emura, S.; Kumashiro, R.; Jayaram, V.; Subbanna, G.N. Ionic Dispersion of Pt over CeO2 by the Combustion Method: Structural Investigation by XRD, TEM, XPS, and EXAFS. Chem. Mater. 2003, 15, 2049–2060. [Google Scholar] [CrossRef]
- Chen, L.X.; Sterbinsky, G.E.; Tait, S.L. Synthesis of Platinum Single-Site Centers through Metal-Ligand Self-Assembly on Powdered Metal Oxide Supports. J. Catal. 2018, 365, 303–312. [Google Scholar] [CrossRef]
- Li, Y.B.; Zhang, C.B.; Ma, J.Z.; Chen, M.; Deng, H.; He, H. High temperature reduction dramatically promotes Pd/TiO2 catalyst for ambient formaldehyde oxidation. Appl. Catal. B 2017, 217, 560–569. [Google Scholar] [CrossRef]
- Jabłonsk, M.; Krol, A.; Kukulska-Zajac, E.; Tarach, K.; Girman, V.; Chmielarz, L.; Gora-Marek, K. Zeolites Y modified with palladium as effective catalysts for low temperature methanol incineration. Appl. Catal. B 2015, 166, 353–365. [Google Scholar] [CrossRef]
- Monai, M.; Montini, T.; Melchionna, M.; Duchoň, T.; Kúš, P.; Chen, C.; Tsud, N.; Nasi, L.; Prince, K.C.; Veltruská, K.; et al. The effect of sulfur dioxide on the activity of hierarchical Pd-based catalysts in methane combustion. Appl. Catal. B 2017, 202, 72–83. [Google Scholar] [CrossRef]
- Gao, X.T.; Bare, S.R.; Fierro, J.; Wachs, I.E. Structural characteristics and reactivity/ reducibility properties of dispersed and bilayered V2O5/TiO2/SiO2 catalysts. J. Phys. Chem. B 1999, 103, 618–629. [Google Scholar] [CrossRef]
- Ayandiran, A.A.; Bakare, I.A.; Binous, H.; Al-Ghamdi, S.; Razzak, S.A.; Hossain, M.M. Oxidative dehydrogenation of propane to propylene over VOx/CaO–γ-Al2O3 using lattice oxygen. Catal. Sci. Technol. 2016, 6, 5154–5167. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Wang, X.; Li, Z.; Liu, P. The complete oxidation of ethanol at low temperature over a novel Pd-Ce/γ-Al2O3-TiO2 catalyst. Bull. Korean Chem. Soc. 2013, 34, 2461–2465. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Gao, M.; Hasegawa, J.; Li, S.; Shen, Y.; Li, H.; Shi, L.; Zhang, D. SO2-Tolerant Selective Catalytic Reduction of NOx over Meso-TiO2@Fe2O3@Al2O3 Metal-Based Monolith Catalysts. Environ. Sci. Technol. 2019, 53, 6462–6473. [Google Scholar] [CrossRef]
- Lowell, P.S.; Schwitzgebel, K.; Parsons, T.B.; Sladek, K.J. Selection of Metal Oxides for Removing SO2 From Flue Gas Industrial. Eng. Chem. Process Des. Dev. 1971, 10, 384–390. [Google Scholar] [CrossRef]
- Zhang, K.Y.; Dai, L.Y.; Liu, Y.X.; Deng, J.G.; Jing, L.; Zhang, K.F.; Hou, Z.Q.; Zhang, X.; Wang, J.; Feng, Y.; et al. Insights into the active sites of chlorine-resistant Pt-based bimetallic catalysts for benzene oxidation. Appl. Catal. B 2020, 279, 119372. [Google Scholar] [CrossRef]
- Mitchell, M.B.; Sheinker, V.N.; White, M.G. Adsorption and Reaction of Sulfur Dioxide on Alumina and Sodium-Impregnated Alumina. J. Phys. Chem. 1996, 100, 7550–7557. [Google Scholar] [CrossRef]
- Khodayari, R.; Odenbrand, C.U.I. Regeneration of commercial SCR catalysts by washing and sulphation: Effect of sulphate groups on the activity. Appl. Catal. B 2001, 33, 277–291. [Google Scholar] [CrossRef]
- Zhao, S.; Hu, F.Y.; Li, J.H. Hierarchical core-shell Al2O3@Pd-CoAlO microspheres for low-temperature toluene combustion. ACS Catal. 2016, 6, 3433–3441. [Google Scholar] [CrossRef]
- Huang, S.Y.; Zhang, C.B.; He, H. Complete oxidation of o-xylene over Pd/Al2O3 catalyst at low temperature. Catal. Today 2008, 139, 15–23. [Google Scholar] [CrossRef]
- Liu, X.L.; Zeng, J.L.; Shi, W.B.; Wang, J.; Zhu, T.Y.; Chen, Y.F. Catalytic oxidation of benzene over ruthenium cobalt bimetallic catalysts and study of its mechanism. Catal. Sci. Technol. 2017, 7, 213–221. [Google Scholar] [CrossRef]
- Zhang, X.; Dai, L.Y.; Liu, Y.X.; Deng, J.G.; Li, J.; Wang, Z.W.; Pei, W.B.; Yu, X.H.; Wang, J.; Dai, H.X. Effect of support nature on catalytic activity of the bimetallic RuCo nanoparticles for the oxidative removal of 1,2-dichloroethane. Appl. Catal. B 2021, 285, 119804. [Google Scholar] [CrossRef]
- Rainone, F.; Bulushev, D.A.; Kiwi-Minsker, L.; Renken, A. DRIFTS and transient-response study of vanadia/titania catalysts during toluene partial oxidation. Phys. Chem. Chem. Phys. 2003, 5, 4445–4449. [Google Scholar] [CrossRef] [Green Version]
- Wilburn, M.S.; Epling, W.S. Formation and decomposition of sulfite and sulfate species on Pt/Pd catalysts: An SO2 oxidation and sulfur exposure study. ACS Catal. 2019, 9, 640–648. [Google Scholar] [CrossRef]
Sample | BET Surface Area a (m2/g) | Pore Volume a (cm3/g) | Pore Diameter a (nm) | Actual Noble Metal Content b (wt%) | Pt/Pd Molar Ratio (mol/mol) | |
---|---|---|---|---|---|---|
Pt | Pd | |||||
V2O5-TiO2 | 33.0 | 0.206 | 3.41 | - | - | - |
0.47Pt/V2O5-TiO2 | 28.8 | 0.182 | 3.37 | 0.47 | - | - |
0.39Pd/V2O5-TiO2 | 27.9 | 0.195 | 3.40 | - | 0.39 | - |
0.46PdPt2.10/V2O5-TiO2 | 27.0 | 0.213 | 3.39 | 0.36 | 0.10 | 2.10 |
0.41PdPt0.85/V2O5-TiO2 | 26.1 | 0.210 | 3.40 | 0.25 | 0.16 | 0.85 |
0.49PdPt0.44/V2O5-TiO2 | 25.6 | 0.210 | 3.40 | 0.22 | 0.27 | 0.44 |
Sample | Catalytic Activity | Toluene Oxidation Activity at 230 °C | Metal Dispersion (%) | Ea (kJ/mol) | ||||
---|---|---|---|---|---|---|---|---|
T50% (°C) | T90% (°C) | Specific Reaction Rate (µmol/(gPt s)) | TOFPd (× 10−3 s−1) | TOFPt (× 10−3 s−1) | TOFNoble metal (× 10−3 s−1) | |||
V2O5-TiO2 | 295 | 330 | - | - | - | - | - | 68 |
0.39Pd/V2O5-TiO2 | 260 | 290 | - | 12.0 | - | 12.0 | 40 | 61 |
0.47Pt/V2O5-TiO2 | 228 | 252 | 34.8 | - | 17.4 | 17.4 | 39 | 59 |
0.49PdPt0.44/V2O5-TiO2 | 230 | 260 | 84.8 | 21.1 | 47.2 | 20.9 | 35 | 54 |
0.41PdPt0.85/V2O5-TiO2 | 225 | 247 | 85.6 | 56.9 | 66.1 | 56.9 | 25 | 51 |
0.46PdPt2.10/V2O5-TiO2 | 220 | 245 | 98.6 | 134.9 | 68.7 | 142.2 | 28 | 45 |
Sample | Surface Element Composition a (mol/mol) | H2 Consumption at 150–400 °C c (mmol/gcat) | ||||
---|---|---|---|---|---|---|
Pd0/Pd2+ Molar Ratio | Pt2+/Pt4+ Molar Ratio | Oads/Olatt Molar Ratio | V5+/Vγ+ Molar Ratio b | S6+/S4+ Molar Ratio | ||
0.39Pd/V2O5-TiO2 | 0.80 | - | 0.10 | 4.21 | - | 1.20 |
0.47Pt/V2O5-TiO2 | - | 0.30 | 0.22 | 6.66 | 0.00 | 1.08 |
0.49PdPt0.44/V2O5-TiO2 | 0.72 | 0.37 | 0.23 | 4.00 | - | 1.43 |
0.41PdPt0.85/V2O5-TiO2 | 0.65 | 0.35 | 0.27 | 5.00 | - | 1.70 |
0.46PdPt2.10/V2O5-TiO2 | 0.25 | 0.23 | 0.46 | 8.33 | 0.00 | 1.90 |
0.47Pt/V2O5-TiO2 (used) | - | 0.38 | 0.15 | 5.00 | 1.06 | 0.52 |
0.46PdPt2.10/V2O5-TiO2 (used) | 0.43 | 0.24 | 0.44 | 5.26 | 1.95 | 1.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Liu, Y.; Deng, J.; Jing, L.; Bao, M.; Sun, Q.; Li, L.; Wu, L.; Hao, X.; Dai, H. PdPty/V2O5-TiO2: Highly Active Catalysts with Good Moisture- and Sulfur Dioxide-Resistant Performance in Toluene Oxidation. Catalysts 2022, 12, 1302. https://doi.org/10.3390/catal12111302
Sun J, Liu Y, Deng J, Jing L, Bao M, Sun Q, Li L, Wu L, Hao X, Dai H. PdPty/V2O5-TiO2: Highly Active Catalysts with Good Moisture- and Sulfur Dioxide-Resistant Performance in Toluene Oxidation. Catalysts. 2022; 12(11):1302. https://doi.org/10.3390/catal12111302
Chicago/Turabian StyleSun, Jingjing, Yuxi Liu, Jiguang Deng, Lin Jing, Minming Bao, Qinpei Sun, Linlin Li, Linke Wu, Xiuqing Hao, and Hongxing Dai. 2022. "PdPty/V2O5-TiO2: Highly Active Catalysts with Good Moisture- and Sulfur Dioxide-Resistant Performance in Toluene Oxidation" Catalysts 12, no. 11: 1302. https://doi.org/10.3390/catal12111302
APA StyleSun, J., Liu, Y., Deng, J., Jing, L., Bao, M., Sun, Q., Li, L., Wu, L., Hao, X., & Dai, H. (2022). PdPty/V2O5-TiO2: Highly Active Catalysts with Good Moisture- and Sulfur Dioxide-Resistant Performance in Toluene Oxidation. Catalysts, 12(11), 1302. https://doi.org/10.3390/catal12111302