Naturally Nano: Magnetically Separable Nanocomposites from Natural Resources for Advanced Catalytic Applications
Abstract
1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Material Preparation
3.2. Characterization Techniques
3.3. Catalytic Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, J.; Li, M.; Sun, H.; Ao, Z.; Wang, S.; Liu, S. Understanding of the Oxidation Behavior of Benzyl Alcohol by Peroxymonosulfate via Carbon Nanotubes Activation. ACS Catal. 2020, 10, 3516–3525. [Google Scholar] [CrossRef]
- Necsoiu, I.; Balaban, A.T.; Pascaru, I.; Sliam, E.; Elian, M.; Nenitzescu, C.D. The mechanism of the etard reaction. Tetrahedron 1963, 19, 1133–1142. [Google Scholar] [CrossRef]
- Luo, J.; Yu, H.; Wang, H.; Wang, H.; Peng, F. Aerobic oxidation of benzyl alcohol to benzaldehyde catalyzed by carbon nanotubes without any promoter. Chem. Eng. J. 2014, 240, 434–442. [Google Scholar] [CrossRef]
- Patel, S.; Mishra, B.K. A novel lipopathic Cr (VI) oxidant for organic substrates: Kinetic study of oxidation of benzyl alcohol. Int. J. Chem. Kinet. 2006, 38, 651–656. [Google Scholar] [CrossRef]
- Kabilan, S.; Girija, R.; Reis, J.C.R.; Segurado, M.A.P.; de Oliveira, J.D.G. Oxidation of benzyl alcohol by pyridinium dichromate in acetonitrile. Using the para/meta ratio of substituent effects for mechanism elucidation. J. Chem. Soc. Perkin Trans. 2 2002, 6, 1151–1157. [Google Scholar] [CrossRef]
- Kotai, L.; Kazinczy, B.; Keszler, Á.; Holly, S.; Gács, I.; Banerji, K.K. Three Reagents In One: Ammonium Permanganate in the Oxidation of Benzyl Alcohol. Z. FÜR Nat. B 2001, 56, 823–825. [Google Scholar] [CrossRef]
- Jose, N.; Sengupta, S.; Basu, J.K. Selective production of benzaldehyde by permanganate oxidation of benzyl alcohol using 18-crown-6 as phase transfer catalyst. J. Mol. Catal. A Chem. 2009, 309, 153–158. [Google Scholar] [CrossRef]
- Pritchard, J.; Kesavan, L.; Piccinini, M.; He, Q.; Tiruvalam, R.; Dimitratos, N.; Lopez-Sanchez, J.A.; Carley, A.F.; Edwards, J.K.; Kiely, C.J.; et al. Direct Synthesis of Hydrogen Peroxide and Benzyl Alcohol Oxidation Using Au–Pd Catalysts Prepared by Sol Immobilization. Langmuir 2010, 26, 16568–16577. [Google Scholar] [CrossRef]
- Chaudhari, M.P.; Sawant, S.B. Kinetics of heterogeneous oxidation of benzyl alcohol with hydrogen peroxide. Chem. Eng. J. 2005, 106, 111–118. [Google Scholar] [CrossRef]
- ten Brink, G.-J.; Arends, I.W.C.E.; Sheldon, R.A. Green, Catalytic Oxidation of Alcohols in Water. Science 2000, 287, 1636–1639. [Google Scholar] [CrossRef]
- Steinhoff, B.A.; Fix, S.R.; Stahl, S.S. Mechanistic Study of Alcohol Oxidation by the Pd(OAc)2/O2/DMSO Catalyst System and Implications for the Development of Improved Aerobic Oxidation Catalysts. J. Am. Chem. Soc. 2002, 124, 766–767. [Google Scholar] [CrossRef]
- Bhalothia, D.; Tsai, D.-L.; Wang, S.-P.; Yan, C.; Chan, T.-S.; Wang, K.-W.; Chen, T.-Y.; Chen, P.-C. Ir-oxide mediated surface restructure and corresponding impacts on durability of bimetallic NiOx@Pd nanocatalysts in oxygen reduction reaction. J. Alloy Compd. 2020, 844, 156160. [Google Scholar] [CrossRef]
- Bhalothia, D.; Chen, P.-C.; Yan, C.; Yeh, W.; Tsai, D.-L.; Chan, T.-S.; Wang, K.-W.; Chen, T.-Y. Heterogeneous assembly of Pt-clusters on hierarchically structured CoOx@SnPd2@SnO2 quaternary nanocatalysts manifesting oxygen reduction reaction performance. New J. Chem. 2020, 44, 9712–9724. [Google Scholar] [CrossRef]
- Bhalothia, D.; Hsiung, W.-H.; Yang, S.-S.; Yan, C.; Chen, P.-C.; Lin, T.-H.; Wu, S.-C.; Chen, P.-C.; Wang, K.-W.; Lin, M.-W.; et al. Submillisecond Laser Annealing Induced Surface and Subsurface Restructuring of Cu–Ni–Pd Trimetallic Nanocatalyst Promotes Thermal CO2 Reduction. ACS Appl. Energy Mater. 2021, 4, 14043–14058. [Google Scholar] [CrossRef]
- Altaee, H.; Alshamsi, H.A. Selective oxidation of benzyl alcohol by reduced graphene oxide supported platinum nanoparticles. J. Phys. Conf. Ser. 2020, 1664, 012074. [Google Scholar] [CrossRef]
- Göksu, H.; Burhan, H.; Mustafov, S.D.; Şen, F. Oxidation of benzyl alcohol compounds in the presence of carbon hybrid supported platinum nanoparticles (Pt@CHs) in oxygen atmosphere. Sci. Rep. 2020, 10, 5439. [Google Scholar] [CrossRef]
- Nascimento, L.F.; Matsubara, E.Y.; Donate, P.M.; Rosolen, J.M. Catalytic behavior of ruthenium anchored on micronanostructured composite in selective benzyl alcohol oxidation. Reac. Kinet. Mech. Cat. 2013, 110, 471–483. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Mizuno, N. Supported Ruthenium Catalyst for the Heterogeneous Oxidation of Alcohols with Molecular Oxygen. Angew. Chem. 2002, 114, 4720–4724. [Google Scholar] [CrossRef]
- Mandal, S.; Bando, K.K.; Santra, C.; Maity, S.; James, O.O.; Mehta, D.; Chowdhury, B. Sm-CeO2 supported gold nanoparticle catalyst for benzyl alcohol oxidation using molecular O2. Appl. Catal. A Gen. 2013, 452, 94–104. [Google Scholar] [CrossRef]
- Alhumaimess, M.; Lin, Z.; Weng, W.; Dimitratos, N.; Dummer, N.F.; Taylor, S.H.; Bartley, J.K.; Kiely, C.J.; Hutchings, G.J. Oxidation of Benzyl Alcohol by using Gold Nanoparticles Supported on Ceria Foam. ChemSusChem 2012, 5, 125–131. [Google Scholar] [CrossRef]
- Chan-Thaw, C.E.; Savara, A.; Villa, A. Selective benzyl alcohol oxidation over Pd catalysts. Catalysts 2018, 8, 431. [Google Scholar] [CrossRef]
- Li, G.; Enache, D.I.; Edwards, J.; Carley, A.F.; Knight, D.W.; Hutchings, G.J. Solvent-free oxidation of benzyl alcohol with oxygen using zeolite-supported Au and Au–Pd catalysts. Catal. Lett. 2006, 110, 7–13. [Google Scholar] [CrossRef]
- Enache, D.I.; Edwards, J.K.; Landon, P.; Solsona-Espriu, B.; Carley, A.F.; Herzing, A.A.; Watanabe, M.; Kiely, C.J.; Knight, D.W.; Hutchings, G.J. Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts. Science 2006, 311, 362–365. [Google Scholar] [CrossRef]
- Dimitratos, N.; Villa, A.; Wang, D.; Porta, F.; Su, D.; Prati, L. Pd and Pt catalysts modified by alloying with Au in the selective oxidation of alcohols. J. Catal. 2006, 244, 113–121. [Google Scholar] [CrossRef]
- Element Scarcity—EuChemS Periodic Table. Available online: https://www.euchems.eu/euchems-periodic-table/ (accessed on 13 April 2020).
- González-Arellano, C.; Campelo, J.M.; Macquarrie, D.J.; Marinas, J.M.; Romero, A.A.; Luque, R. Efficient microwave oxidation of alcohols using low-loaded supported metallic iron nanoparticles. ChemSusChem 2008, 1, 746–750. [Google Scholar] [CrossRef]
- Balu, A.M.; Pineda, A.; Yoshida, K.; Campelo, J.M.; Gai, P.L.; Luque, R.; Romero, A.A. Fe/Al synergy in Fe2O3 nanoparticles supported on porous aluminosilicate materials: Excelling activities in oxidation reactions. Chem. Commun. 2010, 46, 7825–7827. [Google Scholar] [CrossRef]
- Rajabi, F.; Karimi, N.; Saidi, M.R.; Primo, A.; Varma, R.S.; Luque, R. Unprecedented selective oxidation of styrene derivatives using a supported iron oxide nanocatalyst in aqueous medium. Adv. Synth. Catal. 2012, 354, 1707–1711. [Google Scholar] [CrossRef]
- Pineda, A.; Balu, A.M.; Campelo, J.M.; Romero, A.A.; Carmona, D.; Balas, F.; Santamaria, J.; Luque, R. A Dry Milling Approach for the Synthesis of Highly Active Nanoparticles Supported on Porous Materials. ChemSusChem 2011, 4, 1561–1565. [Google Scholar] [CrossRef]
- Rajabi, F.; Naserian, S.; Primo, A.; Luque, R. Efficient and Highly Selective Aqueous Oxidation of Sulfides to Sulfoxides at Room Temperature Catalysed by Supported Iron Oxide Nanoparticles on SBA-15. Adv. Synth. Catal. 2011, 353, 2060–2066. [Google Scholar] [CrossRef]
- Balu, A.M.; Lin, C.S.K.; Liu, H.; Li, Y.; Vargas, C.; Luque, R. Iron oxide functionalised MIL-101 materials in aqueous phase selective oxidations. Appl. Catal. A Gen. 2013, 455, 261–266. [Google Scholar] [CrossRef]
- Xiao, S.; Zhang, C.; Chen, R.; Chen, F. Selective oxidation of benzyl alcohol to benzaldehyde with H2O2 in water on epichlorohydrin-modified Fe3O4 microspheres. New J. Chem. 2015, 39, 4924–4932. [Google Scholar] [CrossRef]
- Which Country Produces the Most Silkworm Cocoons? Available online: https://www.helgilibrary.com/charts/which-country-produces-the-most-silkworm-cocoons (accessed on 2 September 2022).
Material | Conversion (%) | Selectivity Benzaldehyde (%) | Selectivity Benzoic Acid (%) |
---|---|---|---|
Blank | <5 | 100 | 0 |
Cocoon Fe-mag dried 48 h | 14 | 96.6 | 3.4 |
Cocoon Fe-mag dried 6 days | 10 | 97.1 | 2.9 |
Cocoon Fe-mag cal 100 | <5 | 100 | 0 |
Cocoon Fe-mag cal 200 | <5 | 100 | 0 |
Cocoon Fe-mag cal 300 | 35 | 90.2 | 9.8 |
Material | Cycle | Conversion (%) | Selectivity Benzaldehyde (%) | Selectivity Benzoic Acid (%) |
---|---|---|---|---|
Blanco | - | <5 | 100 | 0 |
Cocoon Fe-mag cal 500 | 1 | 47 | 75.9 | 24.1 |
2 | 30 | 90.0 | 10.0 | |
3 | 17 | 92.1 | 7.9 | |
4 | 16 | 95.5 | 4.5 | |
Cocoon Fe-mag cal 600 | 1 | 31 | 83.6 | 16.4 |
2 | 11 | 95.4 | 4,6 | |
3 | 15 | 97.2 | 2.8 | |
4 | 10 | 97.4 | 2.6 | |
Cocoon Fe-mag cal 800 | 1 | 12 | 94.6 | 5.4 |
2 | <10 | 97.7 | 2.3 | |
3 | <10 | 98.2 | 1.8 | |
4 | <10 | 98.2 | 1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arancon, R.A.D.; Al Othman, Z.A.; Len, T.; Shih, K.; Voskressensky, L.; Luque, R. Naturally Nano: Magnetically Separable Nanocomposites from Natural Resources for Advanced Catalytic Applications. Catalysts 2022, 12, 1337. https://doi.org/10.3390/catal12111337
Arancon RAD, Al Othman ZA, Len T, Shih K, Voskressensky L, Luque R. Naturally Nano: Magnetically Separable Nanocomposites from Natural Resources for Advanced Catalytic Applications. Catalysts. 2022; 12(11):1337. https://doi.org/10.3390/catal12111337
Chicago/Turabian StyleArancon, Rick A. D., Zeid A. Al Othman, Thomas Len, Kaimin Shih, Leonid Voskressensky, and Rafael Luque. 2022. "Naturally Nano: Magnetically Separable Nanocomposites from Natural Resources for Advanced Catalytic Applications" Catalysts 12, no. 11: 1337. https://doi.org/10.3390/catal12111337
APA StyleArancon, R. A. D., Al Othman, Z. A., Len, T., Shih, K., Voskressensky, L., & Luque, R. (2022). Naturally Nano: Magnetically Separable Nanocomposites from Natural Resources for Advanced Catalytic Applications. Catalysts, 12(11), 1337. https://doi.org/10.3390/catal12111337